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Supplemental Methods 

 
Monte Carlo Procedures Used to Correct for Family-Wise Error Rate  

We used a non-parametric approach based on Monte Carlo simulations to determine the 

minimum cluster size that controls for false positive rate at p < 0.001 for height and p < .01 for 

cluster extent. Monte Carlo simulations were implemented in MATLAB using methods similar 

to the AlphaSim procedure in the software package Analysis of Functional NeuroImages (AFNI) 

(1, 2). Ten thousand iterations of random 3D images, with the same resolution and dimensions as 

the fMRI data, were generated. The resulting images were masked for gray matter and then 

smoothed with the same 6 mm full-width half-maximum Gaussian kernel used to smooth the 

fMRI data. The maximum cluster size was then computed for each iteration and the probability 

distribution was estimated across the 10,000 iterations. The cluster threshold corresponding to a 

family-wise error significance level of height p < .001 and cluster extent p < 0.01 was 

determined to be 41 and 45 voxels for the univariate and multivariate analyses, respectively. 

 

Multivariate Analysis 

The multivariate pattern analysis (MVPA) analysis used a nonlinear classifier based on 

support-vector machine algorithms with radial basis function (RBF) kernels (3). At each voxel vi, 

a 3 x 3 x 3 neighborhood (searchlight) centered at vi was defined. Therefore, the spatial pattern 

of voxels in this neighborhood was defined by a 27-dimentional vector. Support vector machine 
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(SVM) classification was performed using LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm) 

software. For the non-linear SVM classifier, we specified two parameters: C (regularization) and 

α (parameter RBF kernel) at each searchlight position. Subsequently we estimated optimal values 

of C, α as well as the generalizability of the classifier at each searchlight position by using a 

combination of grid cell and cross-validation procedures. Contrary to previous approaches in 

which the free parameter C was arbitrarily set (4), we here optimize both free parameters (C and 

α) based on the data, thereby designing an optimal classifier. At each voxel, a Leave-One-Out 

Cross Validation (LOOCV) procedure (5, 6) was used to measure the performance of the 

classifier in distinguishing children with autism spectrum disorder (ASD) from typically 

developing (TD) children during arithmetical problem solving. One single observation was used 

for testing the optimal classifier that was trained using the remaining observations. This process 

was repeated such that every observation was used once for testing purposes. For each iteration, 

the class label estimated by the optimal classifier was compared against the class label of the test 

observation. The ratio of correctly estimated class labels to the total number of observations, 

hereafter referred to as cross-validation accuracy (CVA), was then computed. The resulting 3D 

map of CVA at every voxel was used to identify brain regions that distinguish between the 

groups. Under the null hypothesis that there is no difference between the two groups, the CVAs 

were assumed to follow the binomial distribution B (N, p) with parameters N equal to the total 

number of participants in the two groups and p equal to 0.5, assuming that under the null 

hypothesis, the probability of each group is equal. The CVAs were then converted to p-values 

using the binomial distribution (5, 7). 

 

 

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Iuculano et al. 
 

3 
 

Support Vector Regression Analysis 

We used support vector regression (SVR) with the default settings of C = 1 and nu = 

0.05, as implemented in the LIBSVM Toolbox (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). We 

first estimated R2, using the LOOCV procedure (see above). Each sample was designated the test 

sample in turns while the remaining samples were used to train the SVR predictor. The decision 

function derived from the training sample was then used to make a real-valued prediction about 

the test sample. R2 was computed based on the observed and predicted values. Finally, the 

statistical significance of the SVR model was assessed using non-parametric analysis. The 

empirical null distribution of R2 was estimated by generating 10,000 surrogate datasets under the 

null hypothesis that there was no association between Numerical Operations scores and 

functional activation patterns. Each surrogate dataset Di of size equal to the observed dataset was 

generated by permuting the labels (Numerical Operations scores) on the observed data points. 

The SVR model was fitted to predict labels of each surrogate dataset Di . Ri
2 was computed using 

the actual labels of Di and predicted labels. This procedure produces a null distribution of R2 of 

the SVR model. The statistical significance (p value) of the model was then determined by 

counting the number of Ri
2 greater than R2 and dividing that count by the number of Di (10,000). 

 
 

Supplemental Results 

 
Univariate Analyses 

Between-group analysis using Rest as control. Between-group t-tests on the Simple 

addition problems versus Rest comparison did not reveal significant differences between 

children with ASD and their TD peers (height threshold: p < .001, extent threshold: p < .01). 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Similarly, no differences were observed for the Complex addition problems versus Rest 

between-group comparison (height threshold: p < .001, extent threshold: p < .01).  

 

Multivariate Analyses 

Between-group analysis using Rest as the control condition. The main goal of 

multivariate analyses was to examine arithmetic-complexity related differences in brain activity 

patterns between ASD and TD children (Figure 2). Additional analyses were conducted to 

examine whether the observed multivariate activation pattern differences arose from group 

differences in the Simple addition problems. To address this question, group differences in 

multivariate activation patterns were examined for Simple addition problems contrasted with 

Rest. Virtually no overlap was observed with findings from our original arithmetic complexity 

related analysis (Figure S1A). Next we examined group differences in multivariate activation 

patterns for Complex addition problems contrasted with the Rest baseline. In this case, 

significant overlapping effects were observed in the ventral temporal-occipital cortex (VTOC) 

encompassing the fusiform gyrus (FG) and the inferior lateral occipital cortex (LOC), and in 

posterior parietal cortex encompassing the angular gyrus (AG) (Figure S1B).  No overlapping 

effects were evident in the medial temporal lobe, a region in which the Rest baseline is known to 

vary significantly across individuals (8). Taken together, these analyses indicate that our 

arithmetic-complexity related findings are not driven by differences in brain activation patterns 

to Simple addition problems. These results also indicate that group differences in multivariate 

activation patterns are not additive, and that MVPA requires careful attention to experimental 

conditions of interest and potential differences in Rest baseline activity between children with 

ASD and TD children.  
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Figure S1. Multivariate brain activity classification maps distinguishing children with 

autism spectrum disorder (ASD) from typically developing (TD) children during arithmetic 

problem solving. (A) Comparison of between-group classification maps for Complex versus 

Simple addition problems (shown in red-yellow) and for Simple addition problems versus Rest 

(shown in blue-green). No brain regions showed overlapping effects in this case. (B) Comparison 

of between-group classification maps for Complex versus Simple addition problems (red-yellow) 

and for Complex addition problems versus Rest (blue-green). In both cases, significant effects 

were observed in ventral temporal-occipital cortex (VTOC) encompassing the fusiform gyrus 

(FG) and the inferior lateral occipital cortex (LOC), and in posterior parietal cortex 

encompassing the angular gyrus (AG). Multi-slices were created on the coronal axis and slices 

were equally spaced between each other (8 slices apart), except where additional slices were 

needed for comparison with results presented in Figure 2. 
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Table S1. Additional ASD Participant Information. Medication status for each of the 18 ASD 

participants. 

Participant Medication Status 
ASD 1  
ASD 2 Claritin, Benadryl for seasonal allergies 
ASD 3  
ASD 4 Zyrtec, Claritin for seasonal allergies 
ASD 5  
ASD 6  
ASD 7 Zithromax 10 mg/Lexapro 5 mg 
ASD 8  
ASD 9 Citalopram for social anxiety/shyness 
ASD 10 Prozac/Risperidone 
ASD 11  
ASD 12  
ASD 13  
ASD 14  
ASD 15  
ASD 16 Zyrtec, Rhinocort, Singulair, Digestive Enzymes, Priobiotics 
ASD 17 Sertraline, Risperidone 
ASD 18 Aripiprazole for irritability 
ASD, autism spectrum disorder. 

 

 

 

Table S2. Movement parameters (in mm) for autism spectrum disorder (ASD) and 

typically developing (TD) groups. Movement parameters did not differ between the two groups 

(all p > .05). 

 ASD (n = 18) TD (n = 18) t-test p-value 

Maximum displacement 2.68, SD = 1.49 2.81, SD = 1.96 -0.22 .83 

Maximum scan-to-scan displacement 2.05, SD = 1.39 1.95, SD = 1.41 0.23 .82 

Mean scan-to-scan displacement 0.18, SD = 0.11 0.19, SD = 0.10 -0.35 .73 

% Volumes repaired 1.59, SD = 1.77  1.84, SD = 1.97 -0.39 .69 
df = (1, 34) for all analyses. 
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Table S3. Neuropsychological measures in autism spectrum disorder (ASD) and typically 

developing (TD) groups. Mean scores are shown for the ASD and TD groups on the two 

subtests of the Wechsler Individual Achievement Test – Second Edition (WIAT-II) scale and on 

the four working memory measures of the Working Memory Test Battery for Children (WMTB-

C). 

Measure ASD (n = 18) TD (n = 18) t-test p-value 

WIAT-II Math 
Numerical Operations         119.61, SD = 20.94      103.94, SD = 14.00         2.638          .012* 

Math Reasoning                  111.22, SD = 11.14      104.78, SD = 11.53         1.520          .138 

WMTB-C 
Counting Recall   94.53, SD = 19.58   91.44, SD = 13.42    0.546 .589 

Backwards Digit Recall 102.47, SD = 19.53   97.11, SD = 20.55    0.790 .435 

Digit Recall 114.00, SD = 22.15 106.75, SD = 14.10    1.122 .270 

Block Recall   88.89, SD = 18.38   93.89, SD = 13.89   -0.921 .364 
df = (1, 34) for all analyses.  
*p < .05.  
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