Supporting Information

Direct Probing of Solvent Accessibility and Mobility at the Binding Interface of Polymerase (Dpo4)-DNA Complex

Yangzhong Qin,^{§,1} Yi Yang,^{§,1} Luyuan Zhang,¹ Jason D. Fowler,² Weihong Qiu,¹ Lijuan Wang,¹ Zucai Suo,² and Dongping Zhong^{*,1}

¹Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210 ²Department of Chemistry and Biochemistry, Programs of Biophysics and Biochemistry, The Ohio State University, Columbus, OH 43210

Data Analysis

All the fluorescence transients can be fitted by a multi-exponential decay function. The apo protein transients can be fitted by three solvation components and two lifetime components. The DNA transients can be fitted by a triple-exponential decay function. The transients of the complex consist of contributions from both protein and DNA. Therefore, we build a general fitting model for the complex signal:

$$S_{complex} = \left(\sum_{i=1}^{3} a_i e^{-\frac{t}{\tau_i}}\right)_{solvation} + \left(\sum_{i=4}^{5} a_i e^{-\frac{t}{\tau_i}}\right)_{lifetime} + \varepsilon \times \left(\sum_{j=1}^{3} a_j e^{-\frac{t}{\tau_j}}\right)_{DNA}$$
[S1]

The lifetime τ_4 and τ_5 can be directly determined by the time correlated single photon counting (TCSPC) measurements. ε is a parameter to account for the DNA contribution to the overall complex signal. The accurate DNA signal in the complex can be obtained from our control mutant of Y312W or the wild-type complex (no tryptophan) and thus a_j and τ_i are precisely determined.

Y312W, a control mutant, contains a tryptophan which does not interact with the DNA in the complex and hence, the solvation does not change from the apo to the complex state. Therefore, we measured the fluorescence transients of Y312W in the apo and complex states, then subtracted the apo-protein contribution from the complex signal and thus obtained the DNA signal in the complex form. Meanwhile, we also measured the fluorescence transients of DNA in a buffer solution. We observed that the DNA signal does not change from the buffer condition to the complex environment (see Figure S1), indicating no changes of DNA base-pair structures and related hydration. For Dpo4, we can also determine the DNA signal in the complex directly from the wild-type Dpo4-DNA complex because the wild-type Dpo4 contains no single tryptophan. All these methods to determine the DNA signal in the complex state also meet the requirement that the integration ratio of protein and DNA decay transients should match the ratio of their steady-state emissions at a given wavelength.

Figure S1. Fluorescence transients of DNA at two typical wavelengths of 310 nm (left) and 370 nm (right). The transients measured from DNA in buffer solution (black) and reproduced from the control of Y312W (red) overlap very well. This clearly indicates that DNA in buffer solution has the similar dynamics as in the Dpo4 complex. The scatter points and lines are the experimental data and best exponential fit, respectively.

Figure S2. Normalized fluorescence transients of the Y12W ternary complex at several typical gated wavelengths in the short (left) and long (right) time ranges. The circles are the experimental data and the solid lines are the best exponential fits.

Figure S3. Normalized fluorescence transients of the mutant Y312W in the apo state (left two) and the binary complex (right two) at several typical gated wavelengths on the short and long time scales. The circles and lines are the experimental data and best exponential fits, respectively. The transients of the Y312W ternary complex are extremely similar to those of the binary complex and thus are not shown here.

Figure S4. Normalized fluorescence transients of the mutant S244W in the apo state (left two) and the binary complex (right two) at several typical gated wavelengths in the short and long time ranges. The circles and lines are the experimental data and best exponential fits, respectively. The transients of the ternary complex are extremely similar to those of the binary complex and therefore are not shown here.

Figure S5. Anisotropy dynamics of S244W in the apo state. The inset shows the experimental parallel and perpendicular fluorescence transients. The scatter points are the experiment data and the solid lines are the best exponential fits.

	Y312W				S244W			Y12W		
	Аро	Binary	Ternary	Аро	Binary	Ternary	_	Аро	Binary	Ternary
λ _{ss} (nm)	339.1	339.7	339.7	342.	2 342	342		341.1	341.3	341.1
\mathbf{A}_{1}	0.342	0.332	0.331	0.40	9 0.094	0.089		0.393	0.234	0.166
A ₂	0.360	0.367	0.369	0.30	9 0.458	0.448		0.333	0.412	0.416
A_3	0.298	0.301	0.300	0.28	2 0.448	0.463		0.274	0.354	0.418
$ au_1$ (ps)	0.35	0.34	0.36	0.37	7 0.86	0.83		0.43	0.62	0.91
$ au_2$ (ps)	3.4	3.5	3.6	4.8	6.1	6.2		5.2	7.4	8.3
τ ₃ (ps)	52	54	52	111	136	135		120	140	140
$E_1(cm^{-1})$	362	370	374	539	119	112		534	277	196
$E_2 (cm^{-1})$	381	409	416	407	579	564		453	488	491
$E_{3}(cm^{-1})$	315	336	339	372	567	582		372	419	494
E (cm ⁻¹)	1058	1115	1129	1318	8 1265	1258		1359	1184	1181
S1 (cm-1/ps)	1034	1089	1038	145	7 138	135		1242	447	215
S_2 (cm ⁻¹ /ps)	112	117	116	85	95	91		87	66	59
S3 (cm-1/ps)	6.1	6.2	6.5	3.3	4.2	4.3		3.1	3.0	3.5
$ au_{ m w}$ (ps)	42	45	43	99	158	165		114	139	133
θ (degree)	11.2	12.0	11.4	11.5	5 6.3	8.6		13.1	10.2	10.3
ω (degree/ps)	0.267	0.267	0.265	0.11	6 0.040	0.052		0.115	0.073	0.077

 Table S1. All the fitting results and the corresponding characteristic quantities.