
Supplementary Information for

Forgiver triumphs in alternating Prisoner’s

Dilemma

Benjamin M. Zagorsky1, Johannes G. Reiter2, Krishnendu Chatterjee2, and

Martin A. Nowak1,3

1Program for Evolutionary Dynamics, Harvard University, Cambridge 02138, USA
2IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria

3Department of Mathematics, Department of Organismic and Evolutionary Biology, Harvard

University, Cambridge 02138, USA

We present additional results for the alternating Prisoner’s Dilemma where each player can

either cooperate or defect in response to the last move of the opponent. We recall that a

cooperating player incurs a cost c resulting in a benefit b for the other player (0 < c < b).

Hence, summing over two consecutive moves, if both players cooperate, each one receives a

payoff of b − c ; if both defect, they are left with nothing. If one player cooperates and the

other player defects, the cooperator receives the lowest payoff of −c and the defector receives

the highest payoff of b. We obtain the following payoff matrix:

C D

C b − c , b − c −c , b

D b, −c 0, 0 .

One game consists of L moves of each player. In each round, a player makes a mistake with

probability ε and thus implements the opposite move of what is specified by her strategy (au-

tomaton). The 26× 26 payoff matrix where each of the 26 distinct strategies is paired with each

other are calculated using equation (3) of the main paper. We show parts of the payoff matrices
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with the most relevant strategies for different benefit values, error rates, and number of rounds

in Tables S1, S2, S3, S4, S5, S6, S7, and S8.

Strategies. We consider 26 unique deterministic strategies implemented by one and two-

state automata. Strategies S1 − S13 start in state D while strategies S14 − S26 start in state

C . Within these groups the strategies differ only in their transitions between the states. Some

strategies have states without outgoing transitions, these strategies simplify to sink-state C (ssC)

or sink-state D (ssD) strategies. Sink-state strategies always-cooperate or always-defect either

from the beginning or after some condition is met. All remaining strategies are dynamic strategies

and switch their state depending on the moves of their opponent (see Figure 1). A subset of

these strategies (Forgiver, TFT, WSLS, and their suspicious counterparts) is especially interesting

as they have the design element to stay in the cooperative state if the opponent has cooperated

in the last round but switch to defection if the opponent has defected (see Figure S1). We call

this element the conditional cooperation element.

C D

c
d

Figure S1: The conditional cooperation element. The success of the strategies Forgiver (S14),
TFT (S15), WSLS (S16), Grim (S17), S4, S8, and S12 is largely due to the conditional cooperation
element which allows them to benefit from mutual cooperation but also avoids excessive exploitation
by defectors.

Here we list all considered strategies ordered by ascending indexes: S1 (ALLD), S2, S3 (Sus-

picious Paradoxic), S4 (Suspicious WSLS), S5 (Paradoxic Grateful), S6, S7, S8 (Suspicious TFT),

S9 (Grateful), S10 (Suspicious Alternator), S11, S12 (Suspicious Forgiver), S13 (Suspicious ALLC),

S14 (Forgiver), S15 (TFT), S16 (WSLS), S17 (Grim), S18, S19, S20 (Paradoxic), S21 (Paradoxic

Grim), S22 (Alternator), S23, S24, S25 (Hopeful ALLD), S26 (ALLC).
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ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 5.0 184.0 150.9 97.4 184.1 97.3 14.9 95.0 6.0 185.0

pGrateful -84.5 86.1 94.0 85.9 103.5 85.8 85.3 -1.8 -82.2 112.1

Grateful -67.9 94.2 85.9 86.6 95.0 86.5 82.1 14.4 -58.2 95.5

sForgiver -41.2 98.0 97.8 87.1 98.7 87.0 79.6 82.4 -32.9 99.7

sALLC -84.6 76.7 93.6 86.2 94.6 86.1 85.7 6.2 -65.8 95.5

Forgiver -41.1 98.2 97.8 87.0 98.8 87.4 79.9 83.1 -26.9 99.3

TFT 0.1 98.4 94.0 90.5 99.0 90.9 52.2 90.1 10.2 99.5

WSLS -40.0 141.9 133.8 84.2 138.7 84.8 79.4 53.3 -26.1 135.9

Grim 4.5 182.2 158.2 96.5 174.7 96.6 22.3 94.5 14.1 167.9

ALLC -85.0 60.9 94.0 85.7 94.1 86.5 86.0 13.2 -50.9 95.0

Table S1: Excerpt of the payoff matrix with the most relevant strategies when the benefit value b = 2,
the error rate ε = 5%, and the number of rounds in each game L = 100. There are two pure Nash
equilibria in the full payoff matrix: ALLD (S1) and Grim (S17), both denoted in red.

ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 10.0 278.5 228.8 148.5 278.7 148.4 24.8 144.9 11.5 280.0

pGrateful -79.5 172.1 188.0 175.8 198.0 175.7 174.9 44.4 -76.3 207.1

Grateful -62.9 188.3 171.9 176.9 189.6 176.8 168.1 68.5 -44.2 190.5

sForgiver -36.2 192.0 191.8 174.1 193.3 174.0 162.8 165.3 -22.7 194.7

sALLC -79.6 162.3 187.6 176.5 189.1 176.4 175.8 56.6 -51.4 190.5

Forgiver -36.1 192.2 191.8 174.1 193.3 174.8 163.5 166.9 -12.7 194.3

TFT 5.1 192.4 184.0 177.3 193.5 178.1 104.5 176.7 24.5 194.5

WSLS -35.0 236.0 227.8 167.8 233.3 169.1 162.3 106.5 -12.0 230.9

Grim 9.5 276.2 244.2 149.8 269.3 152.0 40.5 148.8 28.1 262.9

ALLC -80.0 138.8 188.5 176.0 188.7 177.2 176.6 67.3 -28.8 190.0

Table S2: Excerpt of the payoff matrix with the most relevant strategies when the benefit value b = 3,
the error rate ε = 5%, and the number of rounds in each game L = 100. There are two pure Nash
equilibria in the full payoff matrix: ALLD (S1) and Grim (S17), both denoted in red.
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ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 15.0 373.0 306.7 199.7 373.2 199.5 34.7 194.9 17.0 375.0

pGrateful -74.5 258.2 282.0 265.7 292.6 265.6 264.6 90.5 -70.4 302.1

Grateful -57.9 282.4 257.8 267.3 284.1 267.0 254.2 122.7 -30.3 285.5

sForgiver -31.2 285.9 285.9 261.2 287.8 261.1 246.1 248.3 -12.5 289.7

sALLC -74.6 248.0 281.7 266.9 283.7 266.7 265.9 107.0 -37.1 285.5

Forgiver -31.1 286.2 285.8 261.1 287.9 262.2 247.1 250.6 1.6 289.3

TFT 10.1 286.5 274.1 264.2 288.1 265.4 156.7 263.2 38.7 289.5

WSLS -30.0 330.0 321.8 251.4 327.8 253.3 245.2 159.8 2.0 325.9

Grim 14.5 370.2 330.3 203.1 363.8 207.4 58.8 203.1 42.2 357.9

ALLC -75.0 216.7 283.0 266.3 283.2 267.9 267.1 121.5 -6.7 285.0

Table S3: Excerpt of the payoff matrix with the most frequent strategies when the benefit value b = 4,
the error rate ε = 5%, and the number of rounds in each game L = 100. There are two pure Nash
equilibria in the full payoff matrix: ALLD (S1) and Grim (S17), both denoted in red.

ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 20.0 467.5 384.7 250.9 467.8 250.6 44.6 244.9 22.5 470.0

pGrateful -69.5 344.2 376.1 355.6 387.1 355.5 354.2 136.6 -64.5 397.1

Grateful -52.9 376.5 343.7 357.6 378.7 357.3 340.2 176.9 -16.3 380.5

sForgiver -26.2 379.9 379.9 348.2 382.4 348.1 329.3 331.3 -2.3 384.7

sALLC -69.6 333.6 375.7 357.2 378.2 357.1 356.0 157.4 -22.7 380.5

Forgiver -26.1 380.3 379.8 348.1 382.4 349.6 330.6 334.3 15.8 384.3

TFT 15.1 380.5 364.1 351.0 382.6 352.6 209.0 349.7 53.0 384.5

WSLS -25.0 424.0 415.8 335.0 422.4 337.6 328.2 213.0 16.1 420.9

Grim 19.5 464.2 416.3 256.4 458.4 262.8 77.0 257.4 56.3 452.9

ALLC -70.0 294.7 377.5 356.6 377.8 358.7 357.6 175.6 15.3 380.0

Table S4: Excerpt of the payoff matrix with the most frequent strategies when the benefit value b = 5,
the error rate ε = 5%, and the number of rounds in each game L = 100. There are two pure Nash
equilibria in the full payoff matrix: ALLD (S1) and Grim (S17), both denoted in red.
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ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 2.0 294.5 111.4 149.8 294.5 149.7 6.4 149.0 3.5 296.0

pGrateful -95.5 135.9 195.8 193.2 227.9 193.2 193.1 -9.7 -92.6 259.5

Grateful -34.5 196.6 113.1 194.7 197.5 194.6 153.1 114.9 28.3 198.5

sForgiver -47.3 196.9 196.5 193.3 198.0 193.3 190.5 190.5 7.7 199.4

sALLC -95.5 104.4 195.5 194.2 197.0 194.2 194.1 52.7 -1.4 198.5

Forgiver -47.2 196.9 196.5 193.3 198.0 194.2 191.4 192.4 59.5 199.0

TFT 0.5 197.0 155.3 194.2 198.0 195.2 124.1 195.1 86.6 199.0

WSLS -47.0 264.6 223.0 190.7 245.1 192.5 191.4 133.9 59.3 226.2

Grim 1.5 292.2 171.7 159.6 263.2 170.1 88.8 169.6 86.9 234.5

ALLC -96.0 13.4 196.5 193.7 196.5 195.1 195.1 113.5 88.6 198.0

Table S5: Excerpt of the payoff matrix with the most relevant strategies when the benefit value b = 3,
the error rate ε = 1%, and the number of rounds in each game L = 100. There is only one pure Nash
equilibria in the full payoff matrix: ALLD (S1), denoted in red. The pure Grim equilibrium disappears
when the probability for errors within an entire match becomes significantly smaller than one (i.e.,
1 − (1 − ε)2L � 1) and b > 2.

ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 20.0 258.5 238.0 146.5 258.8 146.2 45.1 139.9 21.5 260.0

pGrateful -59.5 172.0 178.0 157.4 183.2 157.1 154.8 56.5 -56.6 187.3

Grateful -52.7 178.5 171.7 158.2 179.7 157.9 152.7 65.9 -44.0 180.5

sForgiver -22.2 184.8 184.9 156.1 186.3 156.0 138.9 142.1 -15.0 187.6

sALLC -59.6 167.3 177.7 157.8 179.2 157.7 155.6 61.3 -46.5 180.4

Forgiver -22.1 185.2 184.8 156.0 186.4 156.5 139.3 143.2 -11.2 187.2

TFT 11.6 185.9 182.6 160.6 187.1 161.2 102.0 156.5 21.0 188.0

WSLS -20.0 218.7 215.4 149.3 218.5 150.1 136.3 102.9 -9.4 218.3

Grim 19.5 256.4 244.0 146.4 254.4 147.4 51.0 141.4 28.3 252.7

ALLC -60.0 158.0 178.5 157.3 178.8 158.3 156.1 65.1 -38.0 180.0

Table S6: Excerpt of the payoff matrix with the most relevant strategies when the benefit value b = 3,
the error rate ε = 10%, and the number of rounds in each game L = 100. There are two pure Nash
equilibria in the full payoff matrix: ALLD (S1) and Grim (S17), both denoted in red.
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ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 1.0 26.5 7.3 15.0 26.6 14.7 3.6 14.4 2.5 28.0

pGrateful -7.5 11.7 16.7 16.3 21.4 16.2 16.1 -0.6 -5.1 25.9

Grateful -1.1 18.1 7.3 17.5 18.6 17.3 12.4 14.1 6.5 19.5

sForgiver -3.7 17.1 17.0 16.9 18.4 16.8 15.9 15.4 4.8 19.8

sALLC -7.6 8.1 16.6 17.1 18.1 17.0 17.0 6.7 3.8 19.4

Forgiver -3.6 17.3 16.9 16.8 18.5 17.6 16.6 17.0 11.2 19.4

TFT 0.1 17.4 12.8 17.0 18.5 17.9 14.0 17.8 12.6 19.4

WSLS -3.5 22.9 17.9 15.8 21.9 17.1 16.5 14.9 11.2 20.8

Grim 0.5 24.5 13.5 15.7 22.9 17.1 13.1 17.0 12.7 21.1

ALLC -8.0 -1.7 17.5 16.6 17.6 17.8 17.7 13.6 12.7 19.0

Table S7: Excerpt of the payoff matrix with the most relevant strategies when the benefit value b = 3,
the error rate ε = 5%, and the number of rounds in each game L = 10. There is only one pure Nash
equilibria in the full payoff matrix: ALLD (S1), denoted in red. The pure Grim equilibrium disappears
when the probability for errors within an entire match becomes significantly smaller than one (i.e.,
1 − (1 − ε)2L � 1) and b > 2.

ALLD pGrateful Grateful sForgiver sALLC Forgiver TFT WSLS Grim ALLC

ALLD 100.0 2798.5 2748.5 1484.7 2798.7 1484.5 236.3 1449.9 101.5 2800.0

pGrateful -799.5 1882.0 1898.0 1770.0 1908.1 1769.9 1763.4 539.4 -796.3 1917.2

Grateful -782.8 1898.3 1881.9 1771.2 1899.6 1771.1 1756.6 563.5 -764.0 1900.5

sForgiver -361.6 1940.6 1940.4 1746.5 1941.9 1746.4 1631.9 1664.2 -348.1 1943.2

sALLC -799.6 1872.2 1897.6 1770.8 1899.1 1770.7 1764.3 551.6 -771.3 1900.5

Forgiver -361.5 1940.8 1940.3 1746.4 1941.9 1747.1 1632.5 1665.7 -338.1 1942.8

TFT 54.6 1942.9 1934.5 1780.3 1944.0 1781.1 1004.5 1765.6 74.0 1945.0

WSLS -350.0 2351.0 2342.8 1687.2 2348.3 1688.5 1620.0 1006.5 -327.0 2345.9

Grim 99.5 2796.2 2764.0 1485.9 2789.2 1488.2 252.0 1453.8 118.1 2782.8

ALLC -800.0 1848.5 1898.5 1770.3 1898.7 1771.5 1765.1 562.3 -748.5 1900.0

Table S8: Excerpt of the payoff matrix with the most relevant strategies when the benefit value b = 3,
the error rate ε = 5%, and the number of rounds in each game L = 100. There are two pure Nash
equilibria in the full payoff matrix: ALLD (S1) and Grim (S17), both denoted in red.
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1 Equilibrium analysis

We show the convergence probabilities to all observed equilibria for various benefit values, error

rates, and average numbers of rounds per game in Tables S9 and S10. Furthermore, we show the

strategy frequencies in the Forgiver equilibrium for various settings in Tables S11, S12, and S13.

In Figures S2, S3, S4, and S5 we show convergence to all types of equilibria from randomly

chosen starting points (Forgiver equilibrium is shown in the main text). The ALLD and the Sus-

picious Forgiver equilibrium can become unstable and diverge to other equilibria in the presence

of mutation. When the mutation rate u and the benefit value b are sufficiently large, we observe

that starting from pure ALLD (x1 = 1) the evolutionary trajectories converge to the Grim equi-

librium (Figure S6); starting from the observed Suspicious Forgiver equilibrium the trajectories

converge to the Forgiver equilibrium (Figure S7).

Very rarely, the evolutionary trajectories from a random starting point in the 26-simplex

converge to a Forgiver dominated saddle point instead of the precise Forgiver equilibrium. What

happens is that one of the required strategies of the Forgiver equilibrium goes extinct during the

convergence process due to the numerical inaccuracy of discrete computer simulations. These

trajectories do not converge to the precise Forgiver equilibrium (since one of the required strategies

is missing) and hence converge to a very similar but unstable saddle point. After converging to

such a saddle point we add once a small deviation to all strategy frequencies (i.e., a uniformly

distributed random number in [0, 10−5) is added to all xi) which leads to a subsequent convergence

to the precise Forgiver equilibrium as usually observed.

For specific parameter settings, we sometimes observe convergence to a cooperative equi-

librium dominated by Suspicious Forgiver (S12; sForgiver) instead of Forgiver. This is rather

unsurprising since the long-term behavior of Forgiver and its suspicious counterpart is very sim-

ilar. Because for some population compositions and some parameter settings, sForgiver has a

higher fitness than Forgiver, sForgiver can form a mixed equilibrium with several other strategies

(Table S2; Figure S5).

When the probability for errors within an entire match becomes significantly smaller than one

(i.e., 1 − (1 − ε)2L � 1) and cooperation is valuable enough b > 2, the pure Grim equilibrium

disappears (see Tables S5 and S7). In this case, Grim and ALLC can form a stable mixed

equilibrium (Figure S4).

In the case of b = 2, the structure of the mixed Forgiver equilibrium is very different to cases

where b > 2. When b = 2, Grim is a stable member of the Forgiver equilibrium and drives

the ssC (sink-state C) strategies and WSLS to extinction. Forgiver has the potential weakness

that against always-defect (which Grim eventually does), it alternates between cooperation and
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defection and gets suckered every other turn. In the case of b = 3, this is a dispensable weakness

because exploitation yields an average payoff of 1.5 against Forgiver, while cooperation yields

an average payoff of 2. However, when b = 2, both defecting and cooperating with Forgiver

yield an average payoff of 1. Thus, Grim, by exploiting Forgiver, can do as well against Forgiver

as Forgiver does against itself and they co-exist in equilibrium (the stability of this coexistence

is entirely due to TFT). Following the above reasoning, it is obvious why for b < 2, exploiting

Forgiver is more lucrative than cooperating with it, and the Forgiver equilibrium can not exist.

When b < 2, the strategy space is dominated by Grim or ALLD.

In Table S14 we show the level of cooperation in the mixed Forgiver equilibrium accross

different error rates and average numbers of rounds. We calculate the fraction of the maximal

achievable cooperation by dividing the payoff of the strategies present in the Forgiver equilibrium

by the fitness of ALLC playing against itself. In all investigated scenarios the mixed Forgiver

equilibrium ensures a very high level of cooperation.

Benefit value 2 3 4 5

Error rate 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

ALLD <0.01 0.16 0.43 <0.01 0.05 0.22 0.0 0.02 0.11 0.0 0.02 0.07

Grim >0.99 0.53 0.55 - 0.19 0.47 - 0.07 0.26 - 0.03 0.15

Grim/ALLC - - - 0.13 - - 0.06 - - 0.03 - -

Forgiver 0.0 0.31 0.02 0.86 0.75 0.3 0.93 0.9 0.62 0.97 0.93 0.78

sForgiver 0.0 <0.01 <0.01 <0.01 0.0 0.02 0.01 0.01 0.0 0.01 0.02 <0.01

Table S9: Convergence probabilities to the ALLD, Grim, Grim/ALLC, Forgiver, and Suspicious Forgiver
equilibrium from 104 random starting points when the number of rounds per game game is L = 100,
the mutation rate is u = 0, and c = 1.

Benefit value 2 3 4 5

Rounds per game 10 100 1000 10 100 1000 10 100 1000 10 100 1000

ALLD 0.21 0.16 0.16 0.05 0.05 0.04 0.01 0.02 0.02 0.01 0.01 0.01

Grim 0.79 0.53 0.53 - 0.19 0.2 - 0.07 0.07 - 0.03 0.03

Grim/ALLC - - - 0.45 - - 0.25 - - 0.15 - -

Forgiver 0.0 0.31 0.31 0.5 0.76 0.75 0.74 0.9 0.91 0.84 0.93 0.96

sForgiver 0.0 <0.01 <0.01 <0.01 0.0 0.0 <0.01 0.01 0.0 0.01 0.02 0.0

Table S10: Convergence probabilities to the ALLD, Grim, Grim/ALLC, Forgiver, and Suspicious For-
giver equilibrium from 104 random starting points when the error rate is ε = 0.05, the mutation rate is
u = 0, and c = 1.
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pGrateful Grateful sALLC Forgiver TFT WSLS Grim ALLC

b = 2 - - - - - - - -

b = 3 0.01 0.0 0.0 0.74 0.085 0.0 0.0 0.166

b = 4 0.015 0.0 0.0 0.709 0.05 0.0 0.0 0.226

b = 5 0.017 0.0 0.0 0.671 0.034 0.0 0.0 0.278

Table S11: Frequencies of the the most frequent strategies in the Forgiver equilibrium when the error
rate is ε = 5%, the mutation probability is u = 0, and the number of rounds in each game is L = 10.

pGrateful Grateful sALLC Forgiver TFT WSLS Grim ALLC

b = 2 0.0 0.0 0.0 0.802 0.157 0.0 0.041 0.0

b = 3 0.032 0.056 0.038 0.826 0.041 0.004 0.0 0.003

b = 4 0.054 0.085 0.056 0.778 0.018 0.009 0.0 0.0

b = 5 0.081 0.117 0.049 0.742 0.005 0.007 0.0 0.0

Table S12: Frequencies of the the most frequent strategies in the Forgiver equilibrium when the error
rate is ε = 5%, the mutation probability is u = 0, and the number of rounds in each game is L = 100.

pGrateful Grateful sALLC Forgiver TFT WSLS Grim ALLC

b = 2 0.0 0.0 0.0 0.813 0.15 0.0 0.037 0.0

b = 3 0.037 0.07 0.02 0.796 0.045 0.016 0.0 0.016

b = 4 0.053 0.09 0.08 0.725 0.027 0.024 0.0 0.0

b = 5 0.083 0.126 0.081 0.664 0.018 0.027 0.0 0.0

Table S13: Frequencies of the the most frequent strategies in the Forgiver equilibrium when the error
rate is ε = 5%, the mutation probability is u = 0, and the number of rounds in each game is L = 1000.

L = 10 L = 100 L = 1000

ε = 0.01 0.985 0.981 0.982

ε = 0.05 0.936 0.929 0.931

ε = 0.1 0.897 0.888 0.889

Table S14: Fraction of maximal achievable cooperation in the Forgiver equilibrium when the benefit
value is b = 3 and the mutation rate is u = 0. This fraction is calculated by dividing the payoff of the
strategies present in the Forgiver equilibrium by the fitness of ALLC playing against itself.
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Figure S2: The evolution of the ALLD equilibrium in the alternating Prisoner’s Dilemma. In
all panels, the simulations start from a randomly chosen point in the 26-simplex. The error rate ε is set
to 5%, the number of rounds per game is L = 100, and the mutation rate is u = 0.
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Figure S3: The evolution of the pure Grim equilibrium in the alternating Prisoner’s Dilemma.
In all panels, the simulations start from a randomly chosen point in the 26-simplex. The error rate ε is
set to 5%, the number of rounds per game is L = 100, and the mutation rate is u = 0.
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Figure S4: The evolution of the (mixed) Grim equilibrium in the alternating Prisoner’s Dilemma
when errors are rare. When the probability for errors within an entire match becomes significantly
smaller than one (i.e., 1 − (1 − ε)2L � 1) and b > 2, the pure Grim equilibrium turns into a mixed
equilibrium with ALLC. In all panels, the simulations start from a randomly chosen point in the 26-
simplex. The error rate ε is set to 5%, the number of rounds per game is L = 10, and the mutation
rate is u = 0.
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Figure S5: The evolution of the mixed Suspicious Forgiver equilibrium in the alternating Pris-
oner’s Dilemma. In all panels, the simulations start from a randomly chosen point in the 26-simplex.
The error rate ε is set to 5%, the number of rounds per game is L = 100, and the mutation rate is
u = 0.
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Figure S6: The ALLD equilibrium becomes unstable for high mutation rates. High mutation
rates can lead to the evolution of Grim due to its higher payoff against cooperative strategies. If the
mutation rate and the benefit value are sufficiently high, Grim outperforms ALLD and the simulation
dynamics converge to a stable Grim equilibrium (panels b, c, and d). For smaller mutation rates or
benefit values Grim cannot invade ALLD (panel a). In all panels, the simulations start from pure ALLD
(x1 = 1). The error rate ε is set to 5%, the number of rounds per game is L = 100, and the mutation
rate is u = 10%.
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Figure S7: The Suspicious Forgiver equilibrium is unstable. In all panels, the simulations start from
the mixed Suspicious Forgiver equilibrium. Small mutation rates can lead to the evolution of Forgiver
due to its slightly higher payoff against cooperative strategies. If the mutation rate is sufficiently high,
the simulation dynamics converge to the stable mixed Forgiver equilibrium. The error rate ε is set to
5%, the number of rounds per game is L = 100, and the mutation rate is u = 1%.
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2 Infinitely alternating Prisoner’s Dilemma

We derive analytical results for the most relevant pairs of strategies playing the infinitely alter-

nating Prisoner’s Dilemma.

2.1 ALLD vs. ALLD

The average payoff per round of ALLD (S1) playing against ALLD is:

RS1×S1 = 1 · (1 − ε)2 +
b + 1

2
· 2ε · (1 − ε) + b · ε2 = 1 + ε · (b − 1) . (S1)

2.2 ALLD vs. ALLC

The average payoff per round of ALLD (S1) playing against ALLC (S26) is:

RS1×S26 = (b + 1)(1 − ε)2 + b · ε · (1 − ε) + 1 · (1 − ε) · ε + 0 · ε2 = b + 1 − ε · (b + 1) . (S2)

The expected payoff per round of ALLC playing against ALLD is:

RS26×S1 = 0 · (1 − ε)2 + 1 · ε · (1 − ε) + b · (1 − ε) · ε + (b + 1) · ε2 = ε · (b + 1) . (S3)

2.3 ALLC vs. ALLC

The average payoff per round of ALLC (S26) playing against ALLC is:

RS26×S26 = b · (1 − ε)2 +
b + 1

2
· 2ε · (1 − ε) + 1ε2 = b − ε · (b − 1) . (S4)

2.4 Forgiver vs. ALLD

In contrast to ALLD (S1) and ALLC (S26), the strategy Forgiver (S14) is described by a two-state

automaton. We calculate the frequency of each state by taking the product of the two automata

encoding the strategies Forgiver and ALLD (Figure S8). In this new automaton we calculate

the frequencies y1 and y2 of state (C , D) and (D, D), respectively. Since y2 = y1(1 − ε) and

y1 + y2 = 1 we obtain y1 = 1/(2 − ε) and y2 = (1 − ε)/(2 − ε). Based on these frequencies, we

can take the results for ALLC vs. ALLD and ALLD vs. ALLD and compute the average payoff
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Figure S8: Product of the automata encoding Forgiver (S14) and ALLD (S1).

per round for Forgiver playing against ALLD as:

RS14×S1 =
1

2 − ε
· RS26×S1 +

1 − ε

2 − ε
· RS1×S1 =

1 + ε

2 − ε
+ ε · (b − 1) . (S5)

Similarly, the average payoff per round for ALLD vs. Forgiver is:

RS1×S14 =
1

2 − ε
· RS1×S26 +

1 − ε

2 − ε
· RS1×S1 =

1 − ε

2 − ε
[2 + b + ε · (b − 1)] . (S6)

2.5 Forgiver vs. ALLC

Again as above, we calculate the frequencies of each state in the automaton obtained by multi-

plying Forgiver and ALLC (Figure S9). Since y2 = εy1 and y1 + y2 = 1 we obtain y1 = 1/(1 + ε)

C ,C D,C
y1 y2

1− ε

ε

1

Figure S9: Product of the automata encoding Forgiver (S14) and ALLC (S26).

and y2 = ε/(1 + ε). Hence, the average payoff per round for Forgiver playing against ALLD is

given by:

RS14×S26 =
1

1 + ε
· RS26×S26 +

ε

1 + ε
· RS1×S26 = b − ε ·

(
b + 1 − 3

1 + ε

)
. (S7)

Similarly, the average payoff per round for ALLC vs. Forgiver is:

RS26×S14 =
1

1 + ε
· RS26×S26 +

ε

1 + ε
· RS26×S1 =

b · (1 − 2ε)

1 + ε
+ ε · (b + 1) . (S8)
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Figure S10: Product of the automaton encoding Forgiver (S14) multiplied with itself.

2.6 Forgiver vs. Forgiver

When Forgiver plays against itself we need to analyze an automaton with four states (Figure

S10). We observe that in this obtained automaton the following equations hold:

1 = y1 + y2 + y3 + y4

y1 = y1 · (1 − ε)2 + y2 · (1 − ε) + y3 · ε + y4

y2 = y1 · ε2 + y3 · (1 − ε) (S9)

y3 = y1 · ε · (1 − ε) + y2 · ε
y4 = y1 · ε · (1 − ε) .

After solving this system of equations (S9) we obtain for the frequencies of the states: y1 =

1/(1 + 3ε − ε2), y2 = ε/(1 + 3ε − ε2), y3 = ε/(1 + 3ε − ε2), and y4 = (ε − ε2)/(1 + 3ε − ε2).

Using the same approach as before, we calculate the average payoff per round for Forgiver vs.

Forgiver as:

RS14×S14 =
1

1 + 3ε− ε2
· RS26×S26 +

ε

1 + 3ε− ε2
· RS26×S1 +

ε

1 + 3ε− ε2
· RS1×S26

+
ε− ε2

1 + 3ε− ε2
· RS1×S1 =

= 2b − 1 − (b − 1)(1 + 7ε)

1 + 3ε− ε2
+ ε · (b − 1) . (S10)

3 Implementation of errors

In contrast to the works of Nowak and Sigmund (1994) and Frean (1994) where a strategy is

defined by a quadruple (p1, p2, p3, p4), our strategies are defined by deterministic finite state
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automata (Hopcroft et al., 2006) with one or two states. Their works incorporate errors directly

in the four probabilities of a strategy. This type of errors is also known as errors in implementation

(Sigmund, 2009). In our work we use imperceptive implementation errors. These are not included

in the definition of a strategy and are generated externally. The difference between those two

implementations being that in our work the player initiated the error does not observe the mistake

(i.e., the player does not change his state according to the last erroneous move) whereas in the

works of Nowak and Sigmund (1994) and Frean (1994) the erroneous player does observe the

mistake (i.e., the player changes his state always according to the given probabilities). The

imperceptibility of the implementation errors is related to perception errors described in Sigmund

(2009).
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