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Computational Epidemiology Model

EpiFast is the individual-based approach used in this study and it was first described in Bisset et al.

[1]. The approach is composed of two parts: (i) a time varying social contact network for modeling

detailed contacts between individuals and (ii) a dynamical model that simulates the spatial spread

of disease and effectiveness of public health interventions. The synthetic social contact network is

constructed using various open source and commercially available data combined with social and

behavioral theories. The synthetic social contact network of an urban population is a particular

kind of random network that is statistically comparable to a realistic social contact network and

preserves anonymity of individuals. To construct the network, first a synthetic population is created

using an iterative proportional fitting technique. The synthetic population consists of synthetic

people, with assigned demographical attributes based on data from the US census. Each individual

is placed in a household and each household is located in a realistic geographical location such that

when aggregated at the block group level, the synthetic population is statistically identical to the

original census data [2–5] .

Next, each household is allotted activity templates by time of day based on several thousand

responses to an activity or time-use survey for a specific region. The activity templates provide

detailed description of activities for each household member throughout the day. Using a decision
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tree based on demographics such as the number of workers in the household, number of children

of various ages, etc., each synthetic household is matched and assigned the activity template of

a household in the survey. Each activity performed by individuals in each household is assigned

a location based on land-use patterns, tax data, etc., and the assigned locations are calibrated

against data on travel-time distributions. These steps result in a synthetic population representing

individuals and their activity patterns in a specified urban region. Synthetic individuals in the

population interact with each other at various activity locations to produce realistic contact graphs

where vertices represent individuals and edges represent contacts between individuals [6].

In addition to the time varying social contact network, a dynamical model that simulates spatial

propagation of disease is also developed. The model is based on a Susceptible, Exposed, Infectious,

Recovered (SEIR) representation. Individuals progress through the different disease states based

on probabilistically timed incubating and infectiousness periods. The transition between disease

states can be impacted by the attributes of the individuals (such as age, and health status) and

the type of contact (casual, or intimate). The probability of transmission between susceptible (i)

and infectious (j) individuals is given by:

p(w(i, j)) = 1 − (1 − r)w(i,j) (1)

Here w(i, j) represents the contact duration and r is the disease transmission rate, which is defined

per sec/contact time. Each individual in the model has a separate disease model such that at

each time step of a simulation, an individual is either susceptible, exposed, infectious, or recovered.

Contacts between infectious and susceptible individuals at different activity locations result in

disease transmission. Interventions such as vaccination, school closure, and other measures of

social distancing are also implemented. Epidemics are simulated by selecting a synthetic contact

network for a region, and setting initial conditions regarding the disease parameters and the number

of initially infected individuals. Several studies have validated different components of the model.

See [5], [2] and [13] for examples.

The approaches used in constructing this model can be found in several publications. See [7],

and [8], and [9] for information on urban population mobility models. See [10], [11], [12], [13],

and [14], for information on disease transmission models and the natural history of the disease. For

further information on contact networks, see [12], [5], and [15].
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Random Forest

Hastie et al. [16] define the random forest algorithm as follows:

1. For b = 1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating

the following steps for each terminal node of the tree, until the minimum node size

nmin is reached

i. Select m variables at random from the p variables

ii. Pick the best variable/split-point among the m

iii. Split the node into two daughter nodes

2. Output the ensemble of trees (Tb)1
B

To make a prediction at a new point x: Let Cb(x) be the class prediction of the bth

random-forest tree. Then CB
rf (x) = majority vote (Cb(x))B1

Random Forest is an extension of bagging, an approach for combining several predictors to

reduce the variance of an estimated prediction function [16, 17]. Advantages of random forest

include efficiency on large databases and estimation of importance variables [18]. For the analysis

in this paper, we used the randomForest package in R [19].
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