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ABSTRACT The dynamics of allelic frequencies at a single
multiallelic locus under gene conversion is studied. Generations
are discrete and nonoverlapping; the diploid monoecious popu-
lation mates at random; selection, mutation, and random drift are
negligible. Analytical and numerical investigation indicates the
following. (i) If gene conversion is biased within at least one pair
of alleles, then the frequency of at least one allele must become
arbitrarily small. (ii) If conversion is biased within every pair of
alleles, then the frequency of at most one allele can fail to become
arbitrarily small. Although allelic frequencies may become re-
peatedly small instead of remaining small, the biological ubiquity
of small random perturbations (due, e.g., to random genetic drift)
guarantees the ultimate loss of at least one allele in case i and of
all alleles but one in case ii. The decay of genetic variability is often
sufficiently rapid to imply that biased gene conversion can be an
important mechanism for the genetic divergence of isolated pop-
ulations.

Gene conversion is the nonreciprocal transfer of information
from one allele to another. It has been demonstrated in many
species of fungi (for refs., see refs. 1 and 2) and in Drosophila
melanogaster (ref. 3 and refs. cited therein), and experiments
indicate its occurrence in Zea mays (ref. 4 and refs. cited therein).
Conversion rates per locus per generation in fungi range from
0 to more than 0.5, most of them being between 0.002 and 0.10
(1, 5); in D. melanogaster and Z. mays, they appear to be much
lower, about 10-5 (3, 4). In a large population, gene conversion
alters allelic frequencies only if it is biased-i.e., when two
alleles interact, one of them must be more likely to convert the
other than vice versa. The disparity parameter that controls gene
frequency change is the product of the conversion rate and a
measure of conversional bias (1, 6). In.fungi, the absolute val-
ues of the disparities are usually between 2 X 10-5 and 0.14,
and the average of the mean absolute disparities from a number
of studies is close to 0.01 (1); disparity parameters have not been
measured in Drosophila and corn, but. they cannot exceed the
conversion rate of about 10-5.

Whenever the disparities are appreciably greater than typ-
ical values of mutation rates (10-6 to 10-5), as they are in most
fungi, but apparently not in the much more limited and less
detailed Drosophila and corn data, gene conversion may have
considerable evolutionary importance. For gene conversion to
significantly influence allelic frequencies, it is also necessary
that neither the selection intensities nor the reciprocal of the
effective population number greatly exceed the disparities.

Guitz and Leslie (6) and Lamb and H-elmi (1) have studied the
effect of gene conversion on the allelic frequency at a diallelic
locus in a large population. Gutz and Leslie (6) showed that the
characteristic time (in generations) for gene frequency change
under pure conversion is the reciprocal of the disparity and in-

vestigated approximately the equilibrium gene frequency un-
der the joint action of conversion and mutation. Lamb and Helmi
(1) included selection in the approximate analysis of the equi-
librium and presented extensive numerical calculations based
on a theoretically exact model. The investigation of the influ-
ence of gene conversion on sequence homogeneity among re-
peated genes has also begun (2, 7-9).

In this paper, we shall examine the evolution of allelic fre-
quencies at a single multiallelic locus under gene conversion.
In Section 1 we develop a formulation encompassing arbitrary
patterns of selection, mutation, and gene conversion and briefly
analyze the case of two alleles. We treat pure conversion in Sec-
tions 2 and 3: general results appear in Section 2; special cases
and qualitative general conclusions are in Section 3. Section 4
comprises a summary of our results, a discussion of their im-
plications, and a consideration of the effect of incorporating
mutation.

Generations are discrete and nonoverlapping; the diploid
monoecious population mates at random and is sufficiently large
to permit us to neglect random genetic drift. The joint action
of gene conversion, selection, mutation, and random drift has
been analyzed and will be reported in a subsequent publication
(10).

1. Formulation

Let pj (j = 1,2,. n) denote the frequency of the allele Aj in
zygotes in generation t (= 0,1,2, .. .). We allow only viability
selection, after which the frequency of the ordered genotype
AjAk reads

Pjk = WjkPjPk/W,
where Wjk and

W = E WjkPjPk
jk

[la]

[lb]

represent the viability of AjAk individuals and the mean via-
bility of the population. We denote the probability that Aj mu-
tates to Ak by ujk (by convention, ujj = 0 for all j) and assume
that the two genes at a locus mutate independently. Then, after
mutation, the genotypic frequencies are given by

,P**_==k - P*RnjRmk,
im

[2a]

where

Rjk = (1 - z U8jlok + Ujk, [2b]

and aSk designates the Kronecker delta. Let Cjk denote the prob-
ability that a successful gamete from an AjAk individual carries
Aj. These parameters enable us to incorporate arbitrary pat-
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terns and molecular mechanisms of gene conversion and yield

Pj = 2 E CjkPjk [3]
k

for the frequency of Aj in the zygotes of the next generation.
Our fundamental variables, the pj, are confined to the sim-

plex

pi > °, Pk = 1, [4]
k

which is mapped into itself by the nonlinear transformation 1,
2, 3. We discuss several aspects of this model in the remainder
of this section.

While selection acts on the phenotype, which develops from
the zygotic genotype, the germ cells mutate with no phenotypic
effect. Gene conversion occurs during meiosis. Therefore, in
any formal scheme, selection must precede and gene conver-
sion should succeed mutation. This is precisely the order in our
life cycle and in the numerical calculations of Lamb.and Helmi
(1).

Clearly, our model also applies to meiotic drive, as noted by
Crow for the work of Gutz and Leslie (6).

For unbiased conversion, Cjk = 1/2; Aj has a conversional ad-
vantage (disadvantage) with respect to Ak if Cjk > 1/2 (Cjk < 1/2).
Hence, we introduce the disparity parameters bjk through

1
CJk = (1 + bk). [5]2

Since, by definition, 0 < Ck ' 1 and c% = 1- Cjk, 5 implies
that the disparities satisfy g; = -bjk (which has b~j = 0 as a
special case) and -1 ' bjk ' 1 for all j and k.

In writing 3, we supposed that meiotic gene conversion in
an AiAj heterozygote can produce only Ai and Aj. The as-
sumption that gene conversion does not produce nonparental
alleles is exact or accurate if the alleles differ from each other
by any one of the following (11-14). (i) Single base substitutions
at the same site. In this case, of course, the number of alleles
cannot exceed four. (ii) Continuous nested deletions. As a spe-
cial case, this formally includes insertions that all start or end
at the same site. (iii) Continuous, nonnested, overlapping dele-
tions. (iv) Any combination of substitutions, deletions, and in-
sertions within short DNA segments (in fungi, much less than
several hundred base pairs long).

For fungi, we let Qjk,1: 8-1 signify the probability that an AjAk
genotype produces an 1: 8-1 octad. (If tetrads are observed, sim-
ply double the numbers in the segregation ratios.) Then we have

1 8

Cjk = E lQjkl:8-l, [6]8 1=0

whence 5 yields

bj = ( -1)Qjk,i:&i [7]

2 IEs4
-14 (Qjk,1:8-1 - Qjk,8-1:1). [8]21l=0,104 \4 /

Eq. 8 shows explicitly that the disparity bjk is large only if both
the conversion rate and the bias are large. For two alleles, 7
reduces to the parametrization of Lamb and Helmi (1).

For two alleles, 1, 2, and 3 specify a smooth mapping of the
unit interval into itself: p =,pl, 0 - p s 1, p' = f(p). A tedious
direct calculation shows that if the biologically trivial condition
U12 + U21 < 1 holds, then this mapping is monotone increasing

(df/dp > 0), which establishes global nonoscillatory conver-
gence. More explicitly, suppose that the initial value of p is po.
Iff(po) < po, there exists at least one equilibrium in [O,po) and
p(t) converges without oscillation to the largest of these equi-
libria; iff(po) > po, there exists at least one equilibrium in (po,1]
and p(t) converges without oscillation to the smallest of these
equilibria. Hartl (15) proved these results by a different method
in the absence of mutation, in which case the polymorphic
equilibrium is unique; the local analysis had been carried out
earlier (16, 17).

2. General results

Here, we examine pure gene conversion, for which 1, 2, and
3 lead to the gene frequency changes

Ap,=pi bjkPk.
k

[9]

The completely polymorphic equilibria A (5 > 0 for allj) ob-
viously satisfy

Bp = 0. [1Oa]
Since B is skew-symmetric (Br = -B), each of its eigenvalues
is pure imaginary or zero. There are two cases.

(i) If the number of alleles, n, is odd, since the imaginary
eigenvalues occur in complex conjugate pairs, zero must be an
eigenvalue. Consequently, det B = 0 and hence lOa has non-
trivial solutions; if all the components of one of these are non-
zero and have the same sign, we can choose this sign to be pos-
itive and normalize p so that

[lob]A = 1.
i

Generically (i.e., if B has rank n - 1), there exists at most one
such solution.

(ii) If n is even, det B = 0 only in biologically unimportant
special cases, so lOa generally has no nontrivial solution and
then a completely polymorphic equilibrium does not exist.

It is fruitful to associate with each n-allelic conversion pat-
tern an oriented graph (ref. 18, p. 10) with n points. The point
j corresponds to the allele Aj; the points j and k are connected
if and only if conversion between Aj and Ak is biased (bjk $ 0);
if Aj has a conversional advantage with respect to Ak (bik> 0),
the directed line that connects j and k points from k to j. (See
Figs. 1, 3, and 4 for examples.) If the alleles can be divided into
two or more disjoint sets such that conversion is biased only
within each set, 9 easily reveals that these sets evolve inde-
pendently of each other and the total gene frequency of each
set is constant. Therefore, without loss of generality, we may
restrict our attention to connected graphs (ref. 18, p. 13).

Next, we state and prove three principles that enable us to
analyze directly many conversion patterns.

Principle 1. If Aj has a conversional advantage relative to every
allele to which it is connected (i.e., Aj is a sink), then all those
alleles are ultimately lost. In particular, if a sink Aj is connected
to every other allele, then it is ultimately fixed.

Proof. From 9, we have Apj > 0, which implies that pj(t) con-
verges monotonically from below to some value pj: pj -P>
pj(O) > 0. Hence, Apj -+ 0, so that 9 yields XkbjkPk -> 0. Let
Ij - {k: b'k 0}; since bjk > 0 for all k in Ip, we infer thatPk

0 foral k in I.
Principle 2. If Aj has a conversional disadvantage relative to

every allele to which it is connected (i.e., Aj is a source), then
A. is lost or those alleles are lost (or possibly both). In particular,
if a source Aj is connected to every other allele, then Aj is lost.
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Proof Now 9 yields Apj < 0, whence pj(t) converges mono-
tonically from above to some frequency pij, which implies that
Apj -* 0. If pi # 0, 9 gives 2kbjkPk -O 0. Since bjk < 0 for all
k in Ij, we conclude that Pk-- 0 for all k in Ij. IfAj is connected
to every other allele, the fact that pj is monotone decreasing
implies that the total frequency of the other alleles, 1 - pj, is
monotone increasing. Therefore, at least one of those alleles
must survive, and hence Aj must be lost.

Principle 3. If there exists a unique, isolated completely
polymorphic equilibrium p and the initial gene frequency p(O)
# p, then p(t) converges to the boundary of the simplex 4.

Proof. Consider the function
n

G(p) = SI jaPi In pj)
j=l

[11]

in the entire positive orthant pj > 0. This function is essentially
the same as the conserved quantity in Volterra's (19) continu-
ous-time model of multispecies interaction. An easy calculation
reveals that G(p) has an isolated global minimum at p = p. Next,
appeal to 11; the elementary fact that In x ' x - 1 for x > 0,

with equality if and only if x = 1; 9; and the skew-symmetry
of B and 10a:

AG = 2 [Apj - f' In (pj'/pj)]

2 E [5pj - Pi, 1)1

= I1 ' Apj

E (bjkPjpk- bjkpPjpk) 0. [12]

jk

Thus, AG 2 0; since A is the unique completely polymorphic
equilibrium, AG = 0 in the interior of the simplex if and only
if p = P. Therefore, p(O) # P implies that there exists e such
that AG[p(t)] 2 > 0. Hence, G[p(t)] X-* o as t xc, which

establishes convergence of p(t) to the boundary of 4.
Remarks. Principle 3 means that p(t) permanently leaves every

compact interior set of the simplex. A second alternative state-
ment reads

lim inf pj(t) = 0 [13]
t-*A

for some j. Notice that no allelic frequency need remain small:
in many cases, as in Fig. 2 below, limt,.pj(t) # 0 for any j.
From principle 3 and the discussion at the beginning of this
section of the existence of completely polymorphic equilibria,
we can conclude that convergence to the boundary occurs for
many conversion patterns if the number of alleles is odd.

Finally, observe that, in a continuous-time model, instead of
Apj, the time derivative would appear on the left-hand side of
9. Clearly, all results in this section except principle 3 would
be unaltered. The latter would no longer hold, because G would
be conserved. The constancy of G, however, is structurally un-

stable; i.e., it is destroyed by arbitrarily small changes in the
model, some examples of which are the deviations from Hardv-
Weinberg proportions associated with overlapping generations
(20; ref. 21, pp. 79-92), demographic fluctuations, mutation,
selection, and random drift. Therefore, the discrete-time model
should be a much better guide to biological reality.

3. Special cases

In this section, we investigate special cases of the dynamics un-

FIG. 1. The connected oriented graphs with three points.

der pure gene conversion. For two alleles, 9 reduces to AP1 =
b12p1p2, which shows that whichever allele has a conversional
advantage is ultimately fixed (6). Therefore, we study loci with
three, four, and five alleles; at the end of the section, we offer
some general remarks. (All numerical calculations were carried
out to 18 significant figures.) Let

Tm = min{t: Pk(t) < 10-r for some k} [14]
designate the number of generations required for some gene
frequency to become less than 10-m. The times T3 and Tio were
used to characterize the rate of evolution; each run was stopped
after T15 generations.

Three Alleles. The three principles of Section 2 yield a com-
plete qualitative analysis for three alleles. All the distinct (i.e.,
nonisomorphic) connected oriented graphs with three points
are exhibited in Fig. 1. For Fig. 1 a-d, principle 1 gives P3
1, p3 O. 0, p3 -> 0, and P2 -_ 1, respectively. Fig. 2.3b with

the direction of motion reversed and figures 2.3b, 2.3c, and
2.3d, respectively, of ref. 21 (pp. 26-28) show sketches of the
orbits. From 10, we infer that for Fig. le there is always an in-
ternal equilibrium:

p = (b23/db31/db12/d), d = b12 + b23 + b31. [15]
Hence, by principle 3, p(t) converges to the boundary of the
simplex. The fixation states (p3 = 1) are obviously unstable; by
9, as Pi -° 0, AP2 -- b23p2(1 P2) > 0, with analogous results

for P2 and p3. We can conclude that in the limit tx-* c, p(t) runs

around the boundary of the triangle, as shown in Fig. 2. Akin

1.0

0.8

0.6

0 0.2 0.4 0.6 0.8 1.0
P1

FIG. 2. A trajectory for pure gene conversion at a triallelic locus
with b12 = 0.3, b23 = 0.2, and b3l = 0.5. The indicated unstable equi-
librium is at (0.2, 0.5, 0.3).
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and Hofbauer (22) have proved a similar theorem for a contin-
uous-time model in game theory.
A local analysis in the neighborhood of 15 reveals some de-

tails of the dynamics of Fig. le. The eigenvalues are
A = 1 ± iK = pet@, [16a]

where i = VII,
K=(bl2b23b3l/d)=,

p = (1 + Ki)12, 6 = tan-IK.
[16b]

[16c]
Close to A, the radius of the orbits is approximately propor-
tional to pt and the period is about 2Xr/8. The data reviewed
at the beginning of this paper indicate that K << 1; in this case,
pt eK2t/2, 2Xi/@ 2Xr/K, and the radius increases by a factor
of about p27O = e"K per period. This suggests that the char-
acteristic time to the boundary and the period are about 2/K2
and 21r/K. Since K-* aK if bjk-- abjk, we can conclude that,
for fixed relative values of the disparities, the typical conver-
gence time and the period are inversely proportional to the square
of the scale of disparity and to the scale itself, respectively. Fi-
nally, we note that the rate of evolution is maximized when K
is maximized, and for fixed d this occurs when b12 = b23 = b31.

Four Alleles. The 34 connected oriented graphs appear among
the four-point digraphs in ref. 18 (pp. 227-230). Principles 1
and 2 inform us that the frequency of at least one allele con-
verges to zero in 30 of these graphs. We display the other four
graphs (graphs 16, 32, 35, and 45 of ref. 18) in Fig. 3. Since
there is generically no equilibrium with four alleles, principle
3 does not apply, and hence the graphs in Fig. 4 were studied
numerically. Convergence to the boundary occurred in all cases.
For all four graphs, there are conversion patterns that lead as
t -X 00 to an orbit along the four edges of the simplex corre-
sponding to the boundary of the square (and in the same di-
rection). The following types of dynamics also occur; the term
"cycle" refers to the recurrence of edges but not necessarily to
that of points on those edges. Fig. 3a: a pair of diagonally op-
posite alleles disappears, and the ultimate frequencies of the
remaining alleles depend on p(O). Fig. 3b: (i) p, -- 0 and P3 ->
0, and the final state depends on p(O); (ii) p4 -O 0, leaving a 132
edge cycle. Fig. 3c: (i) P2 -_ 0, leaving a 143 edge cycle; (ii) p4

0, leaving a 123 edge cycle. Fig. 3d: (i) p4 -. 0, leaving a 123
edge cycle; (ii) Pi -) 0, leaving a 234 edge cycle. Even if we
include the dynamics obtained by relabeling, the list may not
be exhaustive.

Five Alleles. There are 582 oriented graphs with five points,
though some of these are unconnected (23). Consequently, we
confine ourselves to the biologically generic case: biased con-

version within every pair of alleles, represented by complete
oriented graphs, or tournaments (ref. 18, pp. 16, 205). We dis-
play the 12 five-point tournaments in Fig. 4 (C. Cotterman,
personal communication). By principles 1 and 2, in Fig. 4 a-f,
at least one allele is lost. Fig. 4 g-l, however, have neither sources
nor sinks. Define

P1 = b25b34- b35b24 + b45b23,

/2= -bl5b34 + b5bl4 - b45bl3,
3 = bl5b24 - b25bl4 + b45bl2,
34 = -bl5b23 + b2bl3- b35bl2,
15= bl4b23 - b24bl3 + b34bl2.

[17a]
[17b]
[17c]
[17d]
[17e]

For any conversion pattern with five alleles, in the generic case
that B has rank 4, there exists a completely polymorphic equi-
librium if and only if all five fBj are nonzero and have the same
sign, and then this equilibrium is unique and is given by (24)

[17f]Pi = Pi2EPk-
k

Whenever this criterion is satisfied, principle 3 implies con-
vergence to the boundary.

Fig. 4 g-l were investigated numerically both in the pres-
ence and in the absence of a completely polymorphic equilib-
rium. Convergence to the boundary occurred in all cases. With
an internal equilibrium, no gene frequency converged to zero
and the ultimate pattern observed was either a five-edge cycle
or an irregular trajectory on which sometimes only one or two
allelic frequencies were small. Without an internal equilib-
rium, one or two alleles were lost in every run, leaving a four-
or a three-edge cycle, respectively.

4

5q

4 4

p3

P3

4 3 4 3

Ig 2 , E 2
( o) (bb)

I 2 1E) 2
(C) (d)

FIG. 3. The connected four-point oriented graphs with neither
sources nor sinks.

(I)

FIG. 4. The five-point tournaments.
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General Remarks. Our analyses and extensive numerical
calculations indicate the following: (i) If conversion is biased
within at least one pair of alleles, then the frequency of at least
one allele must become arbitrarily small. (ii) If conversion is
biased within every pair of alleles, then the frequency of at most
one allele can fail to become arbitrarily small. More succinctly,
13 holds for at least one j for every connected oriented graph
and fails for at most one j for every tournament.

Since the numerical results indicate that the approach to the
boundary of 4 is considerably faster if at least one allelic fre-
quency converges to zero, we focus now on those situations in
which this does not happen. In these cases, the computation
suggests that the scaling properties discussed below 16 hold for
more than three alleles: in particular, the characteristic con-
vergence time to the boundary appears to be roughly propor-
tional to the square of the reciprocal of the typical disparity.
The convergence times are very similar for three, four, and five
alleles; T10 (see 14) seems to be about two or three times T3.
For disparities around 0.1, 2,000 generations is a typical rough
value of T3.

4. Discussion

The analytical and numerical results reported here indicate that,
in the absence of mutation and selection, biased gene conver-
sion at a single multiallelic locus decreases genetic variability.
If conversion is biased within every pair of alleles, ultimately
only one allele survives. Which alleles are lost often depends
on random genetic drift and other stochastic perturbations that
may affect gene frequencies. If b represents a typical disparity
parameter, in a large population the frequency of some allele
is reduced to about 10-3 in roughly 20/b2 generations, and
sometimes much faster; the (deterministic) characteristic time
to 10-10 is at most a few times greater. The loss of alleles by
this mechanism is of evolutionary importance if b is not much
less than the mean absolute fungal value of 0.01, the typical
selection intensity at the locus under consideration, and the re-
ciprocal of the effective population number. In many cases, the
first condition may be weakened to about 10-3, and if an allele
has a conversional advantage or disadvantage with respect to
every other allele, even to about 10-5. Since we expect that
new mutants frequently have a conversional disadvantage (2),
and their frequency is low, usually their elimination should be
particularly rapid.

Since random factors often influence which alleles are lost,
biased conversion must frequently contribute to the genetic di-
vergence of isolated populations.

If every allele mutates to every other allele (Ujk > 0 for all
j and k, j :# k), all alleles must remain in the population. For

neutral alleles, 1, 2, 3, and 5 yield

p = 1 - E Ujk) Pj + E PkUkj,

P= Pj + Pj* E bjkpk.
k

[18a]

[18b]

Numerical analysis of 18 indicates that for sufficiently weak
mutation the trajectories still tend toward the boundary of the
simplex 4 but no longer converge to it. In particular, whenever
the pure-conversion frequencies converge to a trajectory along
some or all of the edges of 4, the introduction of mutation leads
to an orbit close to this trajectory. The computations support
the structural stability of our model, a point discussed at the
end of Section 2.
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