Supporting Information

Jüschke et al. 10.1073/pnas.1314984111

SI Materials and Methods

Determination of the Best-Fitting Plane from a Set of Points Using Orthogonal Distance Regression. The orthogonal distance D_i from the point $(x_b \ y_b \ z_i)$ to the plane ax + by + cz + d = 0 is given by

$$D_i = \frac{ax_i + by_i + cz_i + d}{\sqrt{a^2 + b^2 + c^2}}.$$

For a given set of n points we want to find a plane such that we minimize the square of the orthogonal distances. Hence, the function to be minimized is

$$f(a,b,c,d) = \sum_{i=1}^{n} D_i = \sum_{i=1}^{n} \frac{(ax_i + by_i + cz_i + d)^2}{a^2 + b^2 + c^2}.$$
 [S1]

Setting the partial derivative $\frac{\partial f}{\partial d} = 0$, we can solve for *d*:

$$\frac{\partial f}{\partial d} = 2\sum_{i=1}^{n} \frac{ax_i + by_i + cz_i + d}{a^2 + b^2 + c^2} = 0$$
$$\sum_{i=1}^{n} ax_i + by_i + cz_i + d = 0$$
$$d = -(a\overline{x} + a\overline{y} + a\overline{z}),$$

where $(\bar{x}, \bar{y}, \bar{z})$ is the centroid of the data. Substituting d into Eq. S1, we get

$$f(a,b,c) = \sum_{i=1}^{n} \frac{\left(a(x_i - \bar{x}) + b(y_i - \bar{y}) + c(z_i - \bar{z})\right)^2}{a^2 + b^2 + c^2}.$$
 [S2]

By defining v and M

$$\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} x_1 - \overline{x} & y_1 - \overline{y} & z_1 - \overline{z} \\ x_2 - \overline{x} & y_2 - \overline{y} & z_2 - \overline{z} \\ \vdots & \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} & z_n - \overline{z} \end{pmatrix}$$

we can express Eq. S2 as

$$f(\mathbf{v}) = \frac{\left(\mathbf{v}^T \mathbf{M}^T\right) (\mathbf{M} \mathbf{v})}{\mathbf{v}^T \mathbf{v}} = \frac{\mathbf{v}^T \left(\mathbf{M}^T \mathbf{M}\right) \mathbf{v}}{\mathbf{v}^T \mathbf{v}}.$$

1. R Core Team (2012) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna).

With $\mathbf{A} = \mathbf{M}^T \mathbf{M}$, $f(\mathbf{v})$ has the form of a Rayleigh quotient. It is minimized by the eigenvector of **A** that corresponds to its smallest eigenvalue. The eigenvalues of **A** are the squares of the singular values of **M**, and the eigenvectors of **A** are the singular vectors of **M**. In summary, the best-fitting plane passes through the centroid of the data $(\bar{x}, \bar{y}, \bar{z})$, and its normal vector **n** is the singular vector of **M** corresponding to its smallest singular value. We use the function svd() implemented in the R programming language (1) to compute the singular-value decomposition of **M** and determine the normal vector **n** of the plane.

Determination of the Surface Area on a Cube. We consider a cube with its center at the origin and an edge length of 2 (Fig. 3*A*). The equatorial distance (i.e., inclination angle $\alpha = 0^{\circ}$) from the center of the cube to a point on its surface is $d = \sqrt{1 + x^2}$ with $|x| \le 1$. For $|\alpha| \le \arctan \frac{1}{\sqrt{2}}$, the angle α is intersecting the cube surface at $h = d \cdot \tan \alpha$. Hence, the surface area A_{ψ} between the angles $-\psi$ and ψ (with $0^{\circ} \le \psi \le \arctan \frac{1}{\sqrt{2}}$) is

$$A_{\psi} = 16 \tan \psi \cdot \int_{0}^{1} \sqrt{1 + x^{2}} dx = 16 \tan \psi \cdot \frac{1}{2} \left[x \sqrt{1 + x^{2}} + \operatorname{arcsinhx} \right]_{0}^{1}$$
$$= 8 \left(\sqrt{2} + \operatorname{arcsinh1} \right) \tan \psi.$$

Considering angles $\psi \ge \arctan \frac{1}{\sqrt{2}}$ as well, the surface area A_{ψ} is

$$A_{\psi} = \begin{cases} 8\left(\sqrt{2} + \arcsin 1\right)\tan\psi, & \text{if } \psi \le \arctan \frac{1}{\sqrt{2}} \approx 35^{\circ} \\ g(\psi), & \text{if } \arctan \frac{1}{\sqrt{2}} \le \psi \le 45^{\circ}. \\ 24 - 2\pi\cot^{2}\psi, & \text{if } \psi \ge 45^{\circ} \end{cases}$$

We do not determine $g(\psi)$ because we can calculate the probabilities for angles in the range $35^{\circ} < \psi < 45^{\circ}$ using the probabilities outside this range. The fraction f_{ψ} of the area within $-\psi$ and $\psi (A_{\psi})$ to the total surface area of the cube $(A_{90^{\circ}} = 24)$ is

$$f_{\psi} = \begin{cases} \frac{1}{3} \left(\sqrt{2} + \arcsin 1 \right) \tan \psi, & \text{if } \psi \le \arctan \frac{1}{\sqrt{2}} \approx 35^{\circ} \\ \frac{1}{24} g(\psi), & \text{if } \arctan \frac{1}{\sqrt{2}} \le \psi \le 45^{\circ} \\ 1 - \frac{1}{12} \pi \cot^2 \psi, & \text{if } \psi \ge 45^{\circ} \end{cases}$$

 Xie Y, Jüschke C, Esk C, Hirotsune S, Knoblich JA (2013) The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. *Neuron* 79(2):254–265.

Fig. S1. Protein phosphatase 4 catalytic subunit (PP4c) is required for horizontal spindle orientation. Cumulative distributions of spindle orientation angles determined from mitotic radial glial cells after in utero electroporation with short hairpin (sh) constructs. (*A*) sh-Scrambled control. (*B*) Knock-down of PP4c by sh-PP4c leads to spindle randomization. (*C*) Coexpression of sh-PP4c with a PP4c rescue construct partially restores spindle orientation. (*D*) Coexpression of sh-PP4c with a nonphosphorylatable Ndel1 construct rescues horizontal spindle orientation. The blue line indicates the random distribution; the 95% confidence interval is shaded in pink. Data were obtained from ref. 2.

Term	Horizontal		Oblique		Vertical	
Range $\psi_1 - \psi_2$	0°–30°		30°–60°		60°–90°	
Probability <i>P.</i> %	44.2		47.1		8.7	
Range $\psi_1 - \psi_2$	0°–15°	15°–30°	30°–45°	45°–60°	60°–75°	75°–90°
Probability <i>P</i> , %	20.5	23.7	29.6	17.5	6.8	1.9

Table S1.	Probabilities for random spindle orientation angles in
a 3D cube	

Table S2.	Probabilities for random spindle orientation angles in
a 2D circle	

Term	Horizontal Oblique		ique	Vertical		
Range $\psi_1 - \psi_2$	0°–30°		30°–60°		60°–90°	
Probability P, %	33.3		33.3		33.3	
Range $\psi_1 - \psi_2$	0°–15°	15°–30°	30°–45°	45°–60°	60°–75°	75°–90°
Probability P, %	16.7	16.7	16.7	16.7	16.7	16.7

Other Supporting Information Files

PNAS PNAS