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ABSTRACT GTP-tubulin forms a cap on microtubule ends
during aggregation. The bulk of the microtubule is GDP-tubulin.
This complicates the usual simple kinetic theory of subunit ex-
change at microtubule ends to such an extent that Monte Carlo
calculations are needed to handle the complications, except in spe-
cial cases. The Monte Carlo method is introduced here, for this
problem, and illustrated with steady-state and transient examples.
Monte Carlo transients are needed to simulate dilution experi-
ments. Preliminary results (with M. F. Carlier) have been ob-
tained applying these theoretical procedures to experimental data.

There is evidence (1) that GTP-tubulin (called T, below) forms
a steady-state cap at and near an end of a microtubule, though
in the deep interior the subunits of the polymer are all GDP-
tubulin (called D, below). Until recently, it was thought that an
added T hydrolyzes very quickly to D at the very tip of a mi-
crotubule so that the entire polymer would consist of, for prac-
tical purposes, D units only. In the newer view (1, 2), a given
T unit that adds to the tip might be buried in the microtubule
end but would eventually become D, if it does not first leave.
In steady-state growth (or even steady shortening), there would
then be a certain statistical population of still surviving T near
the end of the microtubule-the GTP cap.
The steady-state kinetic theory of microtubule and actin

polymerization (3, 4) therefore needs modification, at least for
microtubules-and probably also for actin (5, 6). An attempt at
this was made in ref. 4, where the five helices (assuming a five-
start helix) of a microtubule were assumed to be independent
of each other and an "uncorrelated approximation" was then
used in the treatment of a single independent helix. The next
step (7) was to give an exact analytical treatment of the problem
that avoided the uncorrelated approximation but that had to be
limited to the special case (see Fig. 1) K = 0, alD = 0, except
near c = 0 (c is the concentration of free T). Because the ex-
perimental values of K and a1D are both believed to be small,
this treatment is probably fairly realistic. An interesting result
was that the theory predicted a significant discontinuity in slope
for the steady-state subunit flux as a function of c, at the critical
concentration (where flux = 0).

The purpose of the present paper is to introduce the Monte
Carlo method for this problem and to present a few illustrative
properties of the system. With this approach, we are no longer
limited to the special case K = 0, ailD = 0. In fact, the as-
sumption of independent helices could also be avoided by the
Monte Carlo method, but we do not include that more elab-
orate step here. Instead, we treat an independent helix (or
"polymer'), with arbitrary rate constants, at steady state. In work
with M. F. Carlier, we have obtained preliminary results using

the present Monte Carlo formulation in an attempt to fit ex-
perimental flux-concentration curves (8). This fitting involves
not only steady-state properties but also Monte Carlo transients
that simulate experimental dilution experiments. We discuss
Monte Carlo transients briefly in the final section.

THE MODEL AND METHOD
Fig. la shows the types of transitions that are included in the
model for the a end of the polymer (7). The rate constants K
(interior; n : 2) and K' (tip only; n = 1) both refer to hydrolysis
of GTP to GDP, whereas K1' refers to exchange of GTP for GDP
on an end (n = 1) subunit only. The "on" rate constant a, (the
only second-order rate constant) in Fig. la is actually subdi-
vided, in our model, as shown in Fig. lb. That is, the value of
this rate constant depends on the receiving subunit; experi-
mentally (9), alD is much smaller than alT but we do not con-
cern ourselves with this limitation in the present paper on
methodology. The two "off" rate constants in Fig. la are also
subdivided, as shown in Fig. lc. In this case, the neighbor at
position n = 2 may make a difference (however, in the nu-
merical examples here, we take a2D = a2T and alD = ailT).
Exchange of GTP for GDP is assumed to be very fast in so-
lution, so only T (concentration, c) is present there.

In a Monte Carlo calculation (10), we start (t = 0) with a sin-
gle polymer in a particular state, say all D,

D-D-D-D-D ...,
and follow its stochastic history in detail through many tran-
sitions. As an example, the possible transitions from this par-
ticular initial state are (Fig. 1) Kr', a2D, and alDc. The time spent
in this state, used in calculating time averages later, is taken to
be the mean lifetime

(K + a2D + a1DC).
A distribution of lifetimes can easily be used instead of the mean
lifetime, but this is an unnecessary refinement for steady-state
calculations (see, however, the last section). The transition that
takes place after the mean lifetime may be any one of the three
mentioned above. The probability that it is, say, the W4' tran-
sition is

K"/(K" + a2D + alDC),

with similar expressions for the other two probabilities. Taking
into account these three probabilities, a random-number gen-
erator in the computer selects the actual transition that occurs,
leading to the next state. If, in this example, the transition hap-
pens to be a2D, then the polymer is still in the all-D state. In
this case, the second transition would be handled just like the
first transition. However, if the first transition is K' or alDc,
the second state in the sequence is

T-D-D-D-D - - -
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FIG. 1. (a) Types of transitions included in the model. (b) Subdivision of a, according to occupant of position n = 1. (c) Subdivision of a-, and
a2 according to occupant of position n = 2.

The possible transitions out of this state are (Fig. 1) K', a-lD,
and alTc. The mean lifetime in this state is

(K + a_1D + alTC).
The probability that the transition out of this state is, say, K'
is

K'/(K' + a-D + a1TC),
etc. Again a random number is used to select a particular tran-
sition from among the three possibilities.
The above procedure is repeated for a very large number of

transitions. The computer keeps a record of the sequence of
states and of the mean lifetime of each state. Time averages for
this one polymer (rather than an ensemble average over many
polymers) are then calculated for the various quantities of in-
terest, each state being weighted, in calculating these averages,
by its mean lifetime. The computation of averages is started
only after a discard of (usually) 104 transitions to allow the sys-
tem to reach steady state. Most points in Fig. 2 are based on
2 x 105 transitions, though some (smaller c values) are for 105
transitions and a few are for 106 transitions. The subunit flux
Ja (mean rate of addition of subunits) and the mean rate of GTP
hydrolysisJh are calculated indirectly from time-averaged prob-
abilities rather than by direct counting. This indirect method

is more accurate (11) for the mean values but it would not be
suitable if fluctuations in the two fluxes were of interest. Di-
rect counting is used for transients (last section). Specifically,
we use

ja = alTCPl + a1DC(l - Pi) - a2DPDD
- a2TPDT - a1IDPTD - a_1TPTT [1]

and

Jh = a1TCPI + alDC(l - P1) + K"(1 - PI)
- a-IDPTD - a-1TPTT, [2]

where p, is the probability that position n is in state T (rather
than D), PDD is the probability that positions n = 1, 2 are in
the particular dual state DD, etc. An alternative calculation of
lA that is used as a check is

[3]lb = K'pj + K> Pn
na2

The meaning of the terms in Eqs. 1 and 3 are obvious from Fig.
1. Whereas Eq. 3 gives the steady-state rate of disappearance
of T from the polymer by hydrolysis, Eq. 2 gives the net steady-
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FIG. 2. Illustrative Monte Carlo steady-state calculations. The full solid curve ( ) labeled K = 0 is exact and calculated analytically. Points
on this curve are Monte Carlo points, which serve as a check of the Monte Carlo program. The adjacent solid curve(o-o) labeled K>O is a smooth
curve through Monte Carlo points. The dotted curve (. ) directly below is the exact K =0 Jh curve. The adjacentdashed curves (n---co and o---o)
are Monte Carlo curves (K> 0) for Jh and N. The short lines near c = 0 are exact in the limit c -. 0 for the parameters given in the figure. The
associated points (extended to larger c) are Monte Carlo points for the same cases.
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state rate at which T is added to the polymer by all other tran-
sition types. The two rates (Eqs. 2 and 3) should be equal at
steady state because the total T in the polymer is constant at
steady state. Of course, in a Monte Carlo calculation they will
not be exactly equal, because of fluctuations.

If, to be precise, we define (7) the GTP cap as consisting of
all those Ts in interior positions n = 2, 3, ..., then the mean
number of Ts in the cap at steady state is easily found from the
time-averaged Pn values as

[4]R = I pn
nw22

RESULTS
In ref. 7, exact analytical expressions were derived for the cases
(i) K =0, alD = 0 at any c and (ii) c -- 0 for any K and aID.
These expressions will not be repeated here. The solid curve
in Fig. 2 labeled K = 0, with discontinuity in slope at J. = 0,
C ca, is the exact J0(c) for the reference case (7)

K = 0, K' = 1.5, K" = 0.05, alT = 2.5, a1D = 0

aL1T = 6, a-D = 6, a2T = 3, a2D = 3. [5]

The units are s-1 except puM-1s-1 for alT and a1D; the units
for c are ,uM. The points (x) on this curve are Monte Carlo Ja
points for the same case, thus providing a check on our pro-
cedure. The corresponding analytical curve for Jh is the dotted
curve, with ordinate shown on the right of the figure. In this
case, when J. > 0 (c > ca = 2.99 MLM), the T cap grows at a
steady rate and has no definite steady size (because K = 0). Cor-
respondingly, Jh is constant when Ja > 0. In fact, in this case,
lb = K'P1 and pi is constant at the value 0.6703 for c : ca.

The solid curve in Fig. 2 labeled K > 0 is a smooth curve
drawn through Monte Carlo points (o) for the reference case
modified only by taking K = 0.25/60 s-1 (i.e., K = 0.25 min-),
which is an experimental value (1). In fact, all curves in Fig. 2
labeled K> O are for this same small value of K. This small change
in K (i.e., from 0 to 0.25 min') is seen to have a very large
effect onJa in the neighborhood of c = ca. However, this effect
disappears on either side of c = Ca (i.e., the two solid curves
converge). This large sensitivity of Ja to a small K near c = Ca
arises because K" is very small in this case, K.' = 0.05. As shown
in ref. 7, a small K' leads to an almost vertical Ja just below c
= Ca when K = 0. As we shall see below, this effect of small
K on Ja is hardly noticeable when K" = 10.
The two dashed curves (right-hand scales) in Fig. 2 are for

this same case (K> 0): one curve givesJh(c) and the other gives
N(c). Both curves have a break in slope at about c = Ca - 3.19
tuM.

Table 1 also relates to this case. Columns 2, 3, and 4 are Monte
Carlo results (with K> 0) for c > ca. These numbers are, of
course, subject to fluctuations. Column 5 gives the exact an-
alytical Ia for K = 0 (the Eq. 5 case), denoted Jo in Table 1. Ia
is close to J' for c 2 3.4 (as is also evident in Fig. 2). The last
column in Table 1 gives j'/K, which is a good approximation
to N when K > 0, as pointed out in ref. 7. Note in Table 1 that

Table 1. Some Monte Carlo results for K" = 0.05, K > 0
Monte Carlo (K > 0) Jo

c Ja N P2 (K O) Ja/K
3.3 0.4537 126.8 0.98788 0.5192 124.6
3.4 0.6674 167.2 0.99214 0.6868 164.8
3.5 0.8167 209.0 0.99456 0.8544 205.1
3.6 1.0221 253.2 0.99598 1.0220 245.3

Table 2. Some Monte Carlo results for K" = 10, K > 0
Ja. MC a

c (K > 0) (K = O) A

0.10 -4.5995 -4.5942 0.005
0.50 -4.0764 -4.0769 0.000
1.00 -3.3334 -3.3333 0.000
1.50 -2.4553 -2.4545 0.001
2.00 -1.4040 -1.4000 0.004
2.30 -0.6688 -0.6596 0.009
2.50 -0.1430 -0.1111 0.032
2.55 -0.0162 0.0259 0.042
2.65 0.2265 0.2500 0.024
2.75 0.4634 0.4741 0.011
3.00 1.0305 1.0345 0.004

P2 is close to unity for c 2 3.4. When K = 0, P2 is exactly unity
for Ia > 0 (7).

Another case included in Fig. 2 modifies the reference case
(Eq. 5) by taking Ki = 10 and K = 0.25 min-. With this large
value of K", a small K has almost no effect on J,, even near c
= Ca. The points (o) labeled aiD = 0, K" = 10, K> 0 are Monte
Carlo Ia values. The associated (lower) short solid line is the
exact behavior (7) ofIa near c = 0 for this case. Note that the
discontinuity in slope at c = ca is no longer evident (7). Table
2 compares K> 0 Monte Carlo values of Ja with the exact Ia
when K = 0 (denoted Jo). That is, the Jo values correspond to
the Eq. 5 reference case except that K" = 10. A in Table 2 is
the difference, Jo - J.; it is small everywhere (i.e., K has little
effect on Ia) but reaches a maximum near c = ca, just as in the
K" = 0.05 case discussed above (see the two solid curves in Fig.
2).
The last case included in Fig. 2 is labeled aiD = 1, K" =

0.05, K> 0. This is the Eq. 5 reference case except for aiD =
1 and K = 0.25 min-. Presumably the change in K (from K =
0) is insignificant and this case mainly shows the effect of a non-
zero a1D. The Monte Carlo points (X) again do not exhibit a
discontinuity in slope at c = ca. The upper short solid line in-
dicates, as before, the exact behavior (7) near c = 0. The fact
that both short solid lines have significant slope at c = 0 (in
contrast to the reference case) is due to a1D = 1 in one case and
K' = 10 in the other. These rate constants relate to mechanisms
(Fig. 1) that allow T from solution to attach to the polymer end
when c is very small (7).

Finally, we mention that the uncorrelated approximation is
found to be satisfactory in all these cases when Ja > 0 but not
otherwise. We therefore conclude that, unfortunately, the un-
correlated approximation is of little value for this problem.

MONTE CARLO TRANSIENTS
To simulate a dilution experiment (8), we start with a Monte
Carlo simulation of the steady state for one polymer molecule
at c = ca, typically over 3 X 105 transitions, using the proce-
dure described above. At t = 0, the free subunit concentration
is changed from c = ca to any c value, say c = c'. The object
then is to obtain Ja(t) after the jump in c, holding c = c' con-
stant. In the corresponding experiment, however, c does not
remain constant at c'. Hence, our primary interest here-for
comparison with experiment-is in early times, before the ex-
perimental c' changes significantly.
The procedure we use to calculate Ja(t), for t > 0, is to follow

an ensemble of, typically, 104 Monte Carlo polymers, starting
at t = 0, and record the ensemble averaged net gain or loss of
subunits per polymer in successive small time intervals, start-
ing at t = 0. For each polymer, the gain or loss is actually counted;
Eq. 1 is not used. The ensemble is selected from the 3 X 105
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sequence of states in the steady-state simulation. That is, after
every 3 X 105/104 = 30 transitions in the steady state, a poly-
mer state is chosen for the subsequent ensemble averaging with
t > 0.

Thus, in the steady state, we use long-time averaging for one
polymer, but in the transient (t > 0) we switch to ensemble
averaging over many polymers (because properties are chang-
ing with time). Each of the 104 states or polymers selected for
the ensemble from the 3 x 105 sequence of states in the steady
state has a certain mean lifetime, already discussed above. This
mean lifetime of a particular polymer must be used as a con-
stant weight for this polymer, as it evolves, in calculating en-
semble averages for t > 0. This is equivalent to including in the
ensemble a number of replicas of the polymer state propor-
tional to the mean lifetime of the state. If this is not done, time
averaging and ensemble averaging will not be equivalent.

It is also necessary, in following the stochastic history of each
polymer in the ensemble, during t > 0, to use a random time
distribution rather than the mean lifetime as the waiting time
between transitions. Specifically, for a particular polymer in
the ensemble in a particular state, with a mean lifetime t (equal
to the reciprocal of the sum of rate constants for all possible
transitions while in the given state), the waiting time until the
next transition is
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t= t1nR-, [6]
where R is a random number uniformly distributed between 0
and 1.
The initial subunit flux in the transient-i.e., Ja(0) after c =

ca is suddenly changed to c = c' at t = 0-can be calculated
directly from steady-state properties; the transient itself is not
needed to find this starting point. The transient, however, pro-
vides a self-consistency check. In Eq. 1, for the c = C0 steady
state, all of the p values are appropriate to ca. At c = ca, we
rewrite Eq. 1 as

Ja = [ayTpAS + alD(l -PS1S)]C
-[a2DPDD + a2TPDT + a-,DPD + alTIrf], [7]

where the superscript ss refers to the c = ca steady state. Of
course, J's will be virtually zero but not exactly zero because of
fluctuations in the Monte Carlo steady-state calculation. In ad-
dition, the value to use for ca itself (defined by Ja = 0) is not
known precisely. After the instantaneous jump to c = c' at t =
0, the left-hand side of Eq. 7 becomes J(0), and on the right-
hand side c. is replaced by c'. There is no other change on the
right-hand side: the p values have not started yet to change with
time. On combining these two equations, we have

Ja(0) = Ja + [alTpl' + alD(l - pS'S)](C' ca) [8]

Thus, Ja(0) is a linear function of c', with slope [ ] and inter-
cept, at c' = 0, -ca[ ] (neglecting Jfs).

Fig. 3 presents an example. Starting with the c = ca = 3.19
AM steady state in Fig. 2 (solid curve, K> 0), using 3 x 105
transitions, the system is jumped to c' = 2.5 ttM and the tran-
sient is followed with an ensemble of 104 polymers. From Jas
=-0.0061 s-' and ps' = 0.6018, Eq. 8 gives Ja(0) =-1.044
sl at c' = 2.5 iiM. At t = 00, JI(oo) = -2.89 s-'. This is the
steady-state value of J. at c = 2.5 ,uM (Fig. 2). Fig. 3 shows
Ja(t) from the Monte Carlo transient calculation. The individual
points (o) were obtained by counting on and off subunit tran-

FIG. 3. Illustrative Monte Carlo transient in which the c = ca =
3.19 lM steady state is jumped to c = c' = 2.5 1LM. The arrow points
at -J0(0) = -1.044 s-' (x))

sitions in the 10 polymers over a time interval of 1 s. Only every
10th such point is included in the figure (t = 1, 11, 21, . .).
The steady-state values of JJ(O) (arrow) and Ja(oo) (t = line)
are confirmed by the transient. The points at the bottom (-) are
on a different time scale (100 s -- 10 s). They are the points for

t= 1, 2, . . .,2 1s.
In a dilution experiment, there is a dead time after mixing

of order 3-5 s before a measurement is made. The theoretical
quantity of interest is therefore not JJ(0) but something like Ja
(4 s). In this unrealistic example (Fig. 3), there is very little change
in Ja(t) by t = 4 s.
To increase the rate at which the T cap is lost from the steady-

state polymer when c. is jumped to c' < ca, we have also in-
cluded in the Monte Carlo program the possibility of cooper-
ativity in the cap. This is accomplished by using four different
K values for Ts in positions n = 2, 3, . ., according as the
nearest neighbors of a T in any of these positions are DD, DT,
TD, or TT. If only the DD and TD cases have nonzero K values
and these are equal, the problem can be solved analytically, as
in ref. 7.
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