Web-based Supplementary Materials for "A note on score tests for homogeneity in two-component parametric models for discrete data" by D. Todem, W-W Hsu and KM Kim

Web Appendix A: Proof of the Proposition

i) Proof of the first statement:

Note that $\mu_i = h^{-1}(x'_i\beta)$ and under the null $\pi_i = \tilde{g}(\mu_i)$, which by substitution gives $\pi_i = \tilde{g}(h^{-1}(x'_i\beta))$ for all *i*. Thus, a natural function f(.) relating π_i to linear predictor $z'_i\gamma$ is defined such that $f = \tilde{g} \circ h^{-1}$, in which case $\pi_i = \tilde{g} \circ h^{-1}(z'_i\gamma)$, where \circ represents the composite function operator.

ii) Proof of the second statement:

To show that the second statement of the proposition is true, we first consider the situation where $\tilde{g}(.)$ as a function of μ_i is invertible. Therefore, the composition $\tilde{g} \circ h^{-1}$ is invertible and the null hypothesis $\tilde{g} \circ h^{-1}(z'_i\gamma) = \tilde{g} \circ h^{-1}(x'_i\beta)$, for all *i*, then reduces to the simple form $x'_i\beta = z'_i\gamma$ for all *i*. This ultimately reduces to a linear contrast of parameters β and γ . In particular, when $x_i = z_i$, for all *i*, the null hypothesis is given by $H_0 : \beta = \gamma$. Now we assume that $\tilde{g}(.)$ is not invertible. If $x_i = z_i$, for all *i*, the identifiability of the nondegenerate distribution *G* requires that $\beta = \gamma$ under the null. When $x_i \neq z_i$, for some *i*, the identifiability condition of the non-degenerate distribution *G* ensures that the null reduces to a linear contrast that involves only the parameters β and γ under the null.

Web Appendix B: Calculation of the information matrix $\mathcal{I}(\theta, \alpha)$ for a mixture of a degenerate distribution at point y^* and a non-degenerate distribution G, assuming $x_i = z_i$

For any parametric non-degenerate distribution, the information matrix is defined as,

$$\mathcal{I}(\theta, \alpha) = \left(\begin{array}{cc} \mathcal{I}_{\theta\theta}(\theta, \alpha) & \mathcal{I}_{\theta\alpha}(\theta, \alpha) \\ \mathcal{I}_{\alpha\theta}(\theta, \alpha) & \mathcal{I}_{\alpha\alpha}(\theta, \alpha) \end{array}\right)$$

where, $\mathcal{I}_{\theta\theta}(\theta, \alpha) = -E[\partial^2 \ell(\theta, \alpha)/\partial\theta \partial\theta']$, $\mathcal{I}_{\theta\alpha}(\theta, \alpha) = -E[\partial^2 \ell(\theta, \alpha)/\partial\theta \partial\alpha'] = \mathcal{I}'_{\alpha\theta}(\theta, \alpha)$, $\mathcal{I}_{\alpha\alpha}(\theta, \alpha) = -E[\partial^2 \ell(\theta, \alpha)/\partial\alpha \partial\alpha']$. The calculation of these expectations is often tedious for any general parametric non-degenerate distribution. So we restrict our calculations to the observed information matrix. For this, we shall use the following notations, $\dot{\pi}_{i,\alpha} =$ $\partial \pi_i/\partial \alpha, \dot{\pi}_{i,\theta} = \partial \pi_i/\partial \theta, \ddot{\pi}_{i,\alpha\alpha} = \partial^2 \pi_i/\partial\alpha \partial\alpha', \ddot{\pi}_{i,\theta\alpha} = \partial^2 \pi_i/\partial\theta \partial\alpha', \ddot{\pi}_{i,\theta\theta} = \partial^2 \pi_i/\partial\theta \partial\theta', \tilde{b}_{i,\theta} =$ $\frac{g_i(y_i)}{1-g_i(y^*)}, \dot{\tilde{b}}_{i,\theta} = \partial \tilde{b}_{i,\theta}/\partial\theta, \ddot{\tilde{b}}_{i,\theta\theta} = \partial^2 \tilde{b}_{i,\theta}/\partial\theta \partial\theta'$. By using these notations, the second-order derivatives of log-likelihood function are then given by,

$$\begin{aligned} \frac{\partial^2 \ell(\theta, \alpha)}{\partial \theta \partial \theta'} &= \sum_{i=1}^n \bigg\{ \delta(y_i) \frac{\pi_i \ddot{\pi}_{i,\theta\theta} - \dot{\pi}_{i,\theta} \dot{\pi}'_{i,\theta}}{\pi_i^2} + (1 - \delta(y_i)) \frac{-\ddot{\pi}_{i,\theta\theta} (1 - \pi_i) - \dot{\pi}_{i,\theta} \dot{\pi}'_{i,\theta}}{(1 - \pi_i)^2} \\ &+ (1 - \delta(y_i)) \frac{\tilde{b}_{i,\theta} \ddot{\tilde{b}}_{i,\theta} - \dot{\tilde{b}}_{i,\theta} \dot{\tilde{b}}'_{i,\theta}}{\tilde{b}^2_{i,\theta}} \bigg\}, \end{aligned}$$

$$\frac{\partial^2 \ell(\theta, \alpha)}{\partial \theta \partial \alpha'} = \sum_{i=1}^n \left\{ \delta(y_i) \frac{\pi_i \ddot{\pi}_{i,\theta\alpha} - \dot{\pi}_{i,\theta} \dot{\pi}'_{i,\alpha}}{\pi_i^2} + (1 - \delta(y_i)) \frac{-\ddot{\pi}_{i,\theta\alpha} (1 - \pi_i) - \dot{\pi}_{i,\theta} \dot{\pi}'_{i,\alpha}}{(1 - \pi_i)^2} \right\},$$
$$\frac{\partial^2 \ell(\theta, \alpha)}{\partial \alpha \partial \alpha'} = \sum_{i=1}^n \left\{ \delta(y_i) \frac{\pi_i \ddot{\pi}_{i,\alpha\alpha} - \dot{\pi}_{i,\alpha} \dot{\pi}'_{i,\alpha}}{\pi_i^2} + (1 - \delta(y_i)) \frac{-\ddot{\pi}_{i,\alpha\alpha} (1 - \pi_i) - \dot{\pi}_{i,\alpha} \dot{\pi}'_{i,\alpha}}{(1 - \pi_i)^2} \right\}.$$

Web Appendix C: Calculation of $\mathcal{I}(\hat{\theta}, 0)$ when G is a Poisson model and $y^* = 0$

If the non-degenerate distribution is a Poisson process, we have $g_i(0) = \exp\{-\mu_i\}$ where $\mu_i = \exp\{x'_i\beta\} = \exp\{x'_i\theta\}$, with $\theta = \beta$. A natural parameterization for π_i is given by $\pi_i = \exp\{-\exp\{z'_i\gamma\}\}$. Assuming $x_i = z_i$, estimates of entries of the information matrix are given by,

$$\begin{split} \mathcal{I}_{\theta\theta}(\hat{\theta}, \mathbf{0}) &= \boldsymbol{x}' \text{diag} \bigg\{ \hat{\mu}_i (2 \exp\{-\hat{\mu}_i\} - 1) \bigg\}_{i=1}^n \boldsymbol{x} \\ \mathcal{I}_{\theta\alpha}(\hat{\theta}, \mathbf{0}) &= \boldsymbol{x}' \text{diag} \bigg\{ -\frac{\hat{\mu}_i^2 \exp\{-\hat{\mu}_i\}}{1 - \exp\{-\hat{\mu}_i\}} \bigg\}_{i=1}^n \boldsymbol{x}, \\ \mathcal{I}_{\alpha\alpha}(\hat{\theta}, \mathbf{0}) &= \boldsymbol{x}' \text{diag} \bigg\{ \frac{\hat{\mu}_i^2 \exp\{-\hat{\mu}_i\}}{1 - \exp\{-\hat{\mu}_i\}} \bigg\}_{i=1}^n \boldsymbol{x}, \end{split}$$

where $\boldsymbol{x} = (x'_1, x'_2, \dots, x'_n)'$ and $\hat{\mu}_i = \exp\{x'_i\hat{\theta}\}$ with $\hat{\theta}$ being the maximum likelihood estimator of θ^* under H_0 . In these expressions, diag $\{a_i\}_{i=1}^n$ represents a diagonal matrix of order n with $a_i, i = 1, \dots, n$ being the entries on the diagonal.

Web Appendix D: Calculation of $\mathcal{I}(\hat{\theta}, 0)$ when G is a binomial model and $y^* = 0$

If the non-degenerate distribution is a Binomial distribution with number of trials m_i and success probability μ_i , then we have $\mu_i = 1/(1 + \exp\{-x'_i\beta\}) = 1/(1 + \exp\{-x'_i\theta\})$, with $\theta = \beta$. A natural parameterization for π_i is given by $\pi_i = \{1 + \exp\{z'_i\gamma\}\}^{-m_i}$. Assuming $x_i = z_i$, estimates of entries of the information matrix are given by,

$$\begin{split} \mathcal{I}_{\theta\theta}(\hat{\theta}, \mathbf{0}) &= \boldsymbol{x}' \text{diag} \bigg\{ \frac{m_i (1 - \hat{\mu}_i)^{m_i + 2} (\hat{\mu}_i^2 (1 - \hat{\mu}_i)^{-2} - 1)}{1 - (1 - \hat{\mu}_i)^{m_i}} + m_i \hat{\mu}_i (1 - \hat{\mu}_i) \bigg\}_{i=1}^n \boldsymbol{x} \\ \mathcal{I}_{\theta\alpha}(\hat{\theta}, \mathbf{0}) &= \boldsymbol{x}' \text{diag} \bigg\{ -\frac{m_i^2 \hat{\mu}_i^2 (1 - \hat{\mu}_i)^{m_i}}{1 - (1 - \hat{\mu}_i)^{m_i}} \bigg\}_{i=1}^n \boldsymbol{x}, \\ \mathcal{I}_{\alpha\alpha}(\hat{\theta}, \mathbf{0}) &= \boldsymbol{x}' \text{diag} \bigg\{ \frac{m_i^2 \hat{\mu}_i^2 (1 - \hat{\mu}_i)^{m_i}}{1 - (1 - \hat{\mu}_i)^{m_i}} \bigg\}_{i=1}^n \boldsymbol{x}, \end{split}$$

where $\boldsymbol{x} = (x'_1, x'_2, \dots, x'_n)'$ and $\hat{\mu}_i = 1/(1 + \exp\{-x'_i\hat{\theta}\})$, with $\hat{\theta}$ being the maximum likelihood estimator for θ^* under H_0 .

Web Appendix E: Components \hat{u}_{α} of the score test statistic for commonly used G distributions

For Poisson and binomial non degenerate distributions with $\theta = \beta$, the components \hat{u}_{α} of the score test statistic when $y^* = 0$ are respectively given by, $\hat{u}_{\alpha} = \sum_{i=1}^{n} \left\{ x_i \hat{\mu}_i \left(\frac{\delta(y_i) - \exp\{-\hat{\mu}_i\}}{1 - \exp\{-\hat{\mu}_i\}} \right) \right\}$ and $\hat{u}_{\alpha} = \sum_{i=1}^{n} \left\{ x_i m_i \hat{\mu}_i \left(\frac{\delta(y_i) - (1 - \hat{\mu}_i)^{m_i}}{1 - (1 - \hat{\mu}_i)^{m_i}} \right) \right\}$. In these expressions, $\hat{\mu}_i$ takes values $\exp\{x'_i \hat{\theta}\}$ and $\{1 + \exp\{-x'_i \hat{\theta}\}\}^{-1}$ for the Poisson and binomial non degenerate distributions, respectively.

Web Appendix F: Additional simulation results when covariates x_i and z_i are not equal Further simulation studies were conducted to compare the three tests when covariates x_i and z_i are not equal. We specifically considered the situation where x_i is a subset of z_i . Specifically, we take $x_i = (1, x_{1i})'$ and $z_i = (1, x_{1i}, x_{2i})'$, where $x_{1i} \sim \text{Uniform}(0, 1)$ and $x_{2i} \sim \text{Uniform}(-2, 2)$.

We then performed the proposed covariate-adjusted score test assuming the working mixing weight model $\omega_i = \{\pi_i - \exp\{-\mu_i\}\}\{1 - \exp\{-\mu_i\}\}^{-1}$ under the alternative, where $\pi_i = \exp\{-\exp\{\gamma_0 + \gamma_1 x_{1i} + \gamma_2 x_{2i}\}\}$ and $\mu_i = \exp\{\beta_0 + \beta_1 x_{1i}\}$. The test of van den Broek (1995) was performed assuming $\omega_i = \gamma_0$, and that of Jansakul and Hinde (2009), assuming $\omega_i = \gamma_0 + \gamma_1 x_{1i} + \gamma_2 x_{2i}$. With these parameterizations, the null hypotheses to be evaluated were then given by: $H_0 : \gamma_0 = \beta_0, \gamma_1 = \beta_1, \gamma_2 = 0$, for our formulation; $H_0 : \gamma_0 = 0$, for van den Broek's test; and $H_0 : \gamma_0 = 0, \gamma_1 = 0, \gamma_2 = 0$, for Jansakul and Hinde's test. The maximum likelihood estimate $\hat{\beta}$ of the true value of $\beta = (\beta_0, \beta_1)'$ under the null was obtained from a homogeneous Poisson model with mean $\mu_i = \exp\{\beta_0 + \beta_1 x_{1i}\}$. Results of these studies are given in Table 5. Findings from these studies are similar to those that assume $x_i = z_i$.

Table 5

Empirical power of score test statistics to detect various forms ω_i^* of heterogeneity coupled with a non-degenerate Poisson model with mean $\mu_i^* = \exp\{\beta_0^* - 1.45x_{1i}\}, x_{1i} \sim Uniform(0, 1), at 5\%$ significance level

		10	0 ()	,	0 0				
	n=50			n=100			n=200		
eta_0^*	-0.75	0	0.75	-0.75	0	0.75	-0.75	0	0.75
$\omega_i^* = 0.35 + 0.1x_{1i} - 0.15x_{2i}$									
vdB test	0.071	0.145	0.520	0.122	0.266	0.845	0.184	0.534	0.992
J&H test	0.105	0.202	0.594	0.193	0.413	0.925	0.333	0.755	0.998
Prop. c-a test	0.103	0.204	0.605	0.199	0.426	0.918	0.333	0.761	0.998
$\omega_i^* = \frac{\exp\{-15+30x_{1i}-5x_{2i}\}}{1+\exp\{-15+30x_{1i}-5x_{2i}\}}$									
vdB test	0.043	0.064	0.109	0.044	0.082	0.153	0.058	0.105	0.216
J&H test	0.122	0.177	0.377	0.179	0.331	0.628	0.275	0.542	0.864
Prop. c-a test	0.134	0.237	0.643	0.210	0.455	0.911	0.338	0.769	0.996
$\omega_i^* = \Phi(-15 + 30x_{1i} + 5x_{2i})$									
vdB test	0.055	0.064	0.100	0.040	0.062	0.126	0.058	0.118	0.237
J&H test	0.105	0.194	0.364	0.165	0.316	0.587	0.295	0.557	0.878
Prop. c-a test	0.115	0.257	0.636	0.189	0.444	0.913	0.354	0.769	0.998

Note: $x_{2i} \sim \text{Uniform}(-2, 2)$.

vdB: van den Broek, test with df=1. J&H: Jansakul & Hinde, test with df=3. Prop. c-a: Proposed covariate-adjusted, test with df=3.