Chemistry & Biology, Volume 20

Supplemental Information

Biochemical and Structural Studies of Conserved

Maf Proteins Revealed Nucleotide Pyrophosphatases

with a Preference for Modified Nucleotides

Anatoli Tchigvintsev, Dmitri Tchigvintsev, Robert Flick, Ana Popovic, Aiping Dong, Xiaohui Xu, Greg Brown, Wenyun Lu, Hong Wu, Hong Cui, Ludmila Dombrowski, Jeong Chan Joo, Natalia Beloglazova, Jinrong Min, Alexei Savchenko, Amy A. Caudy, Joshua D. Rabinowitz, Alexey G. Murzin, and Alexander F. Yakunin

Table S1, related to Figure 1. List of modified nucleoside triphosphates used for

screening of purified Maf proteins.

30. 5-propynyl-2'-deoxycytidine-5'-triphosphate		
31. 6-azauridine-5'-triphosphate		
32. 6-chloropurine-2'-deoxyriboside-5'-triphosphate		
33. 6-chloropurineriboside-5'-triphosphate		
34. 6-mercaptopurine-riboside-5'-triphosphate		
35. 6-methylthio-ITP		
36. 7-deaza-2'-deoxyguanosine-5'-triphosphate		
37. 7-methyl-GTP		
38. 8-[(4-amino)butyl]-amino-ATP		
39. 8-[(6-amino)hexyl]-amino-GTP		
40. 8-bromo-GTP		
41. 8-iodo-GTP		
42. 8-oxo-2'-deoxyadenosine-5'-triphosphate		
43. 8-oxo-2'-deoxyguanosine-5'-triphosphate		
44. 8-oxo-GTP		
45. 8-oxo-GTP		
46. gamma-aminophenyl-ATP		
47. N1-methyl-GTP		
48. N2-methyl-2'-deoxyguanosine-5'-triphosphate		
49. N4-methyl-2'-dCTP		
50. N6-(4-amino)butyl-ATP		
51. N6-methyl-2'-deoxyadenosine-5'-triphosphate		
52. N6-methyladenosine-5'-triphosphate		
53. N6-methyl-ATP		
54. O6-methyl-2'-deoxyguanosine-5'-triphosphate		
55. O6-methyl-GTP		
56. pseudouridine-5'-triphosphate		
57. xanthosine 5'-triphosphate		

	ASMTL-Maf	BSU28050	YceF wt	YceF D69A
PDB Code	2P5X	4HEB	4JHC	4LU1
Data collection				
Space group	P2 ₁ 2 ₁ 2	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
Cell dimensions				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	84.8, 117.0, 51.5	61.5, 86.0, 95.0	50.4,52.9,128.9	50.7,52.8,129.3
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å) ^a	50.00-2.00 (2.07-2.00)	50.00-2.26 (2.30-2.26)	50.00-1.85 (1.88-1.85)	50.00-1.92 (1.95-1.92)
R _{merge}	10.2 (92.6)	10.7 (88.4)	4.3(58.6)	6.6(64.4)
Ι/σΙ	14.4 (2.0)	19.7 (1.9)	37.4(2.0)	30.4(1.8)
Completeness (%)	99.7 (99.3)	99.9 (99.7)	99.9(99.7)	99.3(95.1)
Redundancy	6.9 (6.6)	7.3 (7.3)	7.6(5.7)	
Refinement				
Resolution (Å)	25.00 - 2.00	25.7-2.26	31.8-1.85	33.4-1.92
Number of	35334	24200	29318	26175
reflections				
$R_{ m work}/R_{ m free}$	20.1/25.3	21.5/25.0	19.3/24.7	19.9/24.9
Number of atoms				
Protein	3190	2773	2907	2837
Phosphate	10			
Water	333	89	191	139
B-factors (Å ²)				
Protein	22.5	51.0	31.1	34.9
Phosphate	54.1			
Water	37.8	46.7	35.3	39.2
R.m.s. deviations				
Bond lengths (Å)	0.02	0.01	0.013	0.008
Bond angles (°)	1.4	1.1	1.1	1.272
Ramachandran plot				
Favored (%)	97.0	98.1	98.0	97.3
Additionally	3.0	1.9	2.0	2.7
allowed (%)				
Disallowed (%)	0.0	0.0	0.0	0.0

Table S2, related to Figure 3.Data collection and refinement statistics for the crystalstructures of ASMTL-Maf, BSU28050, and YceF.

^a Values in parentheses are for the highest-resolution shell.

Figure S1, related to Figures 4, and 5. Structure-based sequence alignment of two sub-families of Maf proteins. (A), YhdE sub-family. (B), YceF sub-family. The secondary structure elements are shown above and below the alignment. Residues conserved in all aligned proteins are boxed with the Maf motif residues highlighted in orange, whereas the signature residues for the YhdE and YceF sub-families are highlighted in green and yellow, respectively. The residues mutated in this work are marked with black triangles and numbered. The proteins compared are: (A), *E. coli* YhdE (P25536), *B. subtilis* BSU28050 (Q02169), *Pyrococcus furiosus* PF0216 (Q8U476), *Methanosarcina barkeri* Mbar_A1652, *S. cerevisiae* YOR111W (Q99210), human ASMTL-Maf (O95671); (B), *E. coli* YceF (P0A729), *Salmonella typhimurium* YceF (STM1189, P58627), *Dictyostelium dsicoideum* (Q54TC5), *Pseudomonas aeruginosa* PA2972 (Q9HZN2), and *T. brucei* Tb11.01.5890 (Q382A9).

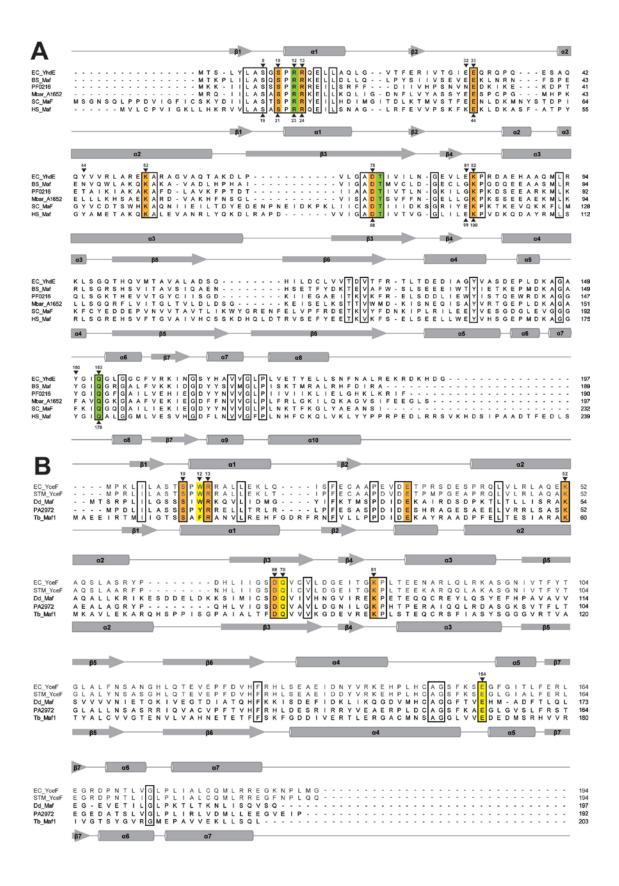


Figure S2, related to Figure 1. Effect of divalent metal ions on pyrophosphatase activity of purified Maf proteins. Metal ion profiles of purified Maf proteins were analyzed using two different assays: a pyrophosphatase-coupled method (**A**, **B**, **C**) and an HPLC-based method (**D**, **E**, **F**). (**A**, **B**, **C**), Hydrolysis of UTP (0.2 mM) by YhdE (A, 0.5 μ g), YOR111W (B; 0.1 μ g), or ASMTL-Maf (C; 0.5 μ g) was analyzed in the presence of saturating concentrations of Mg²⁺ (5 mM), Mn²⁺ (1 mM), Zn²⁺ (0.5 mM), or Co²⁺ (2 mM). (**D**, **E**, **F**), Hydrolysis of UTP (10 mM) by YhdE (D, 10 μ g), YOR111W (E, 10 μ g), or ASMTL-Maf (F, 10 μ g) in the presence of different metal ions (as in A, B, C). The HPLC assay data are presented as a relative activity related to the activity of enzyme in the presence of Co²⁺. Results are means ± S.D. from at least two independent determinations.

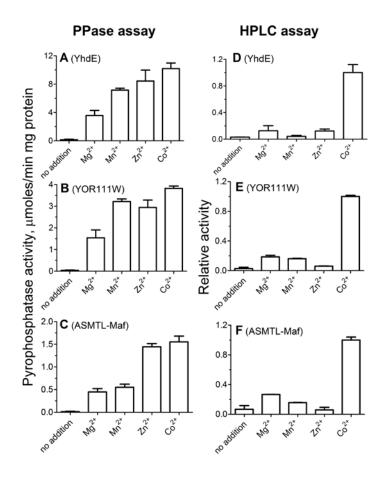


Figure S3, related to Figure 2. LC-MS analysis of ATP, GTP, and CTP in the *E. coli* cells over-expressing the wild type YhdE and YceF, as well as the inactive YhdE D70A mutant proteins. The *E. coli* BW25113 strain containing an empty protein expression plasmid pCA24N was used as a control. Results are means \pm S.D. from at least two independent determinations.

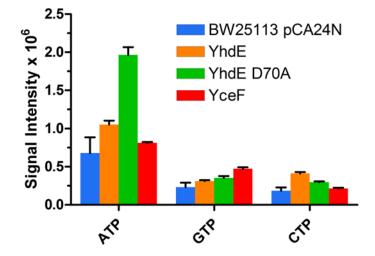
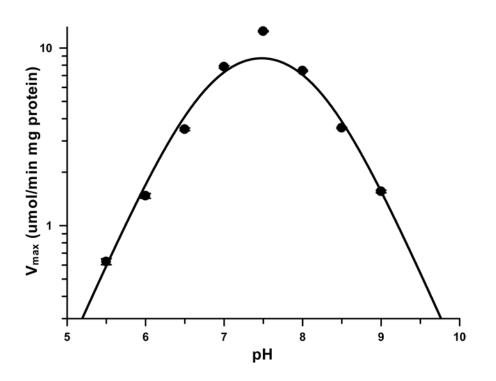



Figure S4, related to Figure 5 and Table 1. A pH-rate profile analysis of YOR111W: hydrolysis of dTTP. The reaction V_{max} was determined at the indicated pH values, and the curve was fitted as described in Segel I.H. Enzyme Kinetics (Wiley Classic Library edition 1993, pp. 884-926) using the following equation $V_{max}(pH) = (V_{max})^{max} / (1 + [H^+]/K_{a1} + K_{a2}/[H^+])$. $(V_{max})^{max}$ is the pH-independent value of V_{max} ; H is hydrogen ion concentration; K_{a1} and K_{a2} are acid dissociation constants corresponding to pK values on the acid and basic side of the curve, respectively. The following buffers were used: MES (pH 5.5 – 6.5), HEPES (pH 7.0 – 8.0), and TAPS (pH 8.5 – 9.0). Results are means ± S.D. from at least two independent determinations.

Figure S5, related to Figures 4 and 5. Structural superimposition of the wild type and D69A mutant YceF proteins. The protein ribbons and side chains are colored in different colours: yellow (wild type, PDB code 4JHC) and orange (D69A, PDB code 4LU1).

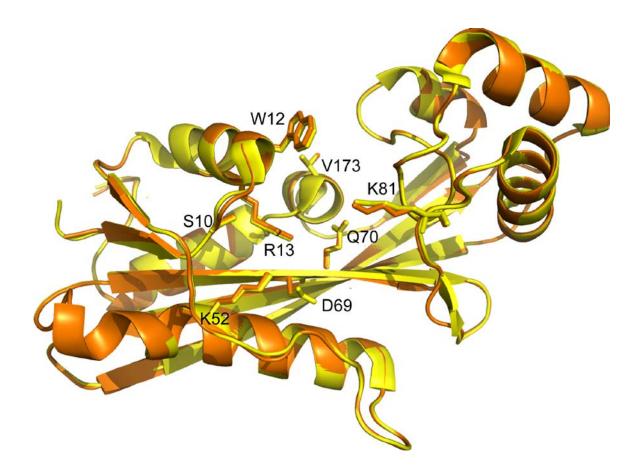
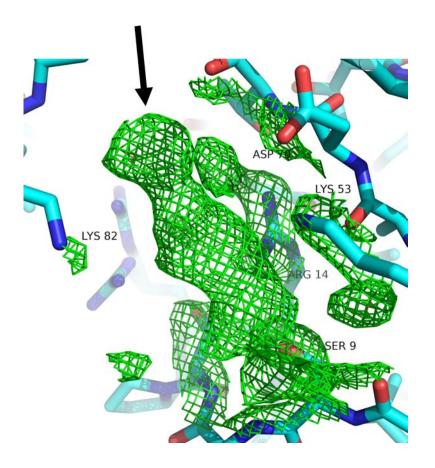
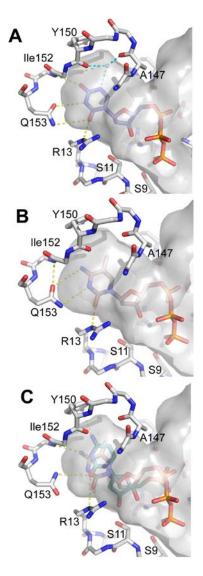




Figure S6, related to Figure 5. The pyrophosphate-like electron density found in the active site of BSU28050 (PDB code 4HEB). Total omit map was calculated with SFCHECK from CCP4 suite (contoured at 1 σ) and revealed an additional electron density in the same position as phosphate in the ASMTL-Maf structure (PDB code 2P5X).

Figure S7, related to Figure 6. Structural basis for modified nucleotide binding in the active site of BSU28050. Manual docking of the modified nucleotide structures in the BSU28050 active site: (**A**), pseudoUTP; (**B**), m⁵CTP; (**C**), CTP. (**A**), The recognition of pseudo-UTP can be mediated by the conserved bound water molecule (shown as the cyan sphere with H-bonds). (**B**), Binding of m⁵CTP after a minor alteration of the Gln153 side chain conformation. (**C**), Unlike m⁵CTP, the canonical cytosine base (turquoise) may be recognised in an alternative conformation resulting in non-productive binding of CTP in the active site.

