Supporting Information for:

Further Characterization of Cys-Type and Ser-Type Anaerobic Sulfatase Maturating Enzymes Suggests a Commonality in Mechanism of Catalysis

Tyler L. Grove[‡], *Jessica H. Ahlum*[‡], *Rosie M. Qin*[§], *Nicholas D. Lanz*[§], *Matthew I. Radle*[‡], *Carsten Krebs*^{*,‡,§}, and *Squire J. Booker*^{*‡,§}

Figure S1. Sequence alignment of anSMEcpe cloned from *C. perfringens* (ATCC #13124D-5) and the gene from *C. perfringens* strain 13 (accession #BAB80341). Differences between the sequence determined herein and the sequence in the database are highlighted in red.

Figure S2. EPR of M \square ssbauer samples. anSMEcpe AI (red trace), anSMEcpe RCN (black trace), anSMEcpe_{C15A/C19A/C22A} AI (green trace), and anSMEcpe_{C15A/C19A/C22A} RCN (blue trace). Spectra were collected on a Bruker ESP-300 X-Band EPR spectrometer with the following parameters: frequency, 9.51 GHz; temperature, 13 K; power, 0.101 mW; and modulation amplitude, 10 Gauss. Spin quantification was performed by comparing the double integral of the obtained signal to that of a 1 mM Cu(II)-EDTA standard collected under identical conditions.

Figure S3. LC-MS analysis of anSMEcpe assay. The assay was conducted as described in Materials and Methods using **Kp18Cys** as the substrate, **Kp9Ser** as an internal standard, and dithionite (4.5 mM) as the required reductant. Green (t=0); Red (t=30 min); Black (t=5, 10, and 20 min).

Figure S4. Turnover of WT RCN anSMEcpe with **Cp18Cys**. **A)** Time-dependent formation of 5'-dA (black triangles) and depletion of **Cp18Cys** (red squares) in the presence of dithionite. Reaction mixtures contained 4 μ M anSMEcpe, 1 mM SAM, 1 mM **Cp18Cys**, and 3 mM dithionite. The data are the averages of two independent trials, and error bars denote one standard deviation. $V_{max}/[E_T]$ values for 5'-dA formation and peptide consumption are 4.50 \pm 0.052 min⁻¹ and 1.91 \pm 0.259 min⁻¹, respectively. **B)** Time-dependent formation of 5'-dA (black triangles) and depletion of **Cp18Cys** (red squares) in the presence of the Flv/Flx/NADPH reducing system. Reaction mixtures contained 40 μ M anSMEcpe, 1 mM SAM, 1 mM **Cp18Cys**, 50 μ M Flv, 15 μ M Flx, and 2 mM NADPH. The data are the averages of two independent trials, and peptide consumption are 0.22 \pm 0.003 min⁻¹ and 0.21 \pm 0.032 min⁻¹, respectively.

Figure S5. Time-dependent formation of 5'-dA (black triangles) and **Kp18FGly** (red squares) in the presence of Kp18SeCys. Reaction mixtures contained 40 μ M anSMEcpe, 1 mM SAM, 0.5 mM **Kp18SeCys**, 50 μ M Flv, 15 μ M Flx, and 2 mM NADPH. V_{max}/[E_T] values for 5'-dA and **Kp18FGly** formation are 0.053 min⁻¹ and 0.032, respectively.

Figure S6. Low-temperature X-Band EPR of Flv• and anSMEcpe during turnover. Reaction mixtures contained 100 μ M anSMEcpe, 2 mM SAM, 2 mM **Kp18Cys** and 204 μ M Flv• (ϵ_{580} =4.57 mM⁻¹ cm⁻¹) at 13 K at 1 min (green), 15 min (red), and 30 min (black). Spectra were collected on a Bruker ESP-300 X-Band EPR spectrometer under the following conditions:

frequency, 9.51 GHz; temperature, 13 K; power, 0.101 mW; and modulation amplitude, 10 Gauss.

Figure S7. Correlation of spectral changes and product formation during AtsB turnover with **Kp18Cys**. **A**) X-Band EPR (77 K) spectra of a reaction mixture containing 150 μ M AtsB, 1 mM SAM, 1 mM **Kp18Ser**, 75 μ M Flv_{ox}, and 75 μ M Flv• at 1 min (red), 15 min (green), and 30 min (black). Spectra were recorded as described in Materials and Methods. **B**) Time-dependent quantification of Flv• (open circles) and 5'-dA (closed triangles). The black line is a fit of the 5'-dA data to an equation describing a burst phase followed by a steady-state linear phase.

Figure S8. Stereochemical designation of threonine and *allo*-threonine.

Figure S9. MALDI MS analysis of a WT RCN anSMEcpe reaction with **Kp18Thr** (**A**), or **Kp18***allo***Thr** (**B**). Aliquots removed from the reaction at 0 min (black trace) and 10 min (red trace) were derivatized with DNPH as described in Materials and Methods. Spectra were recorded as previously described $^{(1)}$.

Figure S10. MALDI MS analysis of a WT RCN AtsB reaction with **Kp18Thr** (**A**), or **Kp18***allo***Thr** (**B**). Aliquots removed from the reaction at 0 min (black trace) and 10 min (red trace) were derivatized with DNPH as described in Materials and Methods. Spectra were recorded as previously described $^{(I)}$.

Figure S11. UV-vis spectra of AI AtsB C127A and C245A. AI AtsB C127A (11.3 μ M; solid black trace, left axis) contained 9.8 ± 0.1 irons and 9.6 ± 0.5 sulfides per polypeptide. AI AtsB C245A variant (6.2 μ M; dashed red trace, right axis) contained 12.0 ± 1.1 irons and 15.0 ± 0.3 sulfides per polypeptide. The A₃₉₅/A₂₈₀ ratio for both is 0.38.

Figure S12. UV-vis spectrum of AI AtsB C291A. The protein (6.4 μ M), contained 6.7 \pm 0.1 irons and 5.6 \pm 0.6 sulfides per polypeptide. The A₄₀₅/A₂₈₀ ratio was 0.39.

Figure S13. UV-vis spectrum of AI (solid line) and RCN (dashed line) anSMEcpe C276A. AI anSMEcpe C276A (4 μ M, solid line, left *Y*-axis) and RCnN anSMEcpe C276A (8.4 μ M, dotted line, right *Y*-axis). The A_{410}/A_{280} ratios of AI and RCN proteins were 0.36 and 0.45, respectively.

Figure S14. UV-vis of Flv• added to electron counting reaction with anSMEcpe.

Primer	Sequence
AtsB C127A Forward	5'-gctgatcaacgacgcatggGCCcgactgttccgcg-3'
AtsB C127A Reverse	5'-cgcggaacagtcgGGCccatgcgtcgttgatcagc-3'
AtsB C245A Forward	5'-ggcggaagcgc <u>GCC</u> gatagagggcg-3'
AtsB C245A Reverse	5'-cgccctctatc <u>GGC</u> gcgcttccgcc-3'
AtsB C270A Forward	5'-ccagcggcagc <u>GCC</u> gtgcacagcg-3'
AtsB C270A Reverse	5'-cgctgtgcac <u>GGC</u> gctgccgctgg-3'
AtsB C276A Forward	5'-cgtgcacagcgcccgc <u>GCC</u> ggcagcaacctgg-3'
AtsB C276S Reverse	5'-ccaggttgctgcc <u>GGC</u> gcgggcgctgtgcacg-3'
AtsB C276S Forward	5'-cgtgcacagcgcccgc <u>TCC</u> ggcagcaacctgg-3'
AtsB C276A Reverse	5'-ccaggttgctgcc <u>GGAgcgggcgctgtgcacg-3'</u>
AtsB C291A Forward	5'-ggacagetetacgee <u>GCCgaceacetgateaacg-3'</u>
AtsB C291A Reverse	5'-cgttgatcaggtggtcGGCggcgtagagctgtcc-3'
AtsB C331A Forward	5'-gcgccgcgaaGCCcagacttgctcgg-3'
AtsB C331A Reverse	5'-ccgagcaagtctgGGCttcgcggcgc-3'
AtsB C334A Forward	5'-ccgcgaatgccagactGCCtcggtaaaaatgg-3'
AtsB C334A Reverse	5'-ccatttttaccgaGGCagtctggcattcgcgg-3'
AtsB C340A Forward	5'-cggtaaaaatggtcGCCcagggcggctgccc-3'
AtsB C340A Reverse	5'-gggcagccgccctgGGCgaccatttttaccg-3'
AtsB C344A Forward	5'-ggtctgccagggcggc <u>GCC</u> ccggcgcatctcaacgccg-3'
AtsB C344A Reverse	5'-cggcgttgagatgcgccgg <u>GGC</u> gccgccctggcagacc-3'
AtsB C357A Forward	5'-ggcaacaaccgcctcGCCggaggctactaccgc-3'
AtsB C357A Reverse	5'-gcggtagtagcctccGGCgaggcggttgttgcc-3'
anSMEcpe C276 Forward	5'-ggagtgtttatcctGCTgatttttatgttttagataaatgg-3'
anSMEcpe C276 Reverse	5'-ccatttatctaaaacataaaaatcAGCaggataaacactcc-3'

Γable S2: Retention tim	es and monitored	l <i>m/z</i> values for	Detection Method 1
-------------------------	------------------	-------------------------	--------------------

	Retention Time	Parent Ion*	Product Ion 1 [†]	Product Ion 2^{\dagger}
5'-dA	4.7 min	252.1 (90)	136 (13)	119 (50)
Tryptophan (IS)	6.2 min	188 (130)	146.1 (10)	118 (21)

*Respective fragmentor voltages are in parenthesis.

[†]Respective collision energies are in parenthesis.

 Substrate	Retention Time	Parent Ion*	Product Ion 1 [†]	Product Ion 2 [†]
 Kp9Ser (IS)	1.4 min	474.4 (180)	719.3 (15)	561.3 (11)
Kp18FGly	3.9 min	1000.7 (180)	905.9 (12)	404.2 (20)
Kp18Ser	4.0 min	1001.7 (180)	906.9 (12)	404.2 (12)
Kp18Cys	4.4 min	1009.9 (180)	1727.8 (12)	914.9 (12)
Kp18SeCys	4.8 min	1033.1 (180)	1414.6 (0)	291.1 (24)
Cp18Cys	4.8 min	955.3 (180)	477.2 (16)	421.2 (8)
Kp18Thr	4.1 min	1008.7 (180)	1059.6 (18)	914 (14)
Kp18 <i>allo</i> Thr	3.9 min	1008.7 (180)	1059.6 (18)	914 (14)

Table S3: Retention times and monitored m/z values for Detection Method 2

*Respective fragmentor voltages are in parenthesis.

[†]Respective collision energies are in parenthesis.

Figure S1	1		4.1
BAB80341	⊥ 1	ATGCCACCATTAAGTTTGCTTATTAAGCCAGCTTCTAGTGG ATGCCACCATTAAGTTTGCTTATTAAGCCAGCTTCTAGTGG	41
DIIDOUGIT	-		* ±
AnSMEcpe	42	ATGTAATTTAAAATGCACTTATTGTTTTTATCATTCTTTAA	82
BAB80341	42	ATGTAATTTAAAATGCACTTATTGTTTTTATCATTCTTTAA	82
AnSMEcpe	83	GTGATAATAGAAATGTTAAGAGCTA <mark>C</mark> GGAATTATGAGAGAT	123
BAB8034	83	GTGATAATAGAAATGTTAAGAGCTA T GGAATTATGAGAGAT	123
AnSMEcpe	124	GAAGTTTTAGAAAGCATGGT C AAAAGGGTTTTGAATGAAGC	164
BAB8034	124	GAAGTTTTAGAAAGCATGGT T AAAAGGGTTTTGAATGAAGC	164
AnSMEcpe	165	T A ATGG A CATTG C AGTTTTGCTTTTCAGGGAGGAGAACCTA	205
BAB80341	165	TGATGGCCATTGTAGTTTTGCTTTTCAGGGAGGAGAACCTA	205
AnSMEcpe	206	CCTTAGCAGGATTAGAATTTTTTGAAAAGTTAATGGAGCTT	246
BAB80341	206	TCTTAGCAGGATTAGAATTTTTTGAAA G GTTAATGGAGCTT	246
AnSMEcpe	247	CAGAG A AAACATAATTATAAAAATTTAAAAAATATAATAA	287
BAB80341	247	CAGAG G AAACATAATTATAAAAATTTAAAAAATATAATAG	287
AnSMEcpe	288	TTTGCAAACCAATGGAACTTTAATAGATGAAAGTTGGGCAA	328
BAB80341	288	TTTGCAAACCAATGGAACTTTAATAGATGAAAGTTGGGCAA	328
AnSMEcpe	329	AGTTTTTAAGTGAAAATAAATTTCTTGTGGGACTATCTAT	369
BAB80341	329	AGTTTTTAAGTGAAAATAAATTTCTTGTGGGACTATCTAT	369
AnSMEcpe	370	GATGGACCTAAGGAAATACACAATTTAAATAGAAAAGATTG	410
BAB80341	370	GATGGACCTAAGGAAATACACAATTTAAATAGAAAAGATTG	410
AnSMEcpe	411	TTGTGGTTTAGATACCTTTAGTAAGGTAGAAAGGGCAGCGG	451
BAB80341	411	TTGTGGTTTAGATACCTTTAGTAAGGTAGAAAGGGCAGCGG	451
AnSMEcpe	452	AGTTATTTAAAAAGTATAAGGTTGAATTTAATATATTATGC	492
BAB80341	452	AGTTATTTAAAAAGTATAAGGTTGAATTTAATATATTATGC	492
AnSMEcpe	493	GTTGTGACCTCTAATACAGCTAGGCATGTAAATAAA G TATA	533
BAB80341	493	GTTGTGACCTCTAATACAGCTAGGCATGTAAATAAA A TATA	533
AnSMEcpe	534	TA A ATATTTTAAGGAAAAAGATTTTAAATTTCTTCAATTTA	574
BAB80341	534	TAGATATTTTAAGGAAAAAGATTTTAAATTTCTTCAATTTA	574
AnSMEcpe	575	TAAATTGTCTTGACCCATTGTACGAGGAAAAAGGTAAATAT	615
BAB80341	575	TAAATTGTCTTGACCCATTGTACGAGGAAAA G GGTAAATAT	615
AnSMEcpe	616	AATTATTCTTTAAA <mark>G</mark> CCA AA GGATTATACTAAGTTTTTAAA	656
BAB80341	616	AATTATTCTTTAAA A CCA CA GGATTATACTAAGTTTTTAAA	656
AnSMEcpe	657	GAATTTATT <mark>C</mark> GACTT T TGGTATGAAGATTTTCTAAATGGAA	697
BAB80341	657	$GAATTTATT^{\mathbf{T}} GACTT^{\mathbf{G}} T G G T A T G A G A T T T T T A A T G G A A$	697
AnSMEcpe	698	ATAGAGTAAGCATTAGATATTTTGATGGTTTA T TAGAAACA	738

BAB80341	698	ATAGAGTAAGCATTAGATATTTTGATGGTTTA C TAGAAACA	738
AnSMEcpe	739	ATTTTATTAGGAAAGTCATCATCTTGTGGAATGAATGGGAC	779
BAB80341	739	ATTTTATTAGGAAAGTCATCATCTTGTGGAATGAATGGGAC	779
AnSMEcpe	780	ATGTACCTGTCAGTTTGTTGTGGAAAGTGATGGGAGTGTTT	820
BAB80341	780	ATGTACCTGTCAGTTTGTTGTGGAAAGTGATGGGAGTGTTT	820
AnSMEcpe	821	ATCCTTGTGATTTTTATGTTTTAGATAAATGGAGACTAGGC	861
BAB80341	821	ATCCTTGTGATTTTTATGTTTTAGATAAATGGAGACTAGGC	861
AnSMEcpe	862	AACATACAGGATATGACAATGAAAGAATTATTTGAAAC C AA	902
BAB80341	862	AACATACAGGATATGACAATGAAAGAATTATTTGAAAC A AA	902
AnSMEcpe	903	TAAAAATCATGAGTTTATAAAAT T ATC A TTTAAAGTTCATG	943
BAB80341	903	TAAAAATCATGAGTTTATAAAAT <mark>C</mark> ATC C TTTAAAGTTCATG	943
AnSMEcpe	944	AAGAATG C AAAAAGTGCAAGTGGTTTA GA CTTTGTAAAGGT	984
BAB80341	944	AAGAATG T AAAAAGTGCAAGTGGTTTA AG CTTTGTAAAGGT	984
AnSMEcpe	985	GGATGTAGAAGGTGCAGAGATTCAAAGGAAGA T TCAG CT TT	1025
BAB80341	985	GGATGTAGAAGGTGCAGAGATTCAAAGGAAGA C TCAG AC TT	1025
AnSMEcpe	1026	AGAGTTAAACTACTATTG T CAAAG C TACAAGGAATTCTTTG	1066
BAB80341	1026	AGAGTTAAACTACTATTG C CAAAG T TACAAGGAATTCTTTG	1066
AnSMEcpe	1067	AATATGCCTTTCCAAGGTTAATAAATGTTGCCAACAATATT	1107
BAB80341	1067	AATATGCCTTTCCAAGGTTAATAAATGTTGCCAACAATATT	1107
AnSMEcpe	1108	AAATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGC	1148
BAB80341	1108	AAATAA	1113
AnSMEcpe BAB80341	1149 1114	CGCACTCGAGCACCACCACCACCACTGAGATCCGGCTG	1189 1113
AnSMEcpe BAB80341	1190 1114	CTAACAAAGCCCGAA 1204 1113	

Figure S2

Figure S3

Figure S4.

Figure S5.

Figure S6.

Figure S8.

$$+OOC$$
 $+$ HO_{H}^{+} HO_{H}^{+} H_{proR} $proS$ L-serine

2S,3R L-threonine

2S,3S

L-allo-threonine

Figure S10.

Figure S12.

Figure S13

Figure S14.

References

1. Grove, T. L., Lee, K. H., St Clair, J., Krebs, C., and Booker, S. J. (2008) In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters, Biochemistry 47, 7523–7538.