
Supplemental material

Rna control of HIV-1 size polydispersity

1 Optimization of filter parameters in order to ex-
tract VLP by automated AFM image analysis

The optimal choice of the area range appears to be important in order to fo-
cus on the VLP population. Indeed a loose preliminary selection of particles
shows that the lateral dimensions of single objects for VLP purifications
range roughly between 50nm to 180nm in diameter (see figure S1). This
large width of the size distribution indicates the likely presence of different
type of particles in the solution prior to surface deposition. Indeed, the
current purification scheme based on sucrose gradient is efficient in order to
collect VLPs, but it has the side-effect of letting through small vesicles of
similar density called ”exosomes”. These are natural secretion products of
cells under the present growth conditions. We quantified the size distribu-
tion of these additional particles using transfection assays with plasmids not
coding for Gag or Gag-related proteins (”Mock” purifications). Since the
majority of these particles have sizes smaller than 90nm (figure S1) and since
VLP are not expected in this range, it is possible to get rid of the statistical
contribution of exosomes within VLP purification conditions by imposing a
lower size threshold of 90nm (the equivalent area is about 7000nm2), as it
is shown in figure S1.

The different populations after low or high area selection are shown in
the following table for the three conditions Mock, VLP−ψ, and VLP+ψ:

Number of selected particles Mock VLP−ψ VLP+ψ
Low area min threshold 121 411 513
High area min threshold 20 211 248

In this table, low area min threshold and high area min threshold are respec-
tively associated to different values of the lower bound for area selection.
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Figure S 1: Size distribution for different allowed range areas for Mock and
VLP−ψ particles. The loosest area selection on VLP , termed low area se-
lection (3000nm2 <area< 105nm2), shows a large bimodal size distribution.
Similar analysis on Mock purifications shows that one of the two mode of
the size distribution is identical. By using higher range of area in order to
analyze VLP purification (high area selection 7000nm2 <area< 105nm2),
the ”Mock” mode is eliminated, and focus is made on VLPs. Note that the
difference between low and high area selection lies in the value of the lower
bound of area selection.

The larger bound for area selection is identical for both conditions. This
table calls for some comments. First, the high area selection is efficient at
discarding exosomes (Mock conditions), since only 16% of these particles
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survives the selection. Second, the high area criterion selects roughly 50%
of the initial population of both types of VLP. Most importantly, despite
the apparent strong selection of VLP, the RNA control of HIV-1 size poly-
dispersity is still observed under the low area selection. This is illustrated
in figure S2. The main reason is that this effect is expected to be mainly
seen on the large area side of the size distributions.
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Figure S 2: Size distributions for different allowed range areas for VLP−ψ
and VLP +ψ particles. The size distributions of short diameter, long di-
ameter and equivalent diameter are shown for high area selection (upper
row, respectively (a),(b),(c)) and low area selection (lower row, respectively
(d),(e),(f))
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2 Comparison between VLP and cores

In the figure S3, the 2D histogram minor axis/ major axis of VLP and cores
are compared. Two alternative representations are proposed: raw data for
minor and major axis, and 2D histogram for the same data.
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Figure S 3: Comparison between VLP and cores. (a) and (c) are the 2D
histogram using a color map in order to show the frequency of events. (b)
Raw data that have been used to produce the 2D histogram (a) and (c). The
lines show the main direction of size fluctuations: VLP is rather isotropic,
unlike cores. (d) Histogram of asymmetry a/b for VLP and cores. The
position of the peak in asymmetry is shifted between VLP and cores, as
expected from simple visualization of individual images.
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3 Titration of Ψ-RNA

In order to check whether the amount of Ψ-RNA transfected influence the
modulation of size distribution, we used three different conditions of trans-
fection. The data presented in the main text of this work were obtained
by adding 500 µl of phosphate buffer (HBS2X) to 8 µg of virus expressing
plasmids, and 4 µg of a plasmid expressing Ψ-RNA previously supplemented
with 500 µl CaCl2 (250 mM). This sample is labeled +0.5Ψ, in reference
with the ratio of RNA to protein ratio. Within the new conditions de-
scribed here, the amount of virus expressing plasmids is unchanged, but
the amount of added plasmid expressing Ψ-RNA is now either 8 µg (+1Ψ)
or 16 µg (+2Ψ). The histogram of the size distribution shown in figure
S4 shows that the size distributions are statistically undistinguishable for
+0.5,+1,+2 Ψ. This shows that the effect of size modulation is not affected
as function of viral RNA amount.

4 AFM liquid imaging of VLPs and automated
image analysis

In order to confirm that our results are not dependent on the use of AFM
imaging in air, we performed AFM imaging in liquid environment. In this
case, AFM imaging on wet samples is much harder to achieve mainly because
the biological objects are weakly adsorbed under such conditions in order
to prevent VLP deformation due to strong interaction with the substrate
or the use of biochemical glue (such as glutaraldehyde) that may alter the
VLP conformation. Typically, with dried samples, there are between 3 to 8
particles per image (3 microns x 3 microns), while upon imaging in liquid
most images we obtained do not show any particles. Moreover, VLPs tend
to desorb from the functionalized mica surface after few tens of minutes
when immerged in buffer in the AFM liquid cell. The observation of a single
particle becomes an extremely rare event as compared to the imaging of
dried samples. In addition the image quality is reduced and quantitative
image analysis as we performed in air become somewhat noisy.

Technically, for AFM liquid imaging, purified VLPs in physiological TNE
buffer (Tris 10mM, EDTA 1mM, NaCl 100mM, pH=7.4) were deposited on
poly-L-lysine functionalized mica surface for 2 to 5 minutes, rinsed with 1ml
of TNE buffer and then immersed in AFM liquid cell containing about 50µl
of TNE buffer. Imaging was performed in Peak Force Mode with Multimode
8 AFM (Bruker AXS Inc.) in fluid using NPS or fluid scan asyst cantilevers
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Figure S 4: Titration of Ψ-RNA on the size distribution. The label for each
titration is explained in the text of supplemental data. (a) Histogram of
short diameter for different titration. (b) Histogram of long diameter for
different titration. (c) Histogram of asymmetry for different titration.

(Bruker). The 512 by 512 pixel image was recorded at a scan rate of 1.8
Hz. The obtained AFM images (Figure S5a) were analyzed using the same
Matlab script as AFM images previously obtained in air, using the same
height and area threshold selection parameters.

The presence or absence of viral RNA produces qualitatively the same
modulation of size distribution as the one observed for dried samples: a
larger average VLP size as well as larger polydispersity is observed when
viral psi RNA is absent (Figure S5b). This is not unexpected. Indeed,

6



the drying process of particles may modify the absolute values of sizes as
compared to liquid environment, but not the relative size difference. One of
the main reason for this absolute difference in size is associated to the choice
of cantilever. The AFM cantilever used for liquid imaging are necessarily
different than than the one used in air and as a consequence AFM tip radius
is larger in liquid (10 to 20 nm) than in air (5 nm). As a consequence, tip
convolution is expected to be higher in liquid imaging leading to a slightly
larger average particle diameter.

5 Models of self-assembly

We consider in this section the equilibrium properties of the capsid self-
assembly. In order to describe this process, we use the standard formalism
of micellization thermodynamics, which has been used extensively in order
to describe the aggregation properties of surfactant solutions. The aim of
this approach is to predict what will be the equilibrium size distribution cp
of aggregates of p molecules given the total initial amount of molecules that
have been put in the solution. The scenario of interest for retrovirus self-
assembly involves at least three distinct molecular species: Gag proteins,
viral RNA and cellular RNA. Before investigating the behavior of such a
complicated system, we present below the simplest case of single protein self-
assembly in the absence of RNA. This will allow to highlighting the relative
contribution of entropy and enthalpy to the size distribution of aggregates.

Within the simplest level of modelization of capsid self-assembly, we first
consider a solution of proteins of initial concentration φ0 that tend to form
aggregates or capsids made of p proteins. The gain in free energy for the
formation of one aggregate of size p is kTFp, where k is the Boltzmann
constant and T the temperature of the system. The Gibbs free energy of
the solution of proteins is written as

G

V kT
= c1(ln (c1v0)− 1 + F1) +

∞∑
p=2

cp(ln (cpv0)− 1 + Fp) (1)

where c1 is the concentration of free proteins, cp is the concentration of
aggregates of size p, V is the volume of the solution, and v0 the typical
volume associated to a water molecules. As a consequence, the concentration
in all our calculations are expressed in units of v−1

0 . For each aggregate type,
there is a translational entropy term kTV cp(ln (cpv0)− 1) and an enthalpic
term for the formation of aggregate kTV cpFp. As it is described below, this
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(a)	  

(b)	  

Figure S 5: (a) Example of VLPs imaged in physiological TNE buffer, in
the absence or presence of ψ-RNA. (b) Distribution of VLP equivalent half
height diameter represented as a boxplot where the central red mark repre-
sents the median of the distribution, and the box contains 50% of the total
population of selected VLPs (the edges of the box are the 25th and 75th per-
centiles). The central notch on each box represents the comparison interval
for the median value. Indeed, two medians are significantly different at the
5% significance level if their intervals do not overlap. The distribution are
compared when VLPs are produced in the presence or absence of ψ-RNA
and when the VLPs are imaged in air or liquid environment. The total of
VLPs is also mentioned. Note that the statistical sampling is significantly
lower when VLPs are imaged in liquid, but both effect are still present: a
lower average diameter value together with a lower size polydispersity for
VLPs produced in the presence of ψ-RNA.
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is the balance between these entropic and enthalpic contributions that sets
the precise size distribution.

This Gibbs free energy assumes implicitly that long-range interactions
between aggregates are negligible. At equilibrium, the size distribution cp
minimizes the Gibbs free energy with the global constraint of mass conser-
vation

φ0 = c1 +
∞∑

p=2

pcp (2)

This can be taken into account by the use of a Lagrange multiplier µ that is
interpreted as the chemical potential of individual proteins. The equilibrium
conditions are written as

cpv0 = (c1v0)p e−(Fp−pF1) (3)

φ0v0 = c1v0 +
∞∑

p=2

p(c1v0)pe−(Fp−pF1) (4)

The first equation is simply the law of mass action for the aggregate of size
p. Using the notation ∆Gp ≡ Fp − pF1 ≡ pgp, one can find the equilibrium
partition of proteins among the different aggregates by solving the following
non-linear equation in c1

φ0v0 = c1v0 +
∞∑

p=2

p(c1v0)pe−pgp (5)

and by plugging the solution into the law of mass action Eq.3. In order to
address the question of dominance of a given population of particles with
respect to another one, we restrict the model to a bimodal size distribution:
the product of the self-assembly is either a small particle with p1 proteins
or a large particle with p2 proteins. The equilibrium concentration of un-
aggregated proteins c1 is now given by

φ0v0 = c1v0 + p1(c1v0)p1e−p1g1 + p2(c1v0)p2e−p2g2 (6)

The following argument shows that the influence of entropy within this
equation is to favor the formation of smaller particles. Indeed after little
algebra, it is possible to find an exact relationship between the concentration
of initial protein φ0 and the ratio between the equilibrium value of the
number of particle 1 and 2 α = cp1/cp2

φ0v0 =
(
αe(p1g1−p2g2)

) 1
p1−p2 + (p1 +

p2

α
)
(
αe(p1g1−p2g2)

) p1
p1−p2 e−p1g1 (7)
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In the case where the free energy of capsid formation is not size selective,
one has g1 = g2 ≡ g, meaning that the energy per protein is the same in
each particle irrespective of its size. This assumption is used in order to test
the trend of the entropic contribution on the size distribution. Therefore
the previous formula is simplified to

φ0v0 = α
p1

p1−p2

(
α

1
p1 eg +

(
p1 +

p2

α

))
(8)

For p1 < p2, the ratio α is a decreasing function of the initial concentration
φ0. In other words, for initial concentration below a threshold value φ0∗, the
small particles outnumber the large particles, while for larger concentrations
the situation is reversed. The threshold concentration is given by

φ0∗v0 = eg + p1 + p2 (9)

Since for capsids the sizes are typically such that p1 >> 1 and p2 >> 1, the
smaller capsids dominate on the whole concentration range.

In the opposite case where the free energy of capsid formation is size
selective, meaning for example that g2 < g1 (all g’s are negative for spon-
taneous self-assembly), the entropic effect favoring smaller particles has to
be balanced with the enthalpic effect favoring larger particles. As a conse-
quence, the maximal threshold concentration below which smaller particles
dominate is decreasing as the enthalpic size selection favoring larger particles
become more pronounced. The preference for smaller particles can eventu-
ally disappear for g2 << g1, meaning that entropic contribution is not able
anymore to balance the enthalpic preference for large particles. The entropic
selection of small particles is therefore subjected to an assumption of weak
enthalpic size selectivity and disappears for strongly enthalpic size selection.

The previous reasoning can be generalized in order to describe the more
complicated situation implying Gag proteins, viral RNA and cellular RNA.
The main result of such a model is to predict that the entropy will contribute
to two effects in a similar way to the situation with simple protein self-
assembly: the first effect is an entropic selection of viral RNA against cellular
RNA provided that its length is much longer to cellular RNA, and the second
is the selection of smaller particles as in the previous case.

Focusing again on bimodal size distribution for the sake of clarity, we
assume that the product of self-assembly is twofold: small particles (labeled
”1”) containing p1 proteins, n1 viral RNAs and m1 cellular RNAs (which
are assumed to be mono disperse in size), and large particles (labeled ”2”)
containing p2 proteins, n2 viral RNAs and m2 cellular RNAs. We further
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assume that the total amount of nucleotides inside a particle is proportional
to its number of proteins. As it is discussed in the main text of this work,
this assumption has been verified on a large databases of RNA viruses.
This assumption implies the following relation p{1,2} = Kvn{1,2}+Kcm{1,2},
where Kv and Kc are respectively proportional to viral and cellular RNA
length. The non linear equations to be solved in order to get the equilibrium
partition of molecules within aggregates are now written as

φ0v0 = c0v0 + p1cp1v0 + p2cp2

φr+v0 = cr+v0 + n1cp1v0 + n2cp2

φr−v0 = cr−v0 +m1cp1v0 +m2cp2

cp1v0 = (c0v0)p1(cr+v0)n1(cr−v0)m1e−p1g1

cp2v0 = (c0v0)p2(cr+v0)n2(cr−v0)m2e−p2g2

These equations depend on a large set of parameters (φ0, φr+, φr−, g1, g2, n1,
n2,m1,m2,Kv,Kc, v0), and so the general behavior is rich and complex. We
have recently published a separate work dedicated to the detailed theoret-
ical analysis of these equations (ref 28 fro main text). In particular, it is
shown in this work that finer inclusion of polydispersity effects do change
the qualitative picture drawn by the simple bimodal model. This justifies
our use of this simpler approach. Numerical solutions for the equations of
the bimodal models are presented in figure 5 and 6 of the main body of this
work.
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