SUPPORTING INFORMATION

NMR investigation of the role of osteocalcin and osteopontin

at the organic-inorganic interface in bone

Ondřej Nikel; Danielle Laurencin; Scott A. McCallum; Caren M. Gundberg; Deepak Vashishth

Bone mineral

We have attempted to distinguish bone mineral of OC-OPN^{-/-;-/-} bone from that of WT control in terms of chemical shift and peak widths:

1/ The difference in ³¹P chemical shifts $\Delta\delta$ between the individual phosphorous environments extracted from the HETCOR spectra was defined (see Figure S1 A for OH...PO₄³⁻ vs H-PO₄²⁻) and plotted as function of CP contact time (Figure S1 B for OH...PO₄³⁻ vs H-PO₄²⁻). 2/ The ³¹P peak widths of each individual ³¹P environment were evaluated as a function of CP time (Figure S2). Although these ³¹P peak widths appear to drift slightly, the difference between WT and OC-OPN^{-/-;-/-} at any given CP time (see Table S1 for 1.5 ms) was small.

3/ The ¹H peak widths, obtained from deconvolution of the projection spectrum into the ¹H signals corresponding to the three ³¹P environments, were examined. (Table S1) Note that the OH signal was deconvoluted into two contributions (Figure S3).

Figure S1 A/ ³¹P chemical shift difference Δδ between OH-PO₄³⁻ and HPO₄²⁻ resonances (i.e. difference in ppm between the red and green lines, which cross through the maxima of the OH-PO₄³⁻ and HPO₄²⁻ resonances, respectively).
B/ Changes in the measured difference Δδ with CP contact time.

Table S1 Relative ³¹P chemical shift $\Delta\delta$ (as defined in Figure S1 A), and ¹H and ³¹P peak widths for the three ³¹P environments distinguished by ¹H-³¹P HETCOR for bone specimens from OC-OPN^{-/-;-/-} mutants and their WT littermates.

		Peak ^a	WT	OC-OPN ^{-/-;-/-}		
$\Delta\delta$ (³¹ P) = (δv - $\delta o u po t$) ^b	#1	OH- P O ₄ ³⁻	/	/		
(nnm)	#2	$H_2O-PO_4^{3-}$	0.0 ± 0.1	0.1 ± 0.1		
(ppm)	#3	$\mathrm{HPO_4}^{2-}$	0.2 ± 0.1	0.2 ± 0.1		
31 P neak width ^c	#1	OH- P O ₄ ³⁻	3.2 ± 0.1	3.2 ± 0.1		
(ppm)	#2	$H_2O-PO_4^{3-}$	5.5 ± 0.1	5.4 ± 0.1		
	#3	$\mathrm{HPO_4}^{2-}$	5.8 ± 0.1	5.8 ± 0.1		
	#1a	OH -PO ₄ ³⁻	1.2 ± 0.2	1.1 ± 0.2		
¹ H peak width ^c	#1b	OH -PO ₄ ³⁻	2.0 ± 0.4	1.9 ± 0.4		
(ppm)	#2	$H_2O-PO_4^{3-}$	2.0 ± 0.3	2.1 ± 0.3		
	#3	$\operatorname{HPO}_{4}^{2}$	9.8 ^d	9.8 ^d		

^{*a*} Peak numbering is defined in Figures 2A (#1, #2 and #3) and S3 (#1a and #1b).

^b Average for contact times from 0.3 to 8 ms.

^c Width at half maximum measured for HETCOR spectra recorded at 1.5 ms contact time.

^dLarger error on the peakwidth (very broad, low intensity signal).

Figure S2 ³¹P peak widths extracted from the 2D ¹H-³¹P HETCOR spectra of WT (hollow markers) and OC-OPN^{-/-;-/-} (filled markers) bone specimens. The widths of OH- PO_4^{3-} , $H_2O-PO_4^{3-}$ and HPO_4^{2-} environments are shown as circle, rectangle and triangle, respectively. Errors are in the order of size of the hollow markers.

Figure S3 Deconvolution of the F1 projection of one of the ${}^{1}H \rightarrow {}^{31}P$ HETCOR spectra recorded. Two environments for the OH-PO₄³⁻ signals appear to be present (**#1a** and **#1b**). Spinning sidebands are marked by the asterisk.

Organic matrix

The intensity of individual ¹³C signals of organic matrix were deconvoluted and compared between WT and OC-OPN^{-/-;-/-} (Table S2).

Table S2 Parameters extracted from the deconvolution of the ${}^{1}\text{H}{}^{-13}\text{C}$ CPMAS NMR spectra of WT and OC-OPN^{-/-;-/-} bone specimens: signal intensity and peak width of individual amino acids ${}^{13}\text{C}$ signals.

Peak Numb	er (Figure 4)			1	2	3	4	5	6	7	8	9
Partial Assig	gnment	C=O	GAG/Cit	Gly C-2 Arg C-5	Pro C-2 Hyp C-2 Phe C-2	Pro C-3 Arg C-3 Lys C-3	Pro C-4 Glu C-3 Leu C-4	Pro C-5	Ala C-2	Ala C-3	Hyp C-3 Lys C-6 Asp C-3 Leu C-3 Ile C-3 Phe C-3	Нур С-4
Signal	WT	14.3 ± 0.4	1.0 ± 0.1	9.7 ± 0.1	8.7 ± 0.2	5.6 ± 0.9	5.5 ± 0.3	3.1 ± 0.1	3.9 ± 0.3	3.5 ± 1.0	5.8 ± 0.2	3.0 ± 0.1
Intensity (%)	OC-OPN ^{-/-;-/-}	13.5 ± 0.3	0.9 ± 0.1	9.5 ± 0.1	8.7 ± 0.2	5.6 ± 0.6	5.6 ± 0.3	2.9 ± 0.2	3.9 ± 0.4	3.1 ± 1.2	5.9 ± 0.2	3.1 ± 0.1
Peak Width	WT	5.0 ± 0.1	5.7 ± 0.5	3.0 ± 0.1	3.7 ± 0.1	3.8 ± 0.5	2.8 ± 0.1	2.2 ± 0.1	3.1 ± 0.3	3.4 ± 1.0	5.0 ± 0.3	2.3 ± 0.1
(ppm)	OC-OPN ^{-/-;-/-}	4.6 ± 0.1	4.8 ± 0.2	2.9 ± 0.1	3.6 ± 0.1	3.8 ± 0.3	2.8 ± 0.1	2.1 ± 0.1	3.1 ± 0.3	3.1 ± 1.1	5.0 ± 0.3	2.2 ± 0.1