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S| Materials and Methods

Determination of the Best-Fitting Plane from a Set of Points Using
Orthogonal Distance Regression. The orthogonal distance D; from
the point (x; y; z;) to the plane ax + by + cz + d = 0 is given by

_axj+byi+czi+d
Va2 +b2+¢2
For a given set of n points we want to find a plane such that we

minimize the square of the orthogonal distances. Hence, the
function to be minimized is

D;

i (ax; +by; +cz; +d)*

a2 +b2+c? [S1]
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Setting the partial derivative i 0, we can solve for d:

of S ax; +by; +czi+d
_=2 =
ad Z a’+b?+c?

n

ax; +by;+czi+d=0
i=1

d= —(ax+ay+az),

where (x,y,Z) is the centroid of the data. Substituting d into
Eq. S1, we get

fla,b,c)= i (a(xi —X)+b@yi—y) +c(zi _2))2.

[S2]

= a?+b?+c?
By defining v and M
a X1 —-X V1 —y Z]-Z
v= b 7 M= X :—X yz—y 22:—2
c C_ C_ _
Xp—=X Y=y zp—2Z

we can express Eq. S2 as

fv)= (vIM") (M) _ vl (MTM)V.
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1. R Core Team (2012) R: A Language and Environment for Statistical Computing
(R Foundation for Statistical Computing, Vienna).

Juschke et al. www.pnas.org/cgi/content/short/1314984111

With A=M”M, f(v) has the form of a Rayleigh quotient. It
is minimized by the eigenvector of A that corresponds to its
smallest eigenvalue. The eigenvalues of A are the squares of
the singular values of M, and the eigenvectors of A are the
singular vectors of M. In summary, the best-fitting plane passes
through the centroid of the data (¥,y,Z), and its normal vector
n is the singular vector of M corresponding to its smallest
singular value. We use the function svd() implemented in the
R programming language (1) to compute the singular-value
decomposition of M and determine the normal vector n of
the plane.

Determination of the Surface Area on a Cube. We consider a cube
with its center at the origin and an edge length of 2 (Fig. 34). The
equatorial distance (i.e., inclination angle @ = 0°) from the center
of the cube to a point on its surface is d =+/1 +x2 with [x| < 1.
For |a| <arctan %, the angle « is intersecting the cube surface at
h=d-tana. Hence, the surface area 4, between the angles —y
and y (with 0° <y <arctan %) is

A, =16tany - [}VI+22dx  =16tany -} x\/1+7+arcsinhx};

=8 (ﬂ + arcsinhl) tany.

Considering angles y > arctan % as well, the surface area 4,, is

. ) 1 o
8 (\/§ + arcsmhl) tany, if w<arctan ﬁ ~ 35

1
if arctan—— <y <45°.
if N id

24 — 27 cot? yr, if w>45°

We do not determine g(y) because we can calculate the proba-
bilities for angles in the range 35° < y < 45° using the probabil-
ities outside this range. The fraction f,, of the area within —y and
v (A4,,) to the total surface area of the cube (4gp- = 24) is

% (\/Q + arcsinhl) tany, if w<arctan \/LE ~35°
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2. Xie Y, Juschke C, Esk C, Hirotsune S, Knoblich JA (2013) The phosphatase PP4c controls
spindle orientation to maintain proliferative symmetric divisions in the developing
neocortex. Neuron 79(2):254-265.

10f3


www.pnas.org/cgi/content/short/1314984111

L T
>

100 100
80— 80—
& 60 < 60
f f
] 9
~ | 20— — A=0 20—
A =1.27
0- DKS=0-152 0-.
[ I I I I I | [ I I I I I |
0O 15 30 45 60 75 90 0O 15 30 45 60 75 90

angle a (degree) angle a (degree)

100 100
80 80
& 60- & 60-
c c
Ke] Qo
8 40 8 40
20 — A=0 20
A, =0.66
0- DKS =0.108 0-
T T T T T T 1 T T T T T T 1
0 15 30 45 60 75 90 0 15 30 45 60 75 90
angle a (degree) angle a (degree)

Fig. S1. Protein phosphatase 4 catalytic subunit (PP4c) is required for horizontal spindle orientation. Cumulative distributions of spindle orientation angles
determined from mitotic radial glial cells after in utero electroporation with short hairpin (sh) constructs. (A) sh-Scrambled control. (B) Knock-down of PP4c by
sh-PP4c leads to spindle randomization. (C) Coexpression of sh-PP4c with a PP4c rescue construct partially restores spindle orientation. (D) Coexpression of
sh-PP4c with a nonphosphorylatable Ndel1 construct rescues horizontal spindle orientation. The blue line indicates the random distribution; the 95% confi-
dence interval is shaded in pink. Data were obtained from ref. 2.

Table S1. Probabilities for random spindle orientation angles in

a 3D cube

Term Horizontal Oblique Vertical
Range y -y, 0°-30° 30°-60° 60°-90°
Probability P, % 44.2 471 8.7
Range y -y 0°-15° 15°-30° 30°-45° 45°-60° 60°-75° 75°-90°
Probability P, %  20.5 23.7 29.6 17.5 6.8 1.9

Table S2. Probabilities for random spindle orientation angles in

a 2D circle

Term Horizontal Oblique Vertical
Range y -y 0°-30° 30°-60° 60°-90°
Probability P, % 333 333 333

Range y -y 0°-15° 15°-30° 30°-45° 45°-60° 60°-75° 75°-90°
Probability P, % 16.7 16.7 16.7 16.7 16.7 16.7
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