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Reduction of the 4-state circular model 

In accordance with a concept of “the rate limiting stage” the fastest transitions might be analysed as 

being in quasy equlibrium condition. In our model we assume that these fast transitions are R↔A 

and O↔D:  
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From equations /1/ and /2/: 
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Transition from closed ( RA+=Ψ ) to open ( DO +=Ω ) states: 
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Condition 1=Ψ+Ω  yields: 
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This equation predicts a mono-exponential time course with a time constant: 
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The steady-state activation curve is described as in Beyl et al. [4]:  
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Fopmulae /4/ - /7/ were used for estimation of the model parameters. 

 

 

Asymptotic estimation of the model parameters 

Asymptotic estimations of voltage dependence of τm yields: 

At strong depolarization (V → +∞):  

x/y → +∞ and u/w → +∞ 

y/x → 0 and w/u → 0 that yields  

rate(depolarization) = 1/τm(depolarization)→ α + β    



 4

At strong hyperpolarization (V → -∞):  

y/x → +∞ and w/u → +∞ 

x/y → 0 and u/w → 0 that yields  

rate(hyperpolarization) = 1/τm(hyperpolarization) → γ + δ   

Figure 1 illustrates that all items in the sum rates reach their asymptotic values at physiological 

membrane voltages (exemplified for wild type and mutant G1193T).  

 

 

Figure 1. Impact of different transition rates on voltage dependent activation/deactivation 
exemplified for WT (A) and G1193T (B). The corresponding rates are given by 
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At V = Vm the impacts of particular rates into the resulting rate are (formulae deduced under 

assumption that γ <<δ): 
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Major impact into resulting rate (sum of particular rates) is introduced by rateβ,V. Thus, time 

constant at potentials near the middle of the activation curve (Vm) is approximately equal to 1/β. 
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Illustration of the unique identification of the model parameters 

 

Figure 2. Graphical illustration of parameter identifiability  

Plot shows the level sets of the logarithm of the objective function J(q) (see eg. /1/ in Results 

section) in the neighborhood of the identified parameter marked by the cross (center of the graph). 

Two out of the six model parameters are varied according to the axis labels, the remaining 

parameters are fixed by their values. The closed lines indicate pronounced curvatures in the 

parameter landscape and hence (at least local) uniqueness of identified parameters. Similar 

observations are made for other parameter variations. 

 

 

 
 


