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Web Appendix A: Proof of the Proposition

i) Proof of the first statement:

Note that µi = h−1(x′
iβ) and under the null πi = g̃(µi), which by substitution gives

πi = g̃(h−1(x′
iβ)) for all i. Thus, a natural function f(.) relating πi to linear predictor z′iγ

is defined such that f = g̃ ◦ h−1, in which case πi = g̃ ◦ h−1(z′iγ), where ◦ represents the

composite function operator.

ii) Proof of the second statement:

To show that the second statement of the proposition is true, we first consider the situation

where g̃(.) as a function of µi is invertible. Therefore, the composition g̃ ◦ h−1 is invertible

and the null hypothesis g̃ ◦ h−1(z′iγ) = g̃ ◦ h−1(x′
iβ), for all i, then reduces to the simple

form x′
iβ = z′iγ for all i. This ultimately reduces to a linear contrast of parameters β

and γ. In particular, when xi = zi, for all i, the null hypothesis is given by H0 : β = γ.

Now we assume that g̃(.) is not invertible. If xi = zi, for all i, the identifiability of the non-

degenerate distribution G requires that β = γ under the null. When xi ̸= zi, for some i, the

identifiability condition of the non-degenerate distribution G ensures that the null reduces to

a linear contrast that involves only the parameters β and γ under the null.

Web Appendix B: Calculation of the information matrix I(θ, α) for a mixture of a
degenerate distribution at point y∗ and a non-degenerate distribution G, assuming xi =
zi

For any parametric non-degenerate distribution, the information matrix is defined as,

I(θ, α) =
(

Iθθ(θ, α) Iθα(θ, α)
Iαθ(θ, α) Iαα(θ, α)

)
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where, Iθθ(θ, α) = −E[∂2ℓ(θ, α)/∂θ∂θ′], Iθα(θ, α) = −E[∂2ℓ(θ, α)/∂θ∂α′] = I ′
αθ(θ, α),

Iαα(θ, α) = −E[∂2ℓ(θ, α)/∂α∂α′]. The calculation of these expectations is often tedious

for any general parametric non-degenerate distribution. So we restrict our calculations to

the observed information matrix. For this, we shall use the following notations, π̇i,α =

∂πi/∂α, π̇i,θ = ∂πi/∂θ, π̈i,αα = ∂2πi/∂α∂α
′, π̈i,θα = ∂2πi/∂θ∂α

′, π̈i,θθ = ∂2πi/∂θ∂θ
′, b̃i,θ =

gi(yi)
1−gi(y∗)

, ˙̃bi,θ = ∂b̃i,θ/∂θ,
¨̃bi,θθ = ∂2b̃i,θ/∂θ∂θ

′. By using these notations, the second-order

derivatives of log-likelihood function are then given by,

∂2ℓ(θ, α)

∂θ∂θ′
=

n∑
i=1

{
δ(yi)

πiπ̈i,θθ − π̇i,θπ̇
′
i,θ

π2
i

+ (1− δ(yi))
−π̈i,θθ(1− πi)− π̇i,θπ̇

′
i,θ

(1− πi)2

+ (1− δ(yi))
b̃i,θ

¨̃bi,θ − ˙̃bi,θ
˙̃b′i,θ

b̃2i,θ

}
,

∂2ℓ(θ, α)

∂θ∂α′ =
n∑

i=1

{
δ(yi)

πiπ̈i,θα − π̇i,θπ̇
′
i,α

π2
i

+ (1− δ(yi))
−π̈i,θα(1− πi)− π̇i,θπ̇

′
i,α

(1− πi)2

}
,

∂2ℓ(θ, α)

∂α∂α′ =
n∑

i=1

{
δ(yi)

πiπ̈i,αα − π̇i,απ̇
′
i,α

π2
i

+ (1− δ(yi))
−π̈i,αα(1− πi)− π̇i,απ̇

′
i,α

(1− πi)2

}
.

Web Appendix C: Calculation of I(θ̂, 0) when G is a Poisson model and y∗ = 0

If the non-degenerate distribution is a Poisson process, we have gi(0) = exp{−µi} where

µi = exp{x′
iβ} = exp{x′

iθ}, with θ = β. A natural parameterization for πi is given by

πi = exp{− exp{z′iγ}}. Assuming xi = zi, estimates of entries of the information matrix

are given by,

Iθθ(θ̂,0) = x′diag
{
µ̂i(2 exp{−µ̂i} − 1)

}n

i=1

x,

Iθα(θ̂,0) = x′diag
{
− µ̂2

i exp{−µ̂i}
1− exp{−µ̂i}

}n

i=1

x,

Iαα(θ̂,0) = x′diag
{

µ̂2
i exp{−µ̂i}

1− exp{−µ̂i}

}n

i=1

x,
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where x = (x′
1, x

′
2, · · · , x′

n)
′ and µ̂i = exp{x′

iθ̂} with θ̂ being the maximum likelihood

estimator of θ∗ under H0. In these expressions, diag{ai}ni=1 represents a diagonal matrix of

order n with ai, i = 1, · · · , n being the entries on the diagonal.

Web Appendix D: Calculation of I(θ̂, 0) when G is a binomial model and y∗ = 0

If the non-degenerate distribution is a Binomial distribution with number of trials mi and

success probability µi, then we have µi = 1/(1 + exp{−x′
iβ}) = 1/(1 + exp{−x′

iθ}), with

θ = β. A natural parameterization for πi is given by πi = {1 + exp{z′iγ}}−mi . Assuming

xi = zi, estimates of entries of the information matrix are given by,

Iθθ(θ̂,0) = x′diag
{
mi(1− µ̂i)

mi+2(µ̂2
i (1− µ̂i)

−2 − 1)

1− (1− µ̂i)mi
+miµ̂i(1− µ̂i)

}n

i=1

x

Iθα(θ̂,0) = x′diag
{
−m2

i µ̂
2
i (1− µ̂i)

mi

1− (1− µ̂i)mi

}n

i=1

x,

Iαα(θ̂,0) = x′diag
{
m2

i µ̂
2
i (1− µ̂i)

mi

1− (1− µ̂i)mi

}n

i=1

x,

where x = (x′
1, x

′
2, · · · , x′

n)
′ and µ̂i = 1/(1 + exp{−x′

iθ̂}), with θ̂ being the maximum

likelihood estimator for θ∗ under H0.

Web Appendix E: Components ûα of the score test statistic for commonly used G dis-
tributions

For Poisson and binomial non degenerate distributions with θ = β, the components ûα of the

score test statistic when y∗ = 0 are respectively given by, ûα =
∑n

i=1

{
xiµ̂i

(
δ(yi)−exp{−µ̂i}
1−exp{−µ̂i}

)}
and ûα =

∑n
i=1

{
ximiµ̂i

(
δ(yi)−(1−µ̂i)

mi

1−(1−µ̂i)mi

)}
. In these expressions, µ̂i takes values exp{x′

iθ̂}

and {1 + exp{−x′
iθ̂}}−1 for the Poisson and binomial non degenerate distributions, respec-

tively.
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Web Appendix F: Additional simulation results when covariates xi and zi are not equal

Further simulation studies were conducted to compare the three tests when covariates xi

and zi are not equal. We specifically considered the situation where xi is a subset of zi.

Specifically, we take xi = (1, x1i)
′ and zi = (1, x1i, x2i)

′, where x1i ∼ Uniform(0, 1) and

x2i ∼ Uniform(−2, 2).

We then performed the proposed covariate-adjusted score test assuming the working mix-

ing weight model ωi = {πi − exp{−µi}}{1 − exp{−µi}}−1 under the alternative, where

πi = exp{− exp{γ0+γ1x1i+γ2x2i}} and µi = exp{β0+β1x1i}. The test of van den Broek

(1995) was performed assuming ωi = γ0, and that of Jansakul and Hinde (2009), assuming

ωi = γ0 + γ1x1i + γ2x2i. With these parameterizations, the null hypotheses to be evaluated

were then given by: H0 : γ0 = β0, γ1 = β1, γ2 = 0, for our formulation; H0 : γ0 = 0,

for van den Broek’s test; and H0 : γ0 = 0, γ1 = 0, γ2 = 0, for Jansakul and Hinde’s test.

The maximum likelihood estimate β̂ of the true value of β = (β0, β1)
′ under the null was

obtained from a homogeneous Poisson model with mean µi = exp{β0 + β1x1i}. Results

of these studies are given in Table 5. Findings from these studies are similar to those that

assume xi = zi.
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Table 5
Empirical power of score test statistics to detect various forms ω∗

i of heterogeneity coupled
with a non-degenerate Poisson model with mean µ∗

i = exp{β∗
0 − 1.45x1i},

x1i ∼ Uniform(0, 1), at 5% significance level

n=50 n=100 n=200
β∗
0 -0.75 0 0.75 -0.75 0 0.75 -0.75 0 0.75

ω∗
i = 0.35 + 0.1x1i − 0.15x2i

vdB test 0.071 0.145 0.520 0.122 0.266 0.845 0.184 0.534 0.992
J&H test 0.105 0.202 0.594 0.193 0.413 0.925 0.333 0.755 0.998

Prop. c-a test 0.103 0.204 0.605 0.199 0.426 0.918 0.333 0.761 0.998

ω∗
i = exp{−15+30x1i−5x2i}

1+exp{−15+30x1i−5x2i}

vdB test 0.043 0.064 0.109 0.044 0.082 0.153 0.058 0.105 0.216
J&H test 0.122 0.177 0.377 0.179 0.331 0.628 0.275 0.542 0.864

Prop. c-a test 0.134 0.237 0.643 0.210 0.455 0.911 0.338 0.769 0.996

ω∗
i = Φ(−15 + 30x1i + 5x2i)

vdB test 0.055 0.064 0.100 0.040 0.062 0.126 0.058 0.118 0.237
J&H test 0.105 0.194 0.364 0.165 0.316 0.587 0.295 0.557 0.878

Prop. c-a test 0.115 0.257 0.636 0.189 0.444 0.913 0.354 0.769 0.998

Note: x2i ∼ Uniform(−2, 2).
vdB: van den Broek, test with df=1. J&H: Jansakul & Hinde, test with df=3.
Prop. c-a: Proposed covariate-adjusted, test with df=3.
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