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1 Supplementary Methods

1.1 A biophysically-motivated k-mer based model of PBM

Our k-mer based PBM model (Figure 1a in main text) is motivated by the biophysics of TF
binding to the probes in PBM experiments. Following Zhao et al. [1], we denote by Yi the
experimentally measured intensity of the i-Th. probe on the PBM array. We denote by F (i)
the (unobserved) binding probability of the TF to this probe. While these two quantities
are related, due to experiential errors and scaling they are not identical. We thus assume a
simple linear model for the mapping between the two:

Yi = a+ cF (i) + εi (1)

where εi is the error term and a and c are scaling factors. Since each probe is much longer
than the motif itself (probe length is 36bp while motifs are often between 6-10bp) we follow
BEEML-PBM [1], and express the binding probability F (i) as the sum of the binding prob-
abilities over all possible motifs encoded by the probe. Let k be the length of a TF binding
site and L be the length of the variable region on the probe, we have:

F (i) =
L−k+1∑
j=1

λj · βSi(j) (2)

where λj is the position effect at position j (see below for the details on the position effect)
and βSi(j) is the binding probability to Si(j), the k-mer at the j-th position of the i-th probe.
The term βs is symmetric for any k-mer s, i.e. βs = βs̄, where s̄ is the reverse complement
of s.
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Plugging in the equation of F (i) into the linear model, we have:

Yi = a+ c

(
L−k+1∑
j=1

βSi(j) · λj

)
+ εi. (3)

We can rewrite this model as:

Yi = a+ c

(∑
s∈Σk

βsXis

)
+ εi (4)

where Σk denotes all k-mers, and Xis is the number of times the k-mer s occurs in the i-th
probe (weighted by the position effects):

Xis =
∑

j:Si(j)=s

λj (5)

(Xis = 0 if s does not occur in probe i).
Note that c and the β’s are coupled in the above model and so they can not be estimated

individually. Thus we can write the equation as a linear model:

Yi = β0 +
∑
s∈Σk

βsXis + εi (6)

subject to the constraints that (1) βs ≥ 0 for any s; and (2) βs is symmetric, resulting in
4k/2 parameters that we need to learn.

Our model differs from the PWM models of BEEML-PBM [1] since PWMs cannot capture
the possibility of secondary motifs and the possible dependency of nucleotides at different
positions of a motif. In our model, no such constraint is imposed, and we deal with the model
complexity problem (too many parameters) through sparse linear regression (see below).
However, both models use similar assumptions regarding the biophysical nature of PBM
measurements and how these relate to k-mer binding probabilities. Thus our model enjoys
the same benefits as those of the BEEML-PBM model: the parameters for the k-mers have
clear meanings, and certain experimental artifacts (e.g. handling biases due to position and
background effects) can be naturally incorporated (see below).

1.2 Position and background effects in modeling PBM data

Zhao et al. [1] considered several experimental artifacts that should be removed in order to
improve the accuracy of PBM data. These include the position effect and the background
effect that we adopted in our model, described briefly below. We refer to [1] for more details.

Berger et al. [2] observed that the position along a probe at which the TF binds affects
the binding strength and thereby the fluorescence intensity. Zhao et al. [1] used a position
effect term to explicitly model this effect. The position effect of the j-th position along a
probe, denoted as λj, is defined as [1]

λj =

〈
Iavg(Si,j)

Iavg(Si)

〉
n∑L

m=1

〈
Iavg(Si,m)

Iavg(Si)

〉
n

(7)
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in which Iavg(Si,j) denotes the average intensities of all probes containing k-mer Si at position
j, Iavg(Si) denotes the average intensities of all probes containing Si at any position, and
<>n denotes the average over the top n k-mers with the highest median intensities (n = 25).

Zhao et al. [1] observed that in a typical PBM experiment, only a small fraction of the
probes have high intensities due to TF binding, and most other probes have low intensities
due to background hybridization. They estimated the distribution of background intensities
from the lower half of the binned distribution of all fluorescent intensities, and then the i-th
probe is weighted by

Wi =
Oi −Bi

Oi

(8)

in which Oi and Bi denote the observed and expected number of probes in the corresponding
bin. We similarly weigh each probe by Wi in the regression model.

1.3 Positive lasso regularization and parameter learning

We implemented the positive lasso as discussed in [3] by modifying the lars package in
R. To estimate the tuning parameter for the regularization terms, we used 5-fold cross
validation. In order to enforce sparsity, we chose the maximum tuning parameter such that
the training error of the model is within one standard deviation of the minimum training
error achievable. The average running time (walltime, single thread) over the 284 TFs is 2.2
hours on a computer cluster with 2x Intel Xeon E5620 CPUs at 2.40GHz and 8GB RAM.

1.4 PBM data

The PBM data for 284 mouse TFs were downloaded from UniPROBE[4] at http://the_

brain.bwh.harvard.edu/uniprobe/. For many TFs, the PBM data contains two versions
of microarrays that differ in their probe designs. In such cases, for simplicity, we only run
our method on the first version denoted by “v1” in the corresponding PBM dataset and
report the results. In addition, for such cases we also use the trained k-mer probabilities
from “v1” to predict the intensities of probes on the “v2” array.

1.5 Allowing longer and gapped k-mers

Since we do not know the width of the motif bound by each TF, our PBM model searches
for k-mers of different lengths. In order to speed up the calculation, we first run positive
lasso using all short 4-6 mers. To allow longer k-mers to be considered, after the first run,
all pairs from the top 100 such k-mers (based on regression coefficients) are tested to see if
the prefix of one matches the suffix of the other, yielding longer (k + 1)-mers. In addition,
to allow gapped k-mers to be considered, we look at all pairs of 4- and 5-mers. If any pair of
such k-mers, after connected by up to 3 gaps, appear more than once in the top 1, 000 probes
with highest intensities, we add this gapped k-mer to the potential feature set as well. The
entire process is repeated for three times until up to 8-mers (not counting gaps; or 10-mers
with gaps) have been considered to be included in the feature set. The L1 regularization
allows automatic feature selection in this process.
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1.6 DNase I hypersensitivity data

The DNase I hypersensitivity data for 55 mouse tissue/cell types are downloaded from the
mouse ENCODE project website at http://hgdownload.cse.ucsc.edu/goldenPath/mm9/
encodeDCC/wgEncodeUwDnase/[5]. For each tissue/cell type, the “Signal” track that rep-
resents the normalized tag density is used. Chromatin in genomic regions with higher tag
density are more open and therefore more accessible. For each input sequence (600bp ge-
nomic region), the tag density in the corresponding tissue at all positions are extracted, and
for each overlapping 36bp window in the sequence, the max density is used as the density
measurement for that window. For tissue/cell types where multiple replicates are available,
the median values of all replicates are used.

1.7 Modeling DNase I hypersensitivity data and combining with
PBM data

The DNase I tag densities (integer data) are modeled using a mixture of negative binomial
distributions similar to [6]: each region has probability π1 to be open (π1 = P (Ai = 1)), and
probability 1− π1 otherwise. The tag densities of regions follow two different negative bino-
mial distributions depending on whether Ai = 1 or not. To estimate the model parameters,
we sample 100,000 random 36bp regions from the upstream 10kb of all genes in the data.
Parameters are estimated by maximizing the likelihood function:

L(r,p, π1) = P (D|r,p, π1) =
N∏
i=1

[(1− π1) ·NB(Di|r0, p0) + π1 ·NB(Di|r1, p1)] (9)

in which D = (D1, · · · , DN) denotes the DNase I tag densities of the sampled regions,
and rk, pk(k = 0, 1) are the parameters of the negative binomial distributions of the two
components. After the parameters φ = {π1, r0, p0, r1, p1} are estimated, the probability of
each site being open can be calculated by

P (Ai = 1|Di) =
π1 ·NB(Di|r1, p1)

(1− π1) ·NB(Di|r0, p0) + π1 ·NB(Di|r1, p1)
. (10)

To combine PBM data with the DNase I data, we estimate the in vivo occupancy of site
i as its in vitro occupancy estimated from the PBM data multiplied by the above probability
that the site is open.

1.8 The full integrated model

To further incorporate the conservation data into the integrative model, we consider the
following graphical model:

Xi ← Zi → Ci → Si (11)

in which Xi is the score of the site i that combines PBM and DNase data, Zi is a binary
variable indicating whether the site i is a true binding site in vivo or not (hidden variable),
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Ci is a binary variable indicating whether the site i is conserved or not (hidden), and Si

is a measure of the evolutionary conservation of the site. The model assumes that true
TFBSs have a higher occupancy score. Similarly, when Zi = 1, Ci is more likely to be
1 as well (a true binding site is more likely to be conserved), and this is reflected by a
higher conservation score Si. The goal is to infer Zi from the observed data Xi and Si. The
evolutionary conservation measure we used is the PhastCons scores, downloaded from the
the UCSC Genome Browser, that measure sequence conservation over a large number of
mammalian species. For each 36bp segment, we chose the max score over the 36bp window
as the PhastCons score of the sequence itself.

We model the first part (Xi ← Zi) by a Beta distribution:

P (Xi|Zi = k) ∼ Beta(νkρk, νk(1− ρk)), k = 0, 1 (12)

where ρk is the mean of Xi|Zi = k and νk is the pseudocount for Beta distribution.
For the second part (Zi → Ci → Si), we define α1 = P (Ci = 1|Zi = 1) as the fraction of

conserved sites among true TFBSs, and similarly α0 = P (Ci = 1|Zi = 0) as the fraction of
conserved sites among non-binding sites. The conditional distribution of Si given Zi is:

P (Si|Zi = 1) = P (Si, Ci = 1|Zi = 1) + P (Si, Ci = 0|Zi = 1) (13)

= P (Ci = 1|Zi = 1)P (Si|Ci = 1) + P (Ci = 0|Zi = 1)P (Si|Ci = 0) (14)

= α1P (Si|Ci = 1) + (1− α1)P (Si|Ci = 0) (15)

= α1
P (Ci = 1|Si)P (Si)

P (Ci = 1)
+ (1− α1)

P (Ci = 0|Si)P (Si)

P (Ci = 0)
(16)

= P (Si)

[
α1
Si

γ
+ (1− α1)

1− Si

1− γ

]
(17)

where Equation 17 follows because according to the definition of phastCons score, P (Ci =
1|Si) = Si, and γ = P (Ci = 1) is the total fraction of conserved sequences in the genome
which can be estimated simply as the average of Si:

γ = P (Ci = 1) (18)

=
∑
Si

P (Ci = 1|Si)P (Si) (19)

=
∑
Si

SiP (Si) (20)

= E(Si) (21)

Similarly,

P (Si|Zi = 0) = P (Si)

[
α0
Si

γ
+ (1− α0)

1− Si

1− γ

]
(22)

Let p = P (Zi = 1) be the fraction of the functional TFBSs, the likelihood function over
the entire dataset is given by:

P (X,S|θ) ∝
∏
i

[p · Beta(Xi|ρ1, ν1)P (Si|Zi = 1) + (1− p) · Beta(Xi|ρ0, ν0)P (Si|Zi = 0)]
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(23)

where θ = (ρ1, ν1, ρ0, ν0, α1, α0, p) represents the model parameters. Note that the terms
P (Si) are not shown because they are independent of model parameters. We estimate θ by
maximizing the likelihood function for each TF and tissue/cell type on 100,000 randomly
sampled sites from gene promoters. The vast majority of sequences are not bound by a TF,
so we could use all the data to fit ρ0, ν0 and α0 and then fix them. Thus only (ρ1, ν1, α1, p)
are the free parameters to be estimated.

After the parameters are estimated, given any new site, its probability of being bound is
predicted by

P (Zi = 1|Si, Xi, θ̂)

P (Zi = 0|Si, Xi, θ̂)
=
P (Xi|Zi = 1, θ̂)

P (Xi|Zi = 0, θ̂)
· P (Si|Zi = 1, θ̂)

P (Si|Zi = 0, θ̂)
. (24)

1.9 Comparison with other methods

To evaluate the performance of our method, we obtained ChIP-seq data for 11 TFs for which
PBM data and tissue specific DNase I hypersensitivity data were available (Additional File
2). For each dataset, the top 3000 peaks with highest enrichment are extracted, and the
600bp genomic regions centered on the reported peaks are used as the positive sequences
bound by the TF. Then, 600bp sequences that (1) are upstream of and (2) 300bp apart from
each positive sequence, and (3) do not overlap with any other positive sequences, are used
as negative sequences. For each sequence to be tested, the binding probabilities of the TF
to each overlapping 36bp window (site) in that sequence is calculated based on the model
learned (see Methods), and the maximum probability is defined as the binding probability
to that sequence.

We performed a comprehensive comparison of our PBM method with several other meth-
ods that could be or have been used in predicting TF binding on real sequences, using area
under the ROC curve (AUC) as the criteria. A detailed description of all methods is provided
below.

1.9.1 Methods that only use PBM data

1. PWM-based methods (including S&W PWM [2], BEEML PWM [1] and RAP PWM
[7]). The PWMs are converted to a log-odd scoring matrix using a zeroth-order back-
ground estimated from each input sequence respectively or a uniform background, and
then all overlapping k-mers (k being the width of the PWM) on both strands are
scored by the log-odd scoring matrix. The maximum score is used as the score for the
sequence. In cases where a secondary PWM was reported for S&W PWMs, only the
primary one is considered. For RAP PWMs, default parameters are used to extract
the PWMs from PBM data.

2. BEEML Energy. The binding energy matrices reported by BEEML-PBM [1] are used
to score each overlapping k-mers (k being the width of the energy matrix). The score
for a k-mer is the summation of the binding energies of the corresponding bases at each
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position. The minimum energy is used as the score for the sequence. Due to their same
origin, BEEML Energy and BEEML PWM are considered as essentially one method.

3. Max E-score. The E-score [2] for each k-mer in the sequence is considered and the
maximum E-score is used as the score for the sequence.

4. Occupancy score. The background-subtracted median intensities of all k-mers with
E-scores higher than 0.35 is summed and the sum is used as the score for the sequence
[8].

5. SVR. The SVR-based method [9] is run on overlapping 36bp windows in each input
sequences and the maximum score is reported as the score for that sequence. The
number of k-mers used is set to 1000 to speed the calculations, and default values are
used for other parameters (k = 13 and m = 5).

6. FeatureREDUCE. FeatureREDUCE (unpublished yet) is among the top performing
methods in a recent comprehensive evaluation of methods that infer TF binding pref-
erence from PBM data [10]. We downloaded FeatureREDUCE v1.09 from http:

//bussemaker.bio.columbia.edu/software/FeatureREDUCE/, and followed instruc-
tions provided in section 4.0 of the manual (v1.09.6 downloaded from the above URL)
for training and in section 7.0 of the manual for testing, using default options and
parameters.

In addition to using the 600bp sequences that are upstream of and 300bp away from
the ChIP-seq peaks, we also considered two alternative sets of negative sequences including
(1) randomly sampled 600bp sequences from the gene promoter regions (+/-10kbps around
TSS), and (2) randomly generated 600bp sequences by RSAT [11] using the mouse genome
background model.

1.9.2 Methods that use external PWMs

We included PWMs from the JASPAR database (JASPAR PWMs) [12], and PWMs derived
from in vivo ChIP-seq data using HOMER [13] (HOMER PWMs, provided as “Custom Motif
Matrices” downloaded at http://biowhat.ucsd.edu/homer/custom.motifs ). Scoring is
done in the same way as above mentioned for PWM-based methods.

1.9.3 Methods that combine sequence with DNase data

For our PIPES method, in addition to our integrated models, we also consider three baselines:
(1) only using the DNase data alone, (2) only using the conservation (PhastCons) data
alone, and (3) using PBM and conservation data. Moreover, to see if our DNase model can
be generalized to be used with methods not based on PBM data, we also consider simple
ways to combine our DNase models with PWM-based methods, by multiplying the binding
probabilities predicted by the PWM models with the probabilities of the chromatin being
in open status that our DNase model predicts for each k-mer, where k is the length of the
PWM.
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Neph et al. [14] predicted tissue-specific TF binding sites in human by overlapping motif
scanning results with DNase I footprints, the actual locations bound by TFs within DNase I
hypersensitive sites that are protected from DNase I cleavage [15]. In order to compare our
method with this under a similar framework, we applied a similar approach by first using
FIMO ([16], in the MEME suite v4.8.1) to scan the sequences for occurrences of the PWMs
reported with the PBM data, and then overlapping the motif occurrences (p-value < 1e− 4)
with DNase I hypersensitivity data. When a secondary PWM is available, both PWMs are
used to scan the sequences. Default parameters are used for FIMO. AUC is obtained by
varying the cutoff on the DNase data.

CENTIPEDE [6] is an integrative method that can combines PWM, DNase and conser-
vation data to predict tissue-specific TF binding. However, it is an unsupervised method and
requires a user-specified cutoff on PWM match scores. To compare our method with CEN-
TIPEDE, we used either the primary S&W PWM or the BEEML PWM of each TF to scan
the upstream 10kbps of all mouse genes, assuming uniform background (the same setting as
in [6]). In [6], a log odd score of log2(10000) was used as cutoff for PWM matches. However,
many BEEML PWMs are not specific and for such PWMs few sequences have scores above
this cutoff. Thus we considered a variety of different cutoffs including log2(100), log2(1000)
and log2(10000). We also consider choosing a log odd score cutoff based on a p-value of 1e-4
of the PWM being used [17]. DNase data and phastCons scores of all positions in the PWM
matches were extracted. Note that in [6] the DNase data used was strand-specific, but in
our case we do not have such data available and so we did not distinguish between the two
strands. Using these as training data, we learned parameters in the CENTIPEDE model for
each TF. Then we scanned for PWM matches in the positive and negative sequences from
the corresponding ChIP-seq data using the same cutoff, and calculated a posterior score for
each PWM match using the learned parameters. For sequences with more than one PWM
matches, the max posterior score is taken as the score for the sequence. Sequences with no
PWM matches above the cutoff are directly classified as negative.

1.10 Overlap of genome-wide predictions with ChIP-seq data

To further evaluate our genome-wide tissue-specific binding site predictions, we examined the
overlap of the target genes predicted by our method and those identified in the corresponding
ChIP-seq experiments for the 11 TF/tissues we investigated. For each ChIP-seq dataset, any
mouse gene that has at least one reported ChIP-seq peak within the +/-10kbps around TSS
was identified as a target of the TF. For our genome-wide predictions, each gene is associated
with the maximum score (PBM+DNase) within its +/-10kbps region around TSS. The top
N genes from our predictions are compared with the top N genes from the ChIP-seq data
(N=500, 1000, 2000 and 5000) to see the number of overlaps, and the significance of the
overlaps is evaluated using permutation test with 1000 permutations.
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2 Supplementary Results

2.1 Comparison of AUCs for different methods on PBM data
alone

We compared our PBM method with 7 other methods that predict affinities of TF binding
to given sequences based on PBM data alone. Three of these methods use PWMs or energy
matrices derived from the PBM data to scan a given sequence. These include (1) the S&W
PWM method which uses PWMs derived from the PBM data by the Seed-and-Wobble al-
gorithm [2, 18], (2) the BEEML method [1], including both the BEEML Energy method
which uses an energy matrix derived from the PBM data based on BEEML-PBM, and the
BEEML PWM method which uses the PWM converted from the BEEML energy matrix,
and (3) the RAP PWM method, which uses PWMs derived from the PBM data by RAP
[7]. We also compared against methods that directly use the PBM data itself. These in-
clude the max E-score method [2] and the occupancy score method [8] which are based on a
rank-based statistic called E-score derived from the PBM data. In addition, we further com-
pared with a support vector regression (SVR) based method [9] which uses a novel string
kernel to map sequences to intensities measured by PBMs, and FeatureREDUCE, one of
the top performing methods in a recent large-scale benchmark study [10]. (see Supplemen-
tary Methods for details). The methods are evaluated in terms of their ability to correctly
classify the positive and negative sequences for each of the 11 TFs (see Results in main text).

Results from the comparison are presented in Figures S1 and also Additional File 3. As
can be seen, among methods that are based only on PBM data, for 4 of the 11 TFs includ-
ing Esrra, Sox12, Pou2f1 and Crx, our PBM method achieves the highest AUC among all
methods being compared. For the other TFs, the AUC by our method ranks the 3rd for
Klf7 (after BEEML PWM/Energy, and Occupancy score), the 3rd for FoxA2 (after BEEML
PWM/Energy, and Max E-score), the 2nd for Nkx2-5 (after Occupancy score), the 4th for
Srf (after Max E-score, BEEML Energy and S&W PWM), the 4th for Ets1 (after Occupancy
score, BEEML PWM/Energy, and RAP PWM), the 4th for Mafk (after PBM PWM, RAP
PWM and Max E-score), and the 2nd for Max (after Occupancy score) respectively. Overall,
none of the method works consistently the best across all 11 TFs being compared. Among
all methods, our k-mer based PBM model has the highest average AUC for all 11 TFs of
0.731 (the 2nd is Max E-score, 0.716, p=0.1602 (one-sided paired Wilcoxon rank test); the
3rd is BEEML Energy, 0.710, p=0.1392; the 4th is RAP PWM, p=0.0337). Notably, al-
though FeatureREDUCE worked well in the evaluation by [10], in our case it failed to run
on the 600bp positive and negative sequences for 6 of the 11 TFs (Esrra, Pou2f1, Crx , Srf,
Ets1 and Max), giving a NullPointerException error; and it failed to run during the training
stage for Klf7, giving an error message “system computationally singular”. Because of these
we did not include FeatureREDUCE in Figure S1. For the other 4 TFs, its AUC is much
lower than the other methods (see Additional File 3 for details). This is probably because
it is not designed optimally for predicting binding to very long sequences (600bp in our case).

Two broad strategies have been developed to extract TF binding preferences from PBM
data. The first strategy involves estimation of PWM using the PBM data. Berger et al. [2]
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developed a rank-based statistic called E-score to quantify a TF binding strength to 8-mers,
and a the constructed a PWM from the 8-mers with the highest E-scores. Zhao et al. [1]
developed BEEML-PBM, a biophysical model of TF-probe binding, that directly estimates
the binding energy from the PBM data while accounting for several experimental artifacts.
Orenstein et al. [7] developed RAP, a method that aligns the top 8-mers whose probes have
the highest intensities on the PBM array to build a PWM. The second strategy does not fit
a single PWM; instead it uses information of all k-mers from the PBM data to predict TF
binding to any sequences. The simplest method from this category sums over the strength
(defined as median probe intensities) of all k-mers in a sequence [8]. More sophisticated
methods have also been proposed. For example, Agius et al. [9] developed a support vector
regression (SVR)-based method using a novel string kernel. A recent large scale comparison
of dozens of methods for using PBM data has identified FeatureREDUCE and BEEML-
PBM among the best methods in both reproducing in vitro and predicting in vivo binding
[10]. Our result shows that none of the methods consistently work well on all TFs, and that
by using our biophysically motivated model that infers binding probabilities to individual
k-mers, our method is able to achieve better accuracy than the aforementioned methods on
in vivo data in many cases.

2.2 Additional comparisons using external PWMs

We also consider using two sets of PWMs from existing databases to scan a given sequence,
including (1) JASPAR PWM, which uses PWMs in the JASPAR database [12] derived from
literature (Ets1 and Max), ChIP-seq data (FoxA2) or the Uniprobe database for PBM data
directly (the rest TFs), and (2) HOMER PWM, which uses PWMs derived from in vivo
ChIP-seq data using HOMER [13] (see Supplementary Methods for details). Overall, the
JASPAR PWMs have similar AUCs as S&W PWMs except FoxA2 for which the JASPAR
PWM was derived from ChIP-seq data. Not surprisingly, compared with methods that are
based only on PBM data, scanning the sequences using HOMER PWMs (and the JASPAR
PWM for FoxA2) which are derived from in vivo ChIP-seq data leads to much better AUC
for many TFs (the average AUC for HOMER PWM is 0.770, see Additional File 3). But
even so, for Esrra, Crx and Max, our PBM method outperformed HOMER PWM (Esrra:
0.943 vs 0.918; Crx: 0.783 vs 0.756; Max: 0.809 vs 0.757). Thus, in vitro based analysis can
be a complementary resources for in-vivo studies.

2.3 Robustness of results to alternative negative sequences and
background models

The above evaluation results are robust to the choice of negative sequence sets and the back-
ground model used in the PWM scoring. Using randomly sampled negative sequences from
promoter or randomly generated sequences as the negative set, or using uniform background
in the PWM scoring, lead to consistent results as described above. Full details are presented
in the Supplementary Methods and Additional File 8.
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2.4 Consistency of the model learned between PBM arrays with
alternative array designs

For 98 mouse TFs, two different PBM arrays with different probe designs are available. In
order to test whether the models we learned on one version (v1) of the array are stable, we
used the models we learned to predict the signal intensities on the second array (v2) with a
different probe design. Overall, the predicted intensities have an average Pearson correlation
coefficient of 0.59±0.19 with the known intensities for these TFs. Another evaluation metric
we looked at is how many of our top 100 predicted probes are within the top 100 probes
with highest intensities on v2. For 57 TFs, we were able to predict at least 30 of the top
100 probes within our top 100 predicted set. Since there are a total of about 44,000 probes
on each array, this result is extremely significant. Therefore, our models trained on one
version of the arrays are stable and work well in reproducing the intensities from the array
with alternative probe design. In addition, we note that our method is primarily aimed at
predicting in vivo data, and therefore is not optimized for reproducing the in vitro data.
The latter aim has been extensively explored in recent literature [10].

2.5 Performance of CENTIPEDE

In order to compare the performance of our integrative model with CENTIPEDE, we trained
parameters for CENTIPEDE using either the primary S&W PWM or BEEML PWM for
all TFs under different cutoffs for PWM match scores, and used the learned parameters
to score the 600bp positive and negative regions collected from ChIP-seq experiments (see
Supplementary Methods for details). Results with a typical setting (scanning using S&W
PWMs and using log2(1000) as PWM match score cutoff) is shown in Figure 3 in the main
text, and results for all other settings are shown in Additional File 3. Note that many BEEML
PWMs are non-specific and hence no sequences are above certain PWM score cutoffs (the
NAs in Additional File 3). See main text for more discussions.

2.6 Robustness of the tissue-specific activity scores to the per-
centage cutoff

When calculating the tissue-specific activity scores, a percentage cutoff is needed to define
high-scoring sites by the PBM model. At different percentage cutoffs, the binding sites of
a TF would obviously change and that would affect the tissue activity scores we defined.
Nevertheless, the impact of this parameter is small. At the cutoff that we decided to use
(top 0.1%), 5284 TF/tissue pairs have activity scores higher than 1.0, of which 2156 are
higher than 1.2 and 979 are higher than 1.5. If the cutoff is increased to top 0.05%, among
the above TF/tissue pairs, 4751/5284 (89.9%), 2019/2156 (93.6%) and 918/979 (93.8%) still
have activity scores above 1.0, 1.2 and 1.5 respectively. We observe similar consistency when
the cutoff is decreased to the top 1%. We believe that the top 0.1% cutoff that we choose
is a balanced choice and the results reported are in general robust with respect to the cutoff
being used.
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2.7 Further evaluation of the genome-wide tissue-specific TFBS
predictions

To further validate our genome-wide tissue-specific TFBS predictions, we looked at the
overlap of the top target genes predicted by our method and the top genes identified by the
ChIP-seq data for the 11 TF/tissues we investigated (Supplementary Methods). For the top
2000 genes that we predict, on average 24% overlap with the ChIP-seq results across the 11
TF/tissues, and all the overlaps are statistically significant (permutation p-values < 0.001).
See Additional File 9 for details.

To estimate the false discovery rate for our genome-wide predictions, we scanned mouse
intergenic regions that are at least 100kbps away from any known genes (excluding any k-
mers containing N) for the 11 TF/tissues investigated earlier and the 15 TF/tissues in Table
1 with highest tissue activity scores [one TF/tissue (Crx/retina) is in both sets]. From this
we estimated the false discovery rate in our genome wide predictions for these TF/tissues.
Overall, for all except one of these 25 TF/tissues, the FDRs are below 0.15 at the score cutoff
of 0.6 (the cutoff above which detailed binding site locations are reported in the prediction
result files available at the Supplementary Website). Therefore, the FDR analysis supports
the high accuracy of our predictions. See Additional File 10 for details.

3 Supplementary Website

Complete genome-wide prediction of binding sites for all the 284 mouse TFs with PBM
data available and 55 tissue/cell types with DNase I hypersensitivity data available can be
downloaded from the supplementary website at http://www.sb.cs.cmu.edu/PIPES/.

For each gene, the promoter regions (+/- 10kb around transcription start sites (TSS) that
do not overlap with any other gene) are scored by the integrative model (PBM+DNase).
Column 1: TF name
Column 2: Tissue name
Column 3: Gene Ensembl ID
Column 4: Gene name
Column 5: Max score within the promoter region considered
Column 6+: When any score is higher than 0.6, all positions (relative to the TSS) with
scores higher than 0.6 are listed.

In addition, BED files for predicted binding sites with scores higher than 0.6 are also
provided at the Supplementary Website. These can be uploaded into UCSC Genome Browser
as a custom track. Also the code for the PBM regression and a demo dataset on Crx can be
downloaded from the website.

4 Supplementary Figures
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Figure S 1: Area under ROC curve (AUC) of different methods that use PBM data alone to
predict in vivo binding sites. Shown on the x-axis are 11 TFs with ChIP-seq data available
for the same TF or for a TF with a similar DNA-binding domain. In the latter case the
PBM TF is shown in front and the ChIP-seq TF is shown in the parentheses. See text and
Additional File 3 for details.
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