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Figure 1: Summary of workflows used in HTSstation
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1 GenRep: a genome data repository

The problem of maintaining a consistent set of genome sequences and annotations, and managing
updates is as old as bioinformatics itself. While major institutions like NCBI and EBI are making
this effort and remain primary sources of data, we needed a system to mirror a relevant selection
of genomic data from these resources and relate them consistently. Our goal was to generate and
maintain a consistent file hierarchy on our computing servers as required to run our programs.
This hierarchy includes:

• Whole genome and exome fasta files,

• Bowtie indexes,

• Genome features (GTF files from Ensembl, converted to SQLite databases),

• Pre-computed genome statistics (nucleotide frequencies, chromosome sizes, etc.)

• Additional genomic data associated with genome sequences (repeat-masking data, etc.),

• Additional functional data associated with species (PWMs for transcription factor motifs).

A web-based interface (Ruby on Rails) is used to manage the mirroring of selected species
and assemblies, and to generate the file hierarchy (http://bbcftools.epfl.ch/genrep/).
A Python library and a REST API are provided to access information from the database and to
extract complete paths for each file (e.g. to construct a Bowtie command), or to make specific
queries (find genes, features or sequences at specific positions in the genome, retrieve genome
statistics, convert between chromosome identifiers and names, etc.).
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2 Bein: a workflow execution environment

2.1 Motivation

When a data analysis exceeds the capacity of a spreadsheet, bioinformaticians typically turn to
the Unix shell. They proceed by trying commands interactively, and copying those that succeed
into a script. Eventually each logical step becomes an independent script which reads data from
a file, performs some analysis, and writes its results to another file. The whole analysis proceeds
by running script A on file X to produce file Y, script B on file Y to produce file Z, etc.

This way of working is comfortable and flexible, but has several serious drawbacks. For exam-
ple, to perform identical analyses on several sets of data, the scientist runs his scripts in order on
each data set to produce a set of output files. With one or two data sets, it is simple to keep track
of which file came from which data set; with more data sets, the process becomes increasingly
cumbersome.

Furthermore, the same operation often appears in several analyses, but the script implementing
it in one analysis can rarely be used unchanged in another. Modifications are typically needed in
the script’s input and output rather than in the actual computations it performs, yet the code for
the operation cannot easily be shared and re-used.

We identified the need for a tool to handle the many pipelines implemented (and upcoming) in
HTSstation, that would be more structured than the shell but less constrained than large pipeline
management frameworks (Giardine et al., 2005, Blankenberg et al., 2007, Rowe et al., 2003), sized
for pipelines of small complexity and small number of iterations. This is how we implemented
Bein, which provides an environment for data analysis more efficient than the Unix shell, but
similar in spirit.

Bein’s core logic is less than 500 lines long. It is well documented, and we have endeavored to
make it easy to learn and install.

2.2 Implementation

Bein is implemented in Python which permits the same interactive exploration as the Unix shell,
but improves code readability and maintenance. Logical units of analysis become functions instead
of separate scripts, so that it is not necessary to create code to read data and write results.

Python functions are much easier to write and work with than Bash scripts, but bioinformatics
relies on preexisting scripts and programs outside Python. Bein provides a framework to wrap
them as Python functions with a minimum of code. Using an external program requires four
things: a known environment in which to run it, appropriate arguments to run it with, a way
to interpret its results, and a way to clean up afterwards. Bein makes the first and last steps
unnecessary by isolating each analysis in a unique environment (see Figure 2), so we only need to
provide a list of arguments, and a function that extracts and returns a value from the program’s
output.

Data analysis in Bein is organized into “executions,” which are sequences of operations applied
to a single data set. Bein runs each execution in a clean, predictable environment by creating
an empty directory in which all the operations of the execution are performed, and deleting the
directory upon exiting the execution (see Figure 2).

Unless stored somewhere, the products of the execution are then erased. Rather than copy
the result files to another directory, because running the same analysis a second time would
create a jumble of files as happens with the Unix shell, Bein provides simple repositories, called
MiniLIMS, which track files and executions. Each execution is associated with a MiniLIMS. When
the execution finishes, it writes all errors and outputs of external programs it ran, and any results
that should be preserved to its associated MiniLIMS, which assigns the execution a unique, integer
identifier.

All together, these three components – external program bindings, executions, and MiniLIMS
repositories – make the code of an analysis compact and easy to read. For example the code in
the center of Figure 2 connects to a MiniLIMS named data, fetches a fasta file with identifier
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Figure 2: An execution handled by Bein

12 (files are also assigned unique, integer identifiers when added to a MiniLIMS), runs Blast on
this file and adds Blast’s output to the MiniLIMS. A precious additional feature of Bein is the
ability to run external programs in parallel, either locally or by dispatching across a cluster (via
submission to the LSF queuing system).
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3 Demultiplexing

Our demultiplexing module (see Figure 1) separates multiplexed samples based on the presence
of barcodes in the reads and applies a cleaning step to filter reads based on the presence of some
specific sequences defined in a primers file. Most sequencing instruments now include their own
demultiplexing procedure, therefore this module is mostly used for multiplex 4C-seq experiments.

The separation of samples involves identifying and removing the different bait-specific forward
primer sequences at the 5’-end of the sequences. It is based on a global alignment algorithm
(Exonerate (Slater and Birney, 2005)), called with the following options: –model affine:local -o -4 -e
-12 -s minScore. This generates a local alignment with affine gaps, similar to the Smith-Waterman-
Gotoh algorithm. The parameters are set with a sufficient stringency to balance between correct
classification and falsely discarding reads (see (Slater and Birney, 2005) for more details). By
default, they were tuned for a 22nt alignment with up to 2 non-consecutive mismatches or gaps
(-s 77 ). In addition, and in order to maximize the accuracy of the results, alignments can be
restricted to the first bases of each read (options -x and -n, defined in the parameter file).

This process returns reads stripped of the barcode and optionally cut at the 3’ (low-quality)
end, and sorted in one file per primer. Finally, and when appropriate, those reads are also filtered
for any sequences specified in the primer file by using Bowtie (Langmead et al., 2009).
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4 Mapping

The mapping module (see Figure 1) is using Bowtie (Langmead et al., 2009) with the following
options -Sam 20 –best –strata –chunkmbs 512 and output is converted to BAM format (Li et al.,
2009).

During the process of conversion, we optionally remove duplicated reads according to the
following rule: at most n reads per strand-specific genomic position will be kept, where n is
computed as the 95% percentile of a Poisson distribution with mean equal to the expected genome
coverage multiplied by an enrichment factor of 50.

We also add an NH flag to each BAM record to indicate the number of alternative alignments
found for the same read (e.g. if read R has 5 different positions on the genome, the BAM record
will contain the flag NH:i:5 ).

Then read alignments are converted to genome-wide densities using a custom C program
Bam2wig. This will provide genomic position-specific reads counts normalized by total number of
reads (in units of 10 millions), where each of the NH alternative mappings is counted as 1/NH .
Reads are extended to a user-specified length (by default the read length of the sequencing run)
and either two strand-specific densities are generated, or a single merged density with the option
of shifting each strand-specific density by S bases downstream before taking their average. In
ChIP-seq applications, S should be chosen equal to half the difference between average sequencing
fragment length et read extension.
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5 ChIP-seq: peak deconvolution algorithm

The complete ChIP-seq workflow is depicted in Figure 1. We detail below the specific deconvolution
algorithm which is used to evaluate the shape of peaks and eliminate false positives as well as
increase the spatial resolution of the peaks.

High-throughput sequencing generates 5′-tags from libraries of double-stranded DNA frag-
ments. In a ChIP-seq experiment, these ≈ 200 − 400 bp fragments are produced by sonicating
cross-linked genomic DNA, then immuno-precipitating with an antibody specific to a protein of
interest before reversing the cross-links. The 5′-tags are then mapped back to the genome produc-
ing two separate counts distributions P+

tag(k) (on the forward strand) and P−tag(k) (on the reverse

strand). The P+
tag distribution is expected to display peaks upstream of the actual binding sites,

generated by the 5′ ends of all fragments overlapping a binding site, and similarly the peaks of
P−tag will be located on the other side of the binding sites (upstream on the reverse strand).

5.1 Fragment length distribution

We assume that every position in a chromosome of length L is equally likely to break and that
the chromosome is fragmented into Lq pieces (of average length 1/q). If all breaking events are
independent, then the length distribution is geometric with parameter q:

P(0)

len(λ) = q(1− q)λ−1 .

To reduce the number of parameters and avoid the complication of boundary effects, we set L = ∞.
The experimental protocols typically include selecting only fragments with length in a specified

range [µ, ν]. In the remainder of the discussion, we set ν = ∞ since this is an exponentially small
perturbation. However, only fragments of size λ ≥ µ can be observed. The effective length
distribution is therefore

Plen(λ) =

{
0 if λ < µ ,

q(1− q)λ−µ if λ ≥ µ .

5.2 Strand-specific reads distribution

We write the two count distributions as convolutions with a fixed kernel M (see Figure 3):

P±tag(n) =
∑

k>n−`

M
(
±(k − n)

)
Pbind(k) . (5.1)

The fraction of transcription factors bound at position k in the genome is Pbind(k) and we
compute the probability P−base(b) that a sonication fragment overlapping k breaks at b ≥ k,
thereby producing a count at position b on the negative strand. Such a fragment can start at any
position a ≤ k having length λ = b− a + 1. The probability of such an fragment is therefore:

P−base(b) = C−1
∑
k≤b

∑
a≤k

Plen(b− a + 1)Pbind(k)

=
∑
k≤b

K(b− k)Pbind(k) ,

where

K(n) = C−1

{
1 if 0 ≤ n < µ ,

(1− q)n−µ if n ≥ µ ,

and C is a normalization constant to ensure
∑

nK(n) = 1.
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Figure 3: The distributions P+
tag (blue) and P−tag (red) generated by a constant binding distribu-

tion P (k) (black) in [400, 450] with parameters µ = 80, q = 1/150, and ` = 36. The green curve
is the geometric average of the two strand-specific distributions.

If we now take into account that tags have a length ` < µ/2 (typically ` = 50bp) and therefore
cover ` positions downstream of the break point, the distribution is affected as follows:

P+
tag(n) = C−1

n∑
a=n−`+1

P+

base(a)

=
∑

k>n−`

M(k − n)Pbind(k) , (5.2)

with

M(n) = C−1


(` + n)q if 1− ` ≤ n < 0 ,

`q if 0 ≤ n ≤ µ− ` ,

q(µ− n) + 1− (1− q)n+`−µ if µ− ` < n < µ ,

(1− q)n−µ(1− (1− q)`) if n ≥ µ .

We next propose an algorithm for de-convoluting Eq. 5.2 for both strands simultaneously,
meaning we solve the following matrix equation for Pbind(

P+
tag

P−tag

)
=
(
MT

M

)
· Pbind ,

with the constraints ∑
k

Pbind(k) = 1 , and Pbind(k) ≥ 0 ∀k .

Here we represented the convolution kernel as a matrix Mij = M(i− j). We solve this problem
by searching for the vector Pbind which minimizes the error

E2
0 (Pbind;µ, q, `) =

∥∥∥P+
tag −MT Pbind

∥∥∥2

+
∥∥∥P−tag −MPbind

∥∥∥2

.
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We use quadratic programming (Goldfarb and Idnani, 1983) to find such a minimizer satisfying
the constraints. This is applied within each enriched region detected a priori by MACS (Zhang
et al., 2008). The error E2

0 provides a confidence estimate for the peak and the spread of the
distribution Pbind gives an improved estimate of the binding location.
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6 RNA-seq: transcript-level expression estimation

RNA-seq reads are generated from transcribed sequences, and there are several possible options
for how to relate them to a known genome sequence (Pepke et al., 2009). We assume a pre-existing
annotation of the genome: a set of exon coordinates on the genome, a set of transcripts joining
one or several exons, and a set of genes generating one or several transcripts. The set of exon
sequences is called the exome (a subset of the genome), and the set of full transcript sequences is
called the transcriptome (not a subset of the genome).

Our RNA-seq module takes as input BAM files (see Figure 1) containing the alignment of
reads on the genome (or the exome). It counts the number of reads mapped to each exon, and
calculates the RPKM score (Reads per Kilobase per Million) ratios defined as follows:

RPKM =
number of reads on the exon

10−3exon length× 10−6number of reads in the experiment
.

The RPKM of a gene is a straightforward weighted average of the RPKM of its exons. The
RPKM of a transcript is harder to calculate. Since an exon can be used to build several different
transcripts, it is not clear to which transcript one should attribute a read mapping on that exon. A
first possibility consists in attributing a count of 1/k to each of the k alternative transcripts. This
way one can correctly compute the RPKM of a gene by summing the scores of all its transcripts,
but the scores of the transcripts themselves are likely to be wrong. We instead use a mathematical
approach of inferring transcripts expression from exons RPKM, by optimizing the distribution of
the reads among transcripts.

At the end of the pipeline, scores are normalized between samples using the method of DESeq’s
“size factors” (Anders and Huber, 2010). We then look for differential expression of genomes
between samples using DESeq (on raw read counts).

6.1 Gene expression

Gene G contains n exons E1,. . . ,En, and let e1,. . . ,en be the respective exons RPKM. Let `k be
the length of exon k, and L the length of G. Then the RPKM g of G is given by

g =
1
L

n∑
k=1

ek · `k

6.2 Isoform expression

Gene G contains n exons E1,. . . ,En, and can generate up to m ≤
∑n

k=1

(
n
k

)
= 2n − 1 alternative

transcripts T1,. . . ,Tm. Call e1,. . . ,en the (measured) exons RPKM, and t1,. . . ,tm the (unknown)
transcripts RPKM.

For each transcript Ti, define ti as its RPKM, the indicator function Iik = 1 if transcript Ti

contains exon Ek, 0 otherwise, and ek as the RPKM of exon Ek. Obviously, ek =
∑

i Iikti; in
matrix form: e1

...
en

 =

I11 · · · Im1

...
...

I1n · · · Imn


 t1

...
tm

 .

Next define Li the length of Ti and `k the length of Ek. We may add the constraint that the
total number of reads in a gene is the same if counted from exons or from transcripts, meaning∑

k ek · `k =
∑

i ti · Li.
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The linear system then becomes

E =


e1

...
en∑n

j=1 ej · `j

 =


I11 I21 · · · Im1

...
...

I1n I2n · · · Imn

L1 L2 · · · Lm

 ·

 t1
...

tm


= M · T .

The matrix M will not be invertible and n is typically greater than m (overdetermined system),
so we look for a least-square minimizer

min
T
||E −MT ||22 .

Moreover, we search a non-negative solution T using a Python equivalent of Matlab’s lsqnonneg
function1, itself inspired by an algorithm of Lawson and Hanson (Lawson and Hanson, 1974), p.161.
This algorithm finds a positive local minimizer T in about m/2 iterations for a typical dataset.

6.2.1 Normalization

One usually wants to compare samples from different experimental conditions g1, . . . , gl each con-
taining several replicates. A typical output of the RNA-seq module is a matrix D of the form

g1.1 g1.2 g1.3 g2.1 g2.2 g2.3 g3.1 g3.2 g3.3
feature 1 178 138 83 1935 53 120 263 928 492
feature 2 159 142 112 504 442 528 577 156 1244
feature 3 59 19 166 58 1130 826 103 463 852
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each numeric column is a different sample, labeled by condition and replicate number. Each
line represents a different feature (gene, exon, or transcript).

We use a Python implementation of DESeq’s “size factors” (Anders and Huber, 2010) to
normalize our samples. The idea is to compare each of our samples to an artificial reference. The
transformation applied is the following:

• Compute the geometric mean of each line of D, which gives an n−vector.

• Divide each column of D by this mean vector, and store the result in a new matrix, say M .

• Calculate the median of each column of M , which gives an m−vector. Its components are
called “size factors”, and represent the average variation of each sample from their mean.

• Divide each line of D by the vector of size factors.

6.2.2 Splice junctions

Reads spanning splice junction are “lost” during the mapping on exons. Using data from (Rowe
et al., 2010), we had 26% of unaligned reads on the genome, 45% of which mapped to the tran-
scriptome, meaning that there were about 12% of reads from splicing sites. Moreover, about half
of the remaining (6% of total reads) mapped somewhere else in the genome. Bowtie can save reads
that did not map to the genome into a separate fastq file. We map then on the transcriptome
attributing each read spanning a splice junction a score of 1/2 to exons on each side of the junction.

1http://diffusion-mri.googlecode.com/svn/trunk/Python/lsqnonneg.py
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7 4C-seq

The Circular Chromosome Conformation Capture and sequencing (4C-seq) is derived from an ear-
lier technique that used hybridization to microarrays (Simonis et al., 2006). It aims at identifying
long-range 3-dimensional interaction partners along the genome by mapping physical interactions
between pre-selected bait loci and the rest of the genome.

The analysis pipeline implemented in HTSstation is based on the method used in the study
(Noordermeer et al., 2011), and described in (Gheldof et al., 2012) (see Figure 1). It goes through
several steps to transform a list of raw reads into a genome-wide pattern of interaction partners:

• (Virtual) Library Preparation: For each reference genome, a list of all potential re-
striction fragments is compiled by searching all occurrences of the first and second enzyme
recognition sites (cutters). A restriction fragment is delimited by two consecutive occur-
rences of the first cutter. A valid fragment contains at least one occurrence of the second
cutter at a sufficient distance from the first cutter. For species available in Repbase (mouse,
human and drosophila), we quantify the overlap with repeats of each fragment edge using
BEDtools and possibly mask them (see (Gheldof et al., 2012) for more information about
the rationale of this library).

Primary restriction site 
(NlaIII)

Second restriction site 
(DpnII)

Valid 
segment

Repeats 
segment

Valid fragment Valid fragment 
(with one repeat 

segment)

Excluded fragment 
(DpnII too close)

Excluded fragment 
(No DpnII)

Excluded fragment 
(Repeats)

Valid fragment 
(with one "bad" segment: 

DpnII too close)

Figure 4: Different configurations of the restriction fragments

• Counts per restriction fragments: As sequencing reads are generated from either sides
of every fragment, reads mapping to each end are counted (from either strand without PCR
duplicates correction). Scores obtained at the two fragment ends are summed to assign a
single value per fragment. If one side of the fragment intersects a repetitive region, this
value is ignored and the other side is doubled. If both sides intersect repeats, the fragment
is removed. The final value is normalized to the total of all fragment values. Finally, only
valid fragments are reported.

• Data smoothing: Fragment scores are smoothed with a moving average calculated as
follows (for fragment fi in a window of size 2n + 1):

s(fi) =
1

2n + 1

i+n∑
k=i−n

s0(fk) .

• 4C profile analysis: Typical 4C-seq profiles show very high fragment scores in the close
neighbourhood of the viewpoint (the local saturated domain, see (Noordermeer et al., 2011)).
As this effect is mainly due to genomic proximity with the viewpoint and therefore does not
constitute meaningful long range interactions, we have included an option to compensate this
local effect by fitting a power-law model (see (Lieberman-Aiden et al., 2009)). Corrected
scores are obtained as follows: let the s(f) and d(f) be the score and distance to the bait
for fragment f . The distance is measured from the middle of the fragment to the middle of
the bait region. We bin fragments on a logarithmic scale:

dbin(f) = 2round
(
log2 d(f)

)
.
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Within each bin we compute the average score:

sbin(f) = mean
{

s(g) : dbin(f) = dbin(g)
}

.

The corrected score s′(f) is the ratio of the actual score to a fit by a power law of exponent
−1:

s′(f) =
s(f) · d(f)

d(f) + exp
(
〈log sbin(f)〉+ 〈log dbin(f)〉

) .

We take into account potential asymmetries by treating up- and downstream profiles inde-
pendently.

As mentioned in (Gheldof et al., 2012), a 4C-seq data analysis seeks clusters of over-represented
restriction fragments, rather than isolated high-frequency fragments. To identify such clusters, we
implemented an approach based on (de Wit et al., 2008). This method combines the notion of
domainograms with a partitioning algorithm to infer the optimal discrete domains of enrichment.
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8 SNP analysis

Analysis of polymorphisms is a post-processing of genome alignments and takes BAM files as input
(see Figure 1). The SAMtools pileup functionality (Li et al., 2009) is used to summarize variants
(single base differences between reads and the genome at the aligned positions) which are then
processed with a Python script to filter out SNPs with read coverage below Tcover and proportion
of reads confirming a SNP below Tsnp. The following default values are used depending on genome
ploidy:

• Tcover: 10/allele,

• Tsnp: 80% of an allele, at least 5 reads.

The output file contains a table listing all positions with a SNP detected in at least one of the
processed samples, and the status of each sample at these positions.

The final step of this module consists in annotating SNPs. We provide SNP localization (exon,
intron, intergenic) and in case of localization within a coding sequence we evaluate if the mutation
is synonymous or non-synonymous.
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