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A Limitations of the Single Alignment Tensor Model

Consider RDC data for a N -state system:

dexp = w1d1 + . . .+ wNdN = w1V1s1 + . . . + wNVNsN = V
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= VS, (S1)

where for state j, Vj is the associated matrix containing products of direction cosines for each
relevant bond, sj is a column vector comprising the 5 unique alignment tensor elements, and wj is
the associated population weight. Our linear system potentially spans up to 5N dimensional space,
since there are 5N -fitting parameters.

We compare this to the single-alignment-tensor model

dexp = w1V1ŝ+ . . .+ wNVN ŝ = V







w1ŝ
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wN ŝ






= VŜ. (S2)

Even though Ŝ has 5N values, there are now a large number of constraints on them (e.g. Ŝ1Ŝ7 =
w1ŝ1w2ŝ2 = Ŝ2Ŝ6), leaving only (N − 1) + 5 fitting parameters. Given the possibility that the
rank of V is larger than the number of fitting parameters, there exist numerous possible sets of
experimental data explained by the general N -state model that cannot be explained by the single-
alignment-tensor model, even when allowing for incorrect values for the population weights.

B Orthogonal Matching Pursuit

The standard OMP algorithm1,2 that solves the problem

min
x

‖x‖0, s.t. ‖Ax− y‖2 ≤ ǫ, (S3)

is given in Alg. S1.
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Algorithm S1 Orthogonal Matching Pursuit (OMP)

Input: An L × N matrix A, observed data vector y, and error threshold ǫ. Let aj be the jth
column of A.

Output: x∗, the solution to Eq. (S3).
1: Set the initial solution, x0 = 0
2: Set the initial residual, r0 = y

3: Set the initial list of non-zero columns to empty, S0 = ∅
4: Set the loop counter, m = 0
5: for ‖rm‖2 > ǫ do
6: Compute the residual estimates for each column j, ξj = minzj‖r

m − ajzj‖2, by using the
optimal choice zj = aTj r

m/‖aj‖
2
2

7: Select the column j with the minimum value ξj, and add it to the list of non-zero columns,
Sm+1 = Sm ∪ {j}

8: xm+1 = argmin
x
‖y −Ax‖22, s.t. xi = 0,∀i /∈ Sm+1

9: rm+1 = y −Axm+1

10: m = m+ 1
11: end for

12: return xm

Our modified Multi-OMP algorithm solves

min
x

χ2(x), s.t. ‖x‖0 = M,x ≥ 0, (S4)

where χ2(x) = ‖Ax− y‖22, and is given in Alg. S2.
The Multi-OMP algorithm is a modified OMP algorithm that returns K best nonnegative

solutions, instead of just the best solution in the standard OMP algorithm. This is done by
selecting the top K solutions at each iteration of Multi-OMP, instead of selecting only the best
solution (see Alg. S2, Line 6), and then propagating them to the next m-loop iteration as multiple
starting values. These top K solutions should be analyzed to determine if an alternative solution
exists with a close enough χ2 relative to the best solution. By propagating K solutions during each
iteration we also improve the χ2 of our x∗ solution relative to the original OMP algorithm.

One of the more computationally intensive tasks in our Multi-OMP algorithm is recomputing
a least-squares solution xm+1 after selecting a new column during the mth iteration (see Alg. S2,
Line 18). This task can be formulated as a least-squares solution under a rank-one update of
A from the previous iteration. xm+1 can be updated by a single iteration of the Gram-Schmidt
orthogonalization algorithm3. If xm+1 contains negative weights, it is removed from the list of top
K solutions.

In order to speed up the computation for large values of K, the current best K values are main-
tained using a priority queue4, and the algorithm is parallelized. Computing K top sparse solutions
for M = 1, . . . , rank(A) is relatively quick, since the Multi-OMP algorithm has an O(KMLN) com-
plexity and M typically is small. The selected value of K should be the largest possible value such
that all the computations fit in the computer memory and the algorithm terminates in the desired
amount of time.
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Algorithm S2 Multi Orthogonal Matching Pursuit (M-OMP)

Input: An L×N matrix A, observed data vector y, size of desired sparsity M , and the number
of top solutions to retain between iterations K.

Output: x∗, the solution to Eq. (S4).
1: Set the initial solution, x0 = 0
2: Set the initial residual, r0 = y

3: Set the initial list of non-zero columns to empty, S0 = ∅
4: Set the initial list of lists, T 0 = {{S0, r0,x0}}
5: Set the loop counter, m = 0
6: for m < M do

7: Initialize the set of top K guesses for the mth iteration, Ξ = ∅
8: for all {Sm, rm,xm} ∈ Tm do

9: for j = 1 to N do

10: Compute ξj = minzj‖r
m − ajzj‖2

11: add element {{Sm, rm}, j, ξj} to Ξ
12: if size of Ξ greater than K, remove the element with the largest ξ value
13: end for

14: end for

15: Initialize the storage of least-squares solution for all guesses in Ξ, Tm+1 = ∅
16: for all {{Sm, rm,xm}, j, ξj} ∈ Ξ do

17: Sm+1 = Sm ∪ {j}
18: xm+1 = argmin

x
‖y −Ax‖22, s.t. xi = 0,∀i /∈ Sm+1

19: if xm+1
i > 0 for all i ∈ Sm+1 then

20: rm+1 = y −Axm+1

21: Tm+1 = Tm+1 ∪ {{Sm+1, rm+1,xm+1}}
22: end if

23: end for

24: m = m+ 1
25: end for

26: return xm with the smallest ‖rm‖2 in Tm

B.1 Advantages of Multi-OMP over Previous Minimum-Ensemble Algorithms

There are several reasons why Multi-OMP is a more reliable method for computing sparse solutions
than previously suggested stochastic genetic programming and simulated-annealing algorithms.
First, stochastic algorithms require careful selection of parameters such that the computations do
not terminate too early or exceed the specified running time. These parameters would change
depending on the input size and energy landscape of the function being minimized, however, it is
difficult to know what they should be a priori.

In contrast, Multi-OMP has no adjustable parameters and its computational time linearly scales
with the input size and its only parameterK. Second, OMP has a computationally efficient heuristic
for evaluating the fitness of a conformer j to the ensemble by determining how correlated the data
for that conformer, aj , are to the remaining residuals, r, as measured by the dot-product aj ·r. This
fitness can be quickly evaluated for all conformers. By contrast, in previously suggested genetic
programming algorithms (ASTEROIDS, MES) it is assumed that the fitness of an updated solution
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is improved (in a probabilistic sense) by randomly mixing two previous-iteration solutions. This
tends to be a less accurate heuristic, since the two previous solutions could be largely explaining
the same observations, in which case mixing them would yield only marginal improvement. The
simulated-annealing algorithms presented previously (e.g.,5) do not rely on a heuristic at all (though
they can be modified to use a thresholding heuristic6), therefore each new ensembles fitness must
be directly evaluated, which is computationally expensive.

For all methods, once the heuristic is applied and a potential candidate ensemble is selected, the
associated weights need to be computed. In our Multi-OMP algorithm we take advantage of the
fact that we add one conformation at a time to our previously computed weighted ensemble. This
is equivalent to a rank-one update of a linear system, and therefore the weights can be efficiently
updated using an O(LM) Gram-Schmidt algorithm, instead of being directly recomputed for a
newly generated M -sized ensemble, which has a computation O(LM2) complexity.3

Together with parallelization, our heuristic and rank-one update of the solution allow us to
efficiently filter a larger number of unlikely ensembles, while also directly evaluating orders of
magnitude more potential ensembles than in the previously suggested genetic-programming or
simulated-annealing algorithms, with the added advantage that, while computing the best M -sized
ensemble, we simultaneously also compute all best smaller-sized ensembles at no additional cost.
Computing all smaller-sized ensembles, rather than a subsampling is critical for the ℓ-curve anal-
ysis, since skipping even a single ensemble size could result in incorrect regularization. Therefore,
when combined with ℓ-curve regularization, our algorithm provides substantial improvement in
computation time, as compared to previous approaches.

C Preconditioning of χ2 to Improve Computational Complexity

As we have demonstrated in the manuscript, a large part of the experimental data contains redun-
dant structural restraints, because the effective rank of A is significantly below the actual number
of experimental observables. Since the computational complexity of the algorithm and the mem-
ory requirements are proportional to the number of rows in the A matrix, we compress our linear
system such that all the redundancy is removed. To achieve this we rotate our linear system by
multiplying by an orthonormal matrix UT , where UT is the transpose of the U matrix defined as
A = ULVT in the SVD decomposition of A, such that

χ2(x) = ‖y −Ax‖22 = ‖y −ULVTx‖22 = ‖UT
(

y−ULVTx
)

‖22 = ‖UTy − LVTx‖22. (S5)

We then just remove the rows fromUTy and LVT in Eq. S5 associated with the relative singular
values below a certain threshold (10−4). This computation reduces the number of rows in our linear
system, L, from around 90 to 10 for RDC and from 200 to just 21 for SAXS. Depending on size of
A, the computation of the SVD might be intractable, in which case alternative matrix sketching
algorithms could potentially be used.7 Our proposed compression method can be extended to the
more general preconditioning idea.8,9 Note that preconditioning (or compression) can be combined
with any sparse recovery algorithm, not just Multi-OMP. We will explore the idea of preconditioning
of χ2 in order to improve solution recovery in future work.
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D Stability of SES Solution Under Noise

One of the primary advantages of describing the ensemble selection problems in terms of Eq. 6 is
that that stability of weights (in individual ensembles) under noise in data is well understood in
terms of a matrix condition number, easily computed as cond(A) = ‖A‖2‖A

∗‖2, where A∗ is a
Moore-Penrose pseudoinverse of A.

For a given M -sized ensemble, we refer to the associated L×M matrix of the M -state ensemble
as Ã, where Ã has only M aj columns, for all j where xj > 0. The non–zero weights of x for such
an ensemble, are computed from the experimental values y in Line 18 of Alg. S2, where

x = argmin
x

‖y − Ãx‖2 = Ã∗y. (S6)

When noise ǫ is added to the linear system, we get a different solution,

x′ = argmin
x

‖(y + ǫ)− Ãx‖2 = Ã∗(y + ǫ). (S7)

The difference in weights of the two solutions, ‖x′ − x‖2, will be small given a low condition
number of the matrix Ã, since

‖x− x′‖2
‖x‖2

≤
‖Ã∗(y + ǫ)− Ã∗y‖2

‖x‖2
=

‖Ã∗ǫ‖2
‖x‖2

≤
‖Ã‖2‖Ã

∗‖2‖ǫ‖2

‖Ã‖2‖x‖2
≤ cond (Ã)

‖ǫ‖2
‖y‖2

. (S8)

Meaning that the relative error in the weights is bounded by cond (Ã) multiplied by the relative
error in the experimental data. cond (Ã) for our 3-state SES at pH 4.5, 6.8, and 7.6 are small,
1.4, 2.0, and 1.9 respectively, and hence our SES solution is robust to noise. Performing n-fold
cross-validation on the 3-state ensemble is not useful, since our 3-state linear model is already
overdetermined, with approximately 90 experimental observables, but only 3 fitting parameters,
and low matrix condition numbers.

E Ensemble Generation

We generate our initial ensemble by adapting the Rapidly-exploring Random Trees (RRT) algo-
rithm10 for ensemble generation. The RRT algorithm is a robotics approach for motion planning
that was previously used for sampling large-scale motion in proteins.11–13 Our algorithm samples
the conformational space by leveraging an iteratively constructed nearest neighbor linked tree. At
each iteration, we generate a random conformation, qrand, by uniform random sampling of the de-
grees of freedom spanning the desired conformational space, followed by finding its closest neighbor,
qnear, in the tree. If it is feasible to move without a steric clash from qnear to qrand, through the
linear path between the two conformations, we add the new conformation by connecting it to qnear
by a new edge. Otherwise, we attempt to expand the tree by exploring the linear path in small
step sizes until a clashing conformation is reached. The last clash-free conformation, if it exists, is
then connected to qnear. This iterative strategy expands the tree towards unexplored regions, since
the probability that a node will be the nearest neighbor of a randomly generated conformation
is proportional to its Voronoi region in the conformational space. Thus, using the RRT sampling
strategy, we significantly improve the sampling of the good scoring regions of the conformational
space compared to random sampling.

The conformational space sampling of the 20000 conformer initial ensemble, generated using
the RRT algorithm from the initial PDB structure 1AAR and 3NS8, is shown in Fig. S1.
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Figure S1: Visual representation of the 20000-conformer initial ensemble of K48-Ub2. All conformers were super-
imposed by their distal Ub. The distal Ub is shown as a cartoon on the left, while shown on the right are the convex
hulls of the Cα atoms of all 10000 conformers generated from PDB ID 1AAR (green) and all 10000 conformers gener-
ated from PDB ID 3NS8 (red). The red/blue vectors represent 2000 randomly selected proximal Ubs: each vector’s
position is the center of mass of the proximal Ub, with the vector oriented parallel to the amide NH bond of Lys29,
such that it represents the orientation of the α-helix in the respective Ub unit.

F Applicability of Different Restrains for Ensemble Recovery

In testing the suitability of a structural restraint for ensemble recovery, it is helpful to assess
the correlation of predicted data for different conformations in the initial ensemble. In Fig. S2,
predicted data and their correlation are visualized for three different structural restraints (RDCs,
SAXS, and PREs) using 100 randomly-selected conformations from the 20000-member K48-Ub2
ensemble. In other words, 100 column vectors of the A matrix are plotted for each restraint. The
paramagnetic relaxation enhancement (PRE) data (∆R2, increase in

1H transverse relaxation rate)
were predicted based on the spin label’s position provided in14. In Fig. S2 (bottom panels), the
correlation matrix was calculated for predicted data from pairwise combinations of 100 randomly-
selected conformations.

It is evident from the plots that RDCs best discriminate among different structures (large spread
in RDC values) and that the RDCs are the least correlated (correlation plot has the most blue). In
contrast, SAXS profiles are all very similar and therefore, highly correlated to each other. PREs are
badly conditioned, in that the predicted ∆R2 data values span several orders of magnitude, with a
number of residues having ∆R2 of 0. For PREs, multiple datasets using different paramagnetic spin
label positions will be necessary to improve the ability of PREs to discriminate among different
structures.
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Figure S2: (Top Panels) For 100 randomly-selected conformations, j = 1 . . . 100, predicted data (RDCs, SAXS
profile, PREs) are plotted, and each conformations data colored differently. RDCs were predicted as described in
the main text, for residues (x-axis) in elements of secondary structure of both distal and proximal Ubs. SAXS

profiles were calculated for q values between 0 Å
−1

and 1.0 Å
−1

, and also detailed in the main text. PREs (∆R2)
were calculated for residues in the proximal Ub, assuming spin label’s placement on residue 48 in the distal Ub (as
detailed in14), and using the overall rotational correlation time (τc) of 9.0 ns. (Bottom Panels) Matrix of the absolute
uncentered correlation coefficient values, calculated from the predicted data for all pairwise combinations of the 100
randomly-chosen conformations (the same as in the top panels). The lowest correlation in the SAXS correlation
matrix (for the 100 SAXS profiles shown in the above panel) is 0.993, hence that plot has uniform dark red color.
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G Alternative Solutions

G.1 Clustering Methodology

The methodology for representing alternative solutions is given in Fig S3.
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Figure S3: The number of alternative clusters of ensembles for M = 3 solution, as a function of their ‖r‖2 values as
a percent above the ‖r‖2 value for the best M = 3 solution. Alternative ensemble solutions were clustered together
in order to remove duplicate or almost identical solutions from the analysis. All the structures that are members of
any alternative ensemble were hierarchically clustered by 8 Å RMSD. Any ensembles whose 3 states share the same
3 clusters were merged together, and this new cluster is represented by its best ensemble. For easier visualization, a
3% cutoff is used in the manuscript.

G.2 Top Clusters

The alternative top 3% solutions for pH 4.5, 6.8, and 7.6 are shown in Figs. S4 and S5.
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Figure S4: The top 3% M = 3 cluster centroid solutions, overlaid on top of each other, for each pH value
analyzed here. Red coloring of the ribbon marks residues that exhibited significant spectral differences (CSPs ≥ 0.05
ppm) between the Ub2 and the corresponding Ub monomers; the spheres (yellow) represent the side chains of the
hydrophobic patch residues Leu8, Ile44, and Val70 in both Ub units. For comparison, crystal structure of the closed
state of Lys48-linked Ub2 (PDB ID 1AAR) is also shown, colored according to CSPs at pH 7.6.
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Figure S5: The top 3% M = 3 cluster centroid solutions for all pHs. Red coloring of the ribbon marks residues that
exhibited significant spectral differences (CSPs ≥ 0.05 ppm) between the Ub2 and the corresponding Ub monomers;
the spheres (yellow) represent the side chains of the hydrophobic patch residues Leu8, Ile44, and Val70 in both Ub
units.
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Figure S6: (A) The top M = 1 SES ensembles for all pHs. (B) The top M = 2 SES ensembles for all pHs. Red
coloring of the ribbon marks residues that exhibited significant spectral differences (CSPs ≥ 0.05 ppm) between the
Ub2 and the corresponding Ub monomers; the spheres (yellow) represent the side chains of the hydrophobic patch
residues Leu8, Ile44, and Val70 in both Ub units.
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H Maximum Entropy Computation and Results

In the Results section we compare our SES solution with the maximum-entropy approach. Maxi-
mum entropy computation is a convex optimization problem, and so for all values of λ and all pH
conditions we computed the solution in MATLAB using an interior-point method, while avoiding
explicit computation of the Hessian by using the L-BFGS approximation.15

The appropriate λ regularization value was selected by using the described ℓ-curve approach.
The ℓ-curve, logχ2(w) vs. log

∑

j wj log(Nwj), was computed for a discrete set of λ values, and
then interpolated using a cubic smoothing spline (p = 0.995) in MATLAB. The spline was then
twice differentiated, and the point with the maximum value was used to estimate the point of
maximum curvature. The solution associated with that point was selected as the regularized
final solution. The comparison between experimental RDC data and the back-calculated values
for various combinations of substates is shown in Fig. S7. Note that for our MaxEnt solution
χ2(w∗) ≈ εr, meaning that we have properly optimized Eq. 8. The fit of the experimental RDC
data to the back-calculated values of the MaxEnt solution is given in Fig. S7A.
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Figure S7: (A-C) Comparison between the experimental RDC data and the back-calculated values using MaxEnt
solutions, at various pH conditions for the distal (blue circles) and proximal (red squares) Ubs in Lys48-linked Ub2.
Several subsets of the 20000 computed weights used to compute dpred: (A) All the weights from the 20000 states;
(B) Only the weights of the significant states (states with weights of more than two standard deviations above the
average weight), representing 31%, 62%, and 75% of the total weight, and corresponding to 559, 239, and 103 states,
for pH 4.5, 6.8, and 7.6, respectively; (C) Only the weights of the states in the 4 most populated clusters of the
significant states shown in Fig. 8 (main text). The significant states were clustered by hierarchical clustering with
4 Å Cα-RMSD cutoff. The 4 most populated clusters represent 15%, 47%, 66% the total weight, corresponding to
268, 182, 83 states, for pH 4.5, 6.8, and 7.6, respectively. The dashed lines in panels (A-C) represent the absolute
agreement, R is the Pearson’s correlation coefficicent, and Q is the quality factor. (D) The improvement in the quality
of fit as a function of the number of most populated states included. The states are sorted in descending order by
their MaxEnt solution weights. The dashed line shows the best possible χ2/L value, εr/L, computed by minimizing
Eq. 5. S13



I RDC Data for Lys48-linked Ub2

Table S1: RDC data for Lys48-linked Ub2 at pH 4.5 for distal
(A) and proximal (B) units.

Residue Unit Exp. RDC (Hz) Excluded(*)

2 A -16.343

4 A 19.785

5 A 16.157

6 A 18.456

8 A 12.336 *

10 A 19.523 *

11 A -17.340 *

12 A 13.782 *

13 A 9.840

14 A 19.217

15 A 18.572

16 A 4.504

17 A 0.889

20 A -15.356 *

23 A 18.802 *

25 A 9.993 *

26 A 17.878

29 A 16.159

32 A 7.077

33 A 16.806

34 A 16.017

35 A -23.653 *

36 A -27.602

39 A 21.018

40 A -2.738

41 A 17.180

43 A 18.254

44 A 17.623

45 A 6.173

46 A 9.697 *

47 A 16.834 *

48 A -26.460

49 A 1.185

51 A -10.313

52 A -35.801 *

54 A -8.138

55 A 15.504

56 A 18.507 *

57 A 19.730
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58 A 16.362

59 A 16.757

60 A 17.294

61 A 15.843

62 A 5.648 *

63 A -17.967

64 A 21.065

67 A 15.657

68 A 17.980

69 A 14.376

70 A 14.725 *

71 A 15.444 *

73 A 18.795 *

74 A 13.873 *

75 A 4.365 *

76 A 5.323 *

2 B 5.860

3 B 1.357

4 B -5.472 *

5 B -9.017

6 B -12.888

7 B -6.089

8 B 10.779 *

10 B -1.366 *

11 B 2.400 *

12 B -7.544 *

14 B -9.557

15 B 3.050

16 B 2.622

17 B 11.074

20 B -2.649

23 B -12.741 *

25 B -12.307 *

26 B -12.729

29 B -12.160

30 B -13.063

32 B -13.095

33 B -12.243

34 B -12.161

35 B -3.357

36 B 2.840

39 B 4.651

40 B -1.399

41 B 9.348

42 B -4.758
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43 B -1.352 *

44 B -11.618

45 B -6.436

46 B -8.657

47 B -12.055

48 B -1.063

49 B -6.703

50 B -11.558

51 B -4.944

52 B -1.889

54 B -6.590

55 B -11.353

56 B 3.556

57 B 9.635

58 B 3.695

59 B -2.292

60 B 8.474

61 B 11.944

62 B 5.859 *

63 B -6.821

64 B 9.999

65 B 5.664 *

66 B 1.263

68 B -12.070

69 B -3.604

70 B -2.256 *

71 B 5.962 *

72 B -15.413 *

73 B 1.375 *

74 B 0.493 *

75 B 3.262 *

76 B -0.937 *

Table S2: RDC data for Lys48-linked Ub2 at pH 6.8 for distal
(A) and proximal (B) units.

Residue Unit Exp. RDC (Hz) Excluded(*)

2 A 0.464

6 A 19.595

7 A 11.395

8 A 17.000 *

10 A 17.528 *

11 A -4.079 *
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13 A 10.318

14 A 20.102

15 A 18.051

16 A 13.851

17 A 13.011

18 A -4.685

20 A -15.897 *

21 A 14.802

25 A 13.530 *

26 A 18.422

27 A 18.496

28 A 7.203

29 A 17.219

31 A 11.695

32 A 7.885

33 A 17.274

34 A 15.553

35 A -31.093 *

36 A -12.567

39 A 17.748

40 A -10.085

41 A 3.375

42 A 9.711 *

43 A 16.691

45 A 11.584

46 A 16.642

47 A 17.158 *

48 A -19.412

49 A -1.265 *

50 A 14.385

51 A -0.886

52 A -32.860 *

54 A -15.377

56 A 8.842

58 A 18.783

59 A 11.731

60 A 3.809 *

61 A 18.634

62 A -11.706 *

63 A -20.399

64 A 16.877

65 A -5.861

66 A 18.910

67 A 11.188

68 A 18.967
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69 A 17.359

71 A 1.835 *

72 A -10.592 *

73 A 7.579 *

74 A 3.893 *

75 A 0.404 *

76 A 1.233 *

2 B 6.157

3 B 1.419

5 B -0.782

6 B 5.825

7 B 8.653

8 B 11.017 *

10 B 11.709 *

11 B 5.373 *

12 B 9.986 *

13 B 0.087

14 B 2.579

15 B -0.934

16 B 4.445

17 B 9.203

18 B 5.969

20 B -9.729 *

21 B 13.457

23 B 6.559 *

25 B 5.035 *

26 B 4.858

28 B 5.622

29 B 3.865

30 B 8.009

31 B 8.308

32 B 5.550

33 B 4.042

34 B 9.381

35 B -11.149 *

36 B 2.188

39 B -2.075

40 B -12.486

41 B -1.275 *

42 B 9.492 *

43 B 12.755

44 B 10.016

45 B 7.421

46 B 8.256

47 B 4.631
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48 B -5.611

49 B -4.960

50 B 9.862

51 B 2.077

52 B -9.606

54 B -4.305

55 B 4.776

56 B -8.699

57 B -7.949 *

58 B 0.887

59 B -6.157

60 B 0.323 *

61 B 9.850

62 B -11.482 *

63 B -4.305

64 B -1.301

65 B -4.377

66 B -2.088

67 B -3.438

68 B 8.822

69 B 13.411

70 B 6.662 *

71 B 1.207 *

72 B -15.862 *

73 B -4.552 *

74 B 1.567 *

75 B 1.227 *

76 B -1.420 *

77 B -0.364 *

Table S3: RDC data for Lys48-linked Ub2 at pH 7.6 for distal
(A) and proximal (B) units.

Residue Unit Exp. RDC (Hz) Excluded(*)

2 A 3.891

4 A 18.980

5 A 13.451

6 A 19.596

7 A 11.631

8 A 17.371 *

11 A -1.965 *

13 A 9.342

14 A 19.932
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15 A 18.544

16 A 16.733

17 A 15.670

18 A -0.327

20 A -16.850 *

21 A 16.456

25 A 24.776 *

26 A 17.615

27 A 18.606

28 A 8.326

29 A 18.121

31 A 11.729

32 A 8.795

33 A 17.289

34 A 14.990

35 A -31.729 *

36 A -9.043

39 A 16.396

40 A -12.022

41 A 0.828

42 A 9.712 *

43 A 16.429

44 A 17.597

45 A 10.820

47 A 16.612 *

48 A -20.277

49 A -3.714 *

50 A 14.624

51 A 2.097

52 A -31.272 *

54 A -16.176

55 A 17.724

56 A 5.983

58 A 18.989

59 A 9.690

60 A 1.119 *

61 A 16.386

62 A -14.836 *

63 A -18.968

64 A 16.182

65 A -8.627

66 A 17.958

67 A 9.968

68 A 18.887

69 A 17.315
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70 A 4.478 *

71 A -0.553 *

72 A -15.314 *

73 A 3.165 *

2 B 6.739

5 B 1.064

6 B 10.284

7 B 10.587

8 B 12.282 *

11 B 5.604 *

12 B 12.525 *

13 B 1.551

14 B 6.538

15 B 0.438

16 B 6.997

17 B 10.367

18 B 5.689

20 B -12.824 *

21 B 14.900

23 B 10.800 *

25 B 8.541 *

26 B 8.715

28 B 10.337

29 B 8.355

30 B 12.282

31 B 12.545

32 B 9.727

33 B 7.849

34 B 14.057

35 B -14.663 *

36 B 1.573

39 B -0.972

40 B -15.073

41 B -2.710 *

42 B 11.856 *

43 B 15.921

44 B 14.178

45 B 8.657

47 B 8.128

48 B -8.558

49 B -6.912

50 B 14.364

51 B 4.433

52 B -13.782

54 B -4.390
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55 B 9.626

56 B -10.109

57 B -9.932

58 B 2.879

59 B -5.624

60 B -0.903 *

61 B 10.596

62 B -15.074 *

63 B -4.842

64 B -1.628

65 B -6.429 *

66 B -0.745

67 B -2.620

68 B 13.243

70 B 7.759 *

71 B -0.009 *

72 B -20.862 *

73 B -7.193 *

74 B -1.721 *

77 B -0.422 *
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