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Web Appendix A: Proof of the Proposition
1) Proof of the first statement:

Note that y; = h~'(2}3) and under the null 7; = g(u;), which by substitution gives
m; = g(h'(«}B)) for all 7. Thus, a natural function f(.) relating 7; to linear predictor z/y
is defined such that f = g o h™!, in which case 7; = § o h™!(2}7), where o represents the
composite function operator.

ii) Proof of the second statement:

To show that the second statement of the proposition is true, we first consider the situation
where §(.) as a function of y; is invertible. Therefore, the composition g o h~! is invertible
and the null hypothesis g o h=!(zlv) = go h™'(z}3), for all 7, then reduces to the simple
form x;8 = z/v forall 4. This ultimately reduces to a linear contrast of parameters
and . In particular, when x; = z;, for all ¢, the null hypothesis is given by Hy : 8 = .
Now we assume that §(.) is not invertible. If z; = z;, for all 7, the identifiability of the non-
degenerate distribution GG requires that 5 = - under the null. When z; # z;, for some 7, the
identifiability condition of the non-degenerate distribution G ensures that the null reduces to

a linear contrast that involves only the parameters 5 and v under the null.

Web Appendix B: Calculation of the information matrix Z(0, «) for a mixture of a
degenerate distribution at point y* and a non-degenerate distribution GG, assuming z; =
Zq

For any parametric non-degenerate distribution, the information matrix is defined as,
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where, Zyo (0, a) = —E[0%0(0, ) /0000"], Lo (0, ) = —E[0*((0, ) /000'] = T 4(0, ),

Toa(0,0) = —E[0%0(0, ) /0da’]. The calculation of these expectations is often tedious
for any general parametric non-degenerate distribution. So we restrict our calculations to
the observed information matrix. For this, we shall use the following notations, 7; , =
Omi )0, o9 = Om; )00, i e = 0°m; /0D | Toi go = 0% /000, 7 g9 = O*m; /0000, b; 0=
T flg(f?y)*),~ 0 = (%Z 0/00, bZ 06 = 82()Z 0/0000'. By using these notations, the second-order

derivatives of log-likelihood function are then given by,
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Web Appendix C: Calculation of 7 (é ,0) when G is a Poisson model and y* = 0

If the non-degenerate distribution is a Poisson process, we have g;(0) = exp{—u,;} where
w; = exp{zif} = exp{z.0}, with § = . A natural parameterization for 7; is given by
m; = exp{—exp{z/v}}. Assuming x; = z;, estimates of entries of the information matrix

are given by,

Ty (6,0) = a:’diag{ﬂi(Q exp{—/ii} — 1)} x,
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where © = (2,2, ,a.) and [i; = exp{«/0} with  being the maximum likelihood
estimator of 6* under Hy. In these expressions, diag{a;}!" , represents a diagonal matrix of

order n with a;,7 = 1, --- | n being the entries on the diagonal.

Web Appendix D: Calculation of 7 (é ,0) when G is a binomial model and y* = 0

If the non-degenerate distribution is a Binomial distribution with number of trials m,; and
success probability 1;, then we have p; = 1/(1 + exp{—=x.5}) = 1/(1 + exp{—z,0}), with
¢ = (5. A natural parameterization for 7; is given by m; = {1 + exp{z}y}} ™. Assuming
x; = z;, estimates of entries of the information matrix are given by,
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where = (2, 2),---,2) and fi; = 1/(1+ exp{—x}d}), with § being the maximum

likelihood estimator for 8* under H,.

Web Appendix E: Components ,, of the score test statistic for commonly used G dis-
tributions

For Poisson and binomial non degenerate distributions with § = 3, the components 1,, of the

score test statistic when y* = 0 are respectively given by, G, = > ., {xz f; (%) }

and 4, = >, {ximiﬂi (%) } In these expressions, ji; takes values exp{x;é}

and {1 + exp{—=/0}} ! for the Poisson and binomial non degenerate distributions, respec-

tively.



Web Appendix F: Additional simulation results when covariates r; and z; are not equal
Further simulation studies were conducted to compare the three tests when covariates x;
and z; are not equal. We specifically considered the situation where x; is a subset of z;.
Specifically, we take x; = (1,21;) and z; = (1, xy;, x9)', where z1; ~ Uniform(0, 1) and
Zo; ~ Uniform(—2, 2).

We then performed the proposed covariate-adjusted score test assuming the working mix-
ing weight model w; = {m; — exp{—p;} }{1 — exp{—pu;}} ' under the alternative, where
m; = exp{—exp{~o + 7121 + Yoxe; } } and p; = exp{ Py + 121 }. The test of van den Broek
(1995) was performed assuming w; = 7y, and that of Jansakul and Hinde (2009), assuming
w; = Yo + V1T1; + Y22, With these parameterizations, the null hypotheses to be evaluated
were then given by: Hy : 79 = By, 71 = B1,72 = 0, for our formulation; Hy : 79 = 0,
for van den Broek’s test; and Hy : 79 = 0,71 = 0,7, = 0, for Jansakul and Hinde’s test.
The maximum likelihood estimate B of the true value of 8 = (39, $1)’ under the null was
obtained from a homogeneous Poisson model with mean p; = exp{fy + S1x1;}. Results
of these studies are given in Table 5. Findings from these studies are similar to those that

assume r; = z;.



Table 5
Empirical power of score test statistics to detect various forms w; of heterogeneity coupled
with a non-degenerate Poisson model with mean i} = exp{5§ — 1.45x1;},
x1; ~ Uniform(0, 1), at 5% significance level

n=50 n=100 n=200
B -0.75 0 0.75 -0.75 0 0.75 -0.75 0 0.75
w; = 0.35+0.1z1; — 0.1529;
vdB test 0.071 0.145 0.520 0.122 0.266 0.845 0.184 0.534 0.992
J&H test 0.105 0.202 0.594 0.193 0413 0.925 0.333 0.755 0.998
Prop. c-a test 0.103 0.204 0.605 0.199 0426 00918 0.333 0.761 0.998

* exp{715+30x1175x2i}
w; = 1+exp{—15+30z1;—5x2; }

vdB test 0.043 0.064 0.109 0.044 0.082 0.153 0.058 0.105 0.216
J&H test 0.122 0.177 0.377 0.179 0.331 0.628 0.275 0.542 0.864
Prop. c-a test 0.134 0.237 0.643 0.210 0455 0911 0.338 0.769 0.996

wf = ®(—15+ 30x1; + bxo;)
vdB test 0.055 0.064 0.100 0.040 0.062 0.126 0.058 0.118 0.237
J&H test 0.105 0.194 0.364 0.165 0.316 0.587 0.295 0.557 0.878
Prop. c-a test 0.115 0.257 0.636 0.189 0.444 0913 0.354 0.769 0.998
Note: x9; ~ Uniform(—2, 2).
vdB: van den Broek, test with df=1. J&H: Jansakul & Hinde, test with df=3.
Prop. c-a: Proposed covariate-adjusted, test with df=3.




