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In this material, we provide details and derivations for the Hidden Expression Factor (HEFT)
analysis model that combines a multivariate ridge regression and factor analysis to simultaneously
correct for the hidden factors in expression Quantitative Trait Loci (eQTL) analysis (S.1). We
also present detailed methods for the simulation and lung SAE data analyses described in the
main text (S.2), as well as additional figures and discussion of results for these analyses (S.3).
For the theory work, we show that the ridge penalty for the multivariate regression component
of the model is not just imposed blindly, but instead arises naturally as a necessary component
for the model to work. We note that for the derivations, we assume that we are working with a
factor model where the factors are correlated, but since assuming uncorrelated factors has little
influence on the results (Rubin and Thayer, 1982), we only implemented the uncorrelated version.
We also note that the algorithm for the sole purpose of factor analysis, without including the
multivariate regression, has been presented by Rubin (Rubin and Thayer, 1982).

S.1 The model and inference

S.1.1 The HEFT model

As described in the main text, our full eQTL model with hidden structures for a single genotype
with m expression variables and sample of size n can be written as

Y =pl, + X8+ AF+W (S.1.1.1)

where Y is an n X m matrix of measured expression variables, 1y, is vector of 1s of length m, u
is an n x 1 vector of row means, X is a n X 2 matrix with the first column set to 1 and second
column set to the genotype, (8 is the 2 x m matrix of column means and genotypic effects, A and
F are the n x p loading matrix and p x m matrix of values for p factors, and W is the the n x m
error matrix, where we make the standard assumption that covariance among samples can be
well modeled by non-error terms such that each column of matrix W has a normal distribution
W; ~ N(0, ¥;) with diagonal n x n matrix ¥;. To avoid the potential problems caused by biased
estimates of unconstrained error variances, we assume that expression variables have been scaled
to a common variance and we constrain each of the ¥ to be Io?2.

Generally, when estimating the fixed effect 8 with confounding in a linear mixed model frame-
work, the hidden factors are integrated out (Fusi et al., 2012; Listgarten et al., 2010). That
is, assuming F ~ N(0,X) with covariance matrix ¥, an incomplete likelihood written in the
following form can be used to obtain the Maximum Likelihood Estimator (MLE).
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(S.1.1.2)
where H =Y — p1.,. In the linear mixed model context (Kang et al., 2008), a covariance matrix
Ro?2, which is equivalent to AXAT is used to capture the covariance structure of the hidden



factor, where R is a pre-fixed similarity matrix obtained in advance, and the MLE of 3 is obtained
in the following form

B=XTRo?+¥)" X)) 1XT(Ro? + ) 'H (S.1.1.3)

This linear mixed model approach helps correct the spurious associations caused by non-orthogonal
structure (structures that create effects that are non-orthogonal to the genotypic effects), how-
ever, at a price of reducing power because the approach pools the error term and the covariance
structure of the hidden factor instead of partitioning them.

We approach the problem from the factor analysis angle by explicitly modeling the hidden
factors with the goal of partitioning factor variance from the error term, while simultaneously
estimating the fixed effect. We accomplish this by placing a ridge penalty ||E7 3|/ on the fixed
effects 8 and by considering the complete log likelihood, which takes the following form
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Next, we lay out the necessary pieces of the EM algorithm based on this likelihood.

S.1.2 The Expectation-Maximization algorithm
S.1.2.1 The Expectation step

In the expectation step, we transform the incomplete likelihood in equation S.1.1.2 to the com-
plete likelihood in equation S.1.1.4. This transformation is made possible by noticing that the
hidden factor F can be substituted by its expected value conditional on Y. To get the E(F|Y),

we note that the joint distribution of F and Y, the latter in terms of H=Y — pul,,, can be
written as
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from which the conditional variance of F can be written as

V(FY) =% - SATASAT + &) 1AXT (S.1.2.2)
and the conditional expected value of F takes the the following form

E(F]Y) = ZAT(AZAT + ©)"1(H - Xp) (S.1.2.3)

Notice that in the two equations above, the inversion of (AXAT + W)~ has computation com-
plexity of n3, where n is the sample size. We can simplify the computations by converting the
complexity from n> to p?, where p is the number of factors by using the Woodbury matrix
identity

ABT(BABT +R)"! = (A"' + BTR'B)"'BTR! (S.1.2.4)

and after some algebra, we get

VEY) =2 (T '+ ATT A TATEIAST (S.1.2.5)



EFY) = (Z '+ ATO A AT 1 (H - Xp) (S.1.2.6)
Importantly, for the special case with ¥ = I, we have
VFY) = I+AT® A (S.1.2.7)

E(FY)= I+ AT® A ATT 1 (H - X)) (S.1.2.8)
which is the form of a ridge estimator. Thus, the E(F|Y) incorporates the same penalty that is
imposed on the fixed effects, a result that arises naturally in the form of the expectation. We
discuss the importance of this critical result in the next section.

S.1.2.2 The Maximization step

Finding the Maximum Likelihood Estimator (MLE) for the parameters 8, A, ¥, and p involves
taking the first derivative of the likelihood shown in equation S.1.1.4 with respect to each pa-
rameter, setting to 0 and solving the equation. We provide the derivation of 8 and the rest of
the parameters follow using the same approach.

The log-likelihood of the ridge model can be written as:
le. = —log|¥|—tr((H—-AF — X3)(H - AF - X3)T¥ 1) - tr(ETp3TE) (S.1.2.9)
we take the derivative of . with respect to 3, which gives

al.
p

set to 0 and solve for 3, which gives

= —2XTUYH- AF) +2XT¥ X3 + 2EE"3 (S.1.2.10)

B=XTe X + =2=2T)"1XT@¥ 1(H - AF) (S.1.2.11)

Note that if we assume 8 ~ N (0, ®) and treat AF as an observed variable, then the distribution
of B and Y can be written as

( a > ~N (( AF ) ( A X@(;%Tw )> (5.1.2.12)

Then using the property of the joint normal distribution

E(3]Y) OXT(XeXT +¥) '(H - AF)

(XTe X + @ H 'XTET1(H - AF) (S.1.2.13)

comparing equation S.1.2.13 to equation S.1.2.11, we see that if we set @1 = ZET, the two
equations take the same form, such that assuming a prior of 8 ~ N(0,®) is equivalent to im-
posing a ridge penalty. Thus, from the result above, both E(F|Y) and E(3|Y) take the form of
a ridge estimator.

Recognizing that E(F|Y) of the random effect is a shrinkage parameter of the same form as
E(8]Y) (an L2 norm) is the key to making HEFT work. It suggests that to correct for hidden
factors that are correlated with the fixed covariate X, a penalty has to be imposed on 8. Oth-
erwise, the shrinkage property of the random effect will push the non-orthogonal hidden factor
away towards 3, which would defeat the purpose of including AF to correct for the false positives.



This also suggests that by controlling the variance term of the prior, we can effectively control
how much shrinkage we can impose on these parameters. To prevent over-shrinkage of either the
3 or factors, here, we used the same amount of shrinkage for 8 and F by applying @ ! =T and
3 =1, respectively.

The MLE for the rest of the parameters can be derived similarly using the same principle,
where A takes the following form

A =Y(EF|Y)T(EFFT|Y))? (S.1.2.14)

where E(FFT[Y) = E(F|Y)E(F[Y)T + mVar(F|Y), and for ¥ the MLE is
¥ = _diag((H — X5)(H - X5)™ ~ AB(F|Y)(H - X5)") (S.1.2.15)

We note that the diagonal matrix ¥ acts as a weight for each sample, which can be used to
produce more accurate parameter estimates when they are drawn from distributions with het-
erogenous variance. However, if improperly learned, these variances can lead to an ill-conditioned
system. To avoid this, we further restraint ¥ = Io2. To get ¥, we simply set each element to
the average of all elements across the diagonal.

Finally, the global mean p is simply set to
R
i=— Z;(Y,» - X3) (S.1.2.16)

S.1.2.3 Unifying the fixed effects and the factor effects

Now that we know the expected value of the factor effects takes the same form as the penalized
fixed effects, we can unify the ridge regression model and the factor model into a combined

B

framework by making the following substitutions. Letting © = [XA] and T' = [ F

], we can

simplify the model as )
Y=pl, +QI'+W (S.1.2.17)

Notice that this treatment transforms the model into a simple factor analysis model, which has
the same form of maximum likelihood estimator for €2 as for A, except that the first few columns
of Q are fixed covariates, and the rest of the columns are for the hidden factors. We can use the
same type of EM algorithm for the factor analysis model for inference of the parameters, with
the iteration steps listed below.

1. Initialize parameter values

2. Find p by using equation S.1.2.16

3. Set H=Y — ul),

4. Var(D|Y)p1 = (I+ QF 10~
5. E(T|Y)¢y1 = Var(T|Y)e 1 QF ¥, 'H

6. Set the corresponding row of E(T'|Y) to 8



7. Keep the fixed effects and the known covariates in the €2 matrix fixed, update the rest
using the following formula Q1 = HE(T|Y)FE(TTT|Y); !

8. St41 = 2 (HHT — Q¢ 1 E(T'Y)¢1HT)

g @t _ tx(S)

10. Iterate until convergence

The initial values of the parameters are randomly chosen, but special care was taken to guard
against ill conditioned values. Specifically, all 5’s were initialized to be 0, A were randomly gen-
erated from N(0,I), and ¥ were set to 0.5 across the diagonal. The convergence of the algorithm
can be diagnosed by checking whether the update of the likelihood or parameters approach a
specified tolerance threshold. We prefer checking the tolerance of the likelihood, which can be
calculated as in equation S.1.1.4.

From these steps, we note that the EM algorithm has time complexity scaling maz(O(p?®), O(nmp))
by noting that for the E step, the bottleneck is in the inversion step (I + QT ¥, 10, )~1, which
scales as O(p?), and for the maximization step, the most expensive component is
HE(T|Y)FE(TTT[Y); !, where the scaling of the matrix multiplication component is O(nmp).
We also note that when the factor number p is small, the contribution of the matrix inversion is
minimal.

S.1.3 Convexity of the objective function

We next show that the objective function for our model is strictly convex, such that the EM
algorithm monotonically climbs the likelihood surface to the MLE.

By observing that log-likelihoood in it’s quadratic form
n
b= (i —p—XB — AR)T® My — p— XBi — AF) (S.1.3.1)
i=1

and noting the following proposition

Proposition: If F(z1,22,...,2,) = x! Cx is a quadratic form for n variables, and if matrix
C' is symmetric, then F' is convex < C' is semi positive definite

Since we know that W is semi positive definite, the above objective with respect to each i is
convex. Note also that while both A and F are unknown this is not a concern because we are
only interested in the nuisance parameter AF as a whole, so the two unknowns effectively com-
bine as one variable. Now, using the following Theorem

Theorem: If f is a function in n variables defined on a convex subset S C R™, then if
[ = Ylaif;, where each a; > 0 and each f; is a convex function defined on S, then f is
convex.

and given the form of S.1.3.1 the likelihood is convex.
Finally, we note that the EM algorithm, with the latent variable transformed into observed

variable, guarantees convergence to the mode of the above likelihood, where a proof can be
found in (Bishop, 2007).



S.1.4 Selecting the factor numbers

Various techniques can be used to select the number of factor used by the model. For example,
the Akaike information criterion (AIC)

AIC =2k —2in(L) (S.1.4.1)
or the Bayesian information criterion (BIC)
BIC = —2In(L) + Klin(n) (S.1.4.2)

where K is the parameter number, n is the sample size and L is the likelihood. Although we
found these two criteria work well for a relatively simple data, they demonstrated less satisfactory
performance for more complicated data that are affected by multiple hidden factors. In contrast,
we found that selecting the factor number by manually examining the eigen spectrum of the
data was a reasonable strategy, where performance of HEFT was robust to cases where this
approach resulted in the inclusion of larger than the true number of factors (see main text and
supplement simulation analysis results below). The eigen spectrum is obtained by performing a
Principal Component Analysis on the data, then the variance proportion that is explained by
each component is calculated. The factor number is then selected based on how well a top set
of eigenvalues can can be visually separated from the rest.

S.1.5 The test statistics

One approach to developing a test statistic is calculating a Likelihood Ratio Test (LRT) to
calculate approximate p-values of the fixed effects. The LRT is performed by calculating the
following value,

LR =—-2x (lo — ll) (8151)

where [p and [y correspond respectively to the log likelihood of the null model and the full model.
For the purposes of eQTL analysis, to calculate these two log likelihoods, we use the complete
model in equation S.1.1.4, which is a function of all Y’s and a single genotype, then we delete
one column of Y at a time, where for each deletion, we calculate a null likelihood for the deleted
gene as a function of all other genes and the same genotype, such that m null likelihoods will be
generated for a genotype, each corresponding to the deleted gene and the genotype pair.

We note that since the LRT does not have a well-behaved distribution for the HEFT model
and since a large number of runs of the EM are required to apply a LRT test (m X [, where [ is
the total number of genotypes), which can be a computational burden when very small p-values
need to be obtained for the ranking of the tests, requiring the tolerance of the EM to be set
higher, such that the corresponding runs take longer. We therefore prefer a one step Wald test
approach, where this test is performed by constructing a t-type test statistic

B0

Var(p)

(S.1.5.2)

where we are testing the significance of only one X;, Y; pair at a time, and Var(5) is the
corresponding diagonal element of the covariance matrix of 5. With the matrix of predictors and

the loadings (as well as other covariates) is X, we can calculate Var(5) as follows
Cov(B) = (I+ XTw X)) 1XTOw Var(y;) ¢ X (14 XTe1X)?! (S.1.5.3)

where Var(y;) can be calculated as the variance of y; — X5.



S.2 Supplementary methods

S.2.1 Additional details for simulated data and analyses

As described in the main text, we simulated data for each of the following scenarios (Table
S1): a) no eQTLs and no hidden factors (null scenario 1), b) no eQTLs with hidden factors
(null scenario 2), ¢) eQTL where each affects one expressed gene (no pleiotropy) and no hidden
factors, d) a combination of pleiotropic and non-pleiotropic eQTL and no hidden factors, e)
non-pleiotropic eQTLs with hidden factors, f) a combination of pleiotropic and non-pleiotropic
eQTL with hidden factors. For each of the scenarios with hidden factors (b, e, f), we simulated
10 datasets where the hidden factors effects were orthogonal to the entire set of markers and 10
datasets with hidden factors that were non-orthogonal to a non-trivial subset of the markers. For
the scenarios with no hidden factors (a, ¢, d), we also simulated 10 datasets each. The sample
size for each dataset was fixed at n=200. To generate the genetic markers of each dataset, SNP

Table S1: The parameter set up for all simulations showing the combinations of hidden factors,
eQTLs, and pleiotropic eQTLs, used for each scenario, where x means the parameter is absent
and 4/ indicate the parameter is present. The bottom rows also show the heritability range for
eQTL (when present)

Scenarios
a b c d e f
eQTLs X X VA VA VA VA
Pleiotropic eQTLs X X X vV X V4
Factors X W X X
Heritability (min/max)-non-orth ~ x X 2.1e-06/0.81  5.5e-07/0.87
Heritability (min/max)-orth X X 3.6e-06/0.81  8.6e-07/0.91 1.1e-06/0.84  5.0e-07/0.83

genotypes were generated using the coalescent simulator MaCS (Chen et al., 2009) using the
default approximation for tree width. We simulated 5 Mb of marker data for a single diploid
populations of size N, = 10,000, with a population mutation rate of § = 4Ny = 0.001 and
the recombination rate of p = 4Nk = 0.00045, values taken from Voight et al. (Voight et al.,
2005). For a dataset, we randomly selected 1000 SNPs from those with a derived Minor Allele
Frequency (MAF) greater than 0.1, producing average linkage disequilibrium of 0.45 4 0.01 for
all ten datasets for pairwise markers measured by r2.

To generate the gene expression values of each dataset, we simulated 500 gene expression vari-
ables with standard normal error. For the eQTL scenarios with no pleiotropy (¢ and e) we
randomly selected 50 uncorrelated markers to be eQTL, where the additive effect of each on a
randomly selected gene was drawn from a standard normal. For the cases with pleiotropy (d and
f) we included 50 eQTL with individual gene effects and selected an additional 20 uncorrelated
SNPs each influencing 20 expression variables each, where again, the effect on each gene was
selected from a standard normal. Overall, the total variation explained by the eQTLs for a
given gene ranged from 5.0e-07 to 0.92, with the vast majority in the range of 0-0.025. For each
dataset with hidden factors (b, e, ), we additionally incorporated the effects of four factors. To
simulate a non-orthogonal factor, the scores of individuals on the first principal component of the
correlation matrix of 100 randomly selected markers was used to assign individuals into five total
groups, where the individuals with the largest 40 scores were assigned to group 1, individuals
with the next largest 40 were assigned to group 2, etc. (i.e. factor effects were orthogonal to
each other although non-orthogonal to the 100 SNPs). For each group, a single effect was then
assigned drawing from N(0,1) or from N(0,3). For orthogonal factors, we applied the same



procedure but randomly assigned each individual to one of the five groups. While for the latter,
this does not prevent a factor from being non-orthogonal to some markers, we found that each
factor was approximately orthogonal to almost all of the markers in the dataset in practice.

We analyzed each simulated dataset with the eight methods mentioned in the main text: a
linear regression (LR), a two-step version of our method (HEFT-TS), the mixed model approach
with full rank similarity matrix, LMM (Listgarten et al., 2010) and low rank similarity matrix,
PANAMA (Fusi et al., 2012), the variational Bayes method PEER (Stegle et al., 2010), the sur-
rogate variable method SVA (Leek and Storey, 2007), the low rank sparse representation method
LORS (Yang et al., 2013), and HEFT. For the two-step analysis, we estimated factor structure
using a factor analysis of the expressed genes and then used the residuals Y — AF to do a sec-
ondary analysis, i.e. we applied a two-step approach within the HEFT framework (HEFT-TS).
For LMM (Listgarten et al., 2010), we could not get the software provided by the authors to
work, so we re-implemented the algorithm. We note that we used the same convergence and
other implementation criteria as described by the authors (Listgarten et al., 2010) and that our
implementation performed as they described. We also note that we did not make use of their
populations structure component to allow for an appropriate comparison because there is no
population structure in our simulated data (i.e. we applied LMM-EH and not LMM-PS-EH).
While PEER (Stegle et al., 2010) can in theory perform simultaneous analysis of eQTL and
hidden factors, there are no simultaneous inference components implemented in the available R
software package. We therefore applied PEER using their two-step option. For SVA and LORS,
we applied these methods using the default setting.

For each analysis method, the association of each SNP-gene expression pair was assessed. For
LR and HEFT we used the resulting p-values. For HEFT-TS and PEER, we followed the same
procedure as applied in the PEER paper (Stegle et al., 2010), where we extracted a p-value-like
statistic from a linear regression model applied to the residuals after fitting the factor model.
For LMM, we calculated the p-value statistic as described in their paper. As LORS does not
generate p-values, we evaluated it by ranking its regression coefficients.

S.2.2 Lung Airway Dataset

We used HEFT, PEER, PANAMA, and linear regression to identify eQTL affecting gene expres-
sion in the lung Small Airway Epithelium (SAE) using a dataset that included 79 smokers and
37 nonsmokers recruited from the New York City area. The individuals in the sample were of
different genders, different ancestry groups, and were characterized as non-smokers or smokers
and were further labeled as healthy or having a lung disease phenotype (see Table S2). Details
concerning data collection for these samples have been provided elsewhere (Harvey et al., 2008).
Briefly, SAE cell populations were collected by bronchial brushing of the small airway (Raman
et al., 2009) and RNA was hybridized to the HG-U133 Plus 2.0 microarray (Affymetrix, Santa
Clara, CA) using standard protocols. To avoid the problem of probe sets mapping to wrong
genes, we used the custom mapping provided by (Dai et al., 2005) and the Robust Multi-array
Average (RMA) (Irizarry et al., 2003a,b) normalization method to convert array probe expres-
sion measurements into a single expression measurements for genes with unique Entrez gene
IDs. We further removed genes with individual expression values beyond 3 standard deviation
of the mean, which appeared likely to be outliers. This provided data on ~7,575 protein-coding
genes, an unknown subset of which are operating in the regulation and response behaviors of the
pulmonary environment.



Blood was also collected from each individual and Affymetrix 500k microarrays were used to
provide SNP genotypes. After filtering SNPs with a MAF below 0.1, significant deviations
from Hardy-Weinberg equilibrium as assessed by a p-value < 0.05 for an efficient exact test
(Wigginton et al., 2005), and those genotypes with any missing observations using PLINK (Pur-
cell et al., 2007), this left 191,959 genotypes for analysis. The complete expression and geno-
type dataset analyzed in this study have been deposited in NCBI’s Gene Expression Omnibus
(Edgar et al., 2002) and are accessible through GEO Series accession number GSE32030 (http:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=hvuxloaoaekwozakacc=GSE40364).

We initially applied the factor component of the HEFT model to just the expression data treating
the known smoking covariate as missing information to assess the recovery ability of the factor
component of the model. We then applied a complete HEFT analysis to the entire dataset. For
this latter analysis, we selected the hidden factor number by visually examine the eigen spectrum
of the gene expression correlation matrix and selected 5 factors that are clearly separable from
the rest (Figure S1). We note that we also tried different factor numbers (3, 7, 12), where the
p-value distributions of these analyses were not qualitatively different. To account for the obvi-
ous population structure in these data (Figure S1), we applied a factor analysis to the genotype
covariance matrix (Engelhardt and Stephens, 2010) and incorporated the loadings of the first
factors as fixed covariates, where this factor number was selected from the genotype covariance
matrix eigen spectrum. We additionally included fixed covariates including gender, disease status
and the smoking status. For binary covariates such as gender and smoking, we encoded them as
0 and 1, while three level disease status was encoded as a n x 2 binary design matrix of either
0 or 1. For a baseline comparison, we also applied a multiple regression model including all of
the same fixed covariates. Two thresholds for assessing significance of each SNP-expression pair
were applied: a Bonferroni corrected threshold of 0.05 / (7,575 x 191,959) = 3.438578e-11 and
a Benjamini-Hochberg control of the false discovery rate at ¢ = 0.05.

S.3 Supplementary results

S.3.1 Comparison of HEFT to hidden factor methods
S.3.1.1 Performance for null and standard eQTL scenarios.

For datasets simulated under scenario a), where there are no eQTL and no hidden factors (null
scenario 1), all eQTL analysis methods for which p-values were produced, all methods except
PANAMA returned a uniform distribution of p-values for the set of all SNP-gene tests as mea-
sured by genomic inflation factor in a range of 1.00-1.04 (Aulchenko et al., 2007; Devlin et al.,
2004), indicating they all performed appropriately for this null scenario (Table S3 and Figure S2).
This outcome was observed regardless of the number of factors that were provided to HEFT-TS,
PEER, and HEFT, indicating that these methods are also robust to incorporating the wrong
number of factors (>0) for this null scenario. We note that PANAMA also returns a uniform p-
value distribution but as the software automatically takes into account the multiple test scenario
by calculating a ¢ values, all values are close to one (as expected).We also note the LORS does
not produce p-values so we could not check whether this method performed as expected under
this null scenario.
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Figure S1: Eigen spectrum plot for separate Principal Component Analyses (PCA) applied to
the SAE sample genotypes (top) and gene expression measurements (bottom), where the x-axis
shows the index of the eigenvalues (eigenvectors) and the y-axis shows the variance proportion
explained by each eigenvector.
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Table S2: Population demographics of the human lung airway epithelium study
Small airway epithelium?®
Healthy non-smk? Healthy smk® Disease smk*

# of Samples 38 37 41

Gender (M/F) 28/10 22/15 31/10
Ethnicity (B/W)6 22/16 27/10 24/17
Age” 43412 43+7 51+10
Pack-year history® 0 28+17 37+24

1. Data are presented as mean + standard deviation where appropriate

2. Life-long nonsmokers with normal lung functions as measured by spirometry and diffusion
capacity of carbon monoxide (Harvey et al., 2008)

3. Current or ex-smokers with normal lung functions as measured by normal spirometry and
diffusion capacity of carbon monoxide (Harvey et al., 2008)

4. Current or ex-smokers with pulmonary disease as defined by their lung functions: either
with Chronic Obstructive Pulmonary Disease (COPD) as defined by the GOLD criteria
(Harvey et al., 2008) or early emphysema as defined by normal spirometry and reduced
diffusion capacity of carbon monoxide (<80%) (Harvey et al., 2008)

5. African American (B=Black) or Caucasian (W=white)
6. Presented as mean £ standard deviation

7. Calculated for each individual as the number of packs of cigarettes smoked per day times the
number of years of self-reported smoking history presented as mean + standard deviation

For datasets simulated under scenario b, where there are no eQTL and hidden factors (null
scenario 2), we considered performance for cases where the effects of the four hidden factors
were (approximately) orthogonal to all SNPs and cases where the effects of the four hidden fac-
tors were non-orthogonal to 10% of the SNPs. For the orthogonal case, with the correct factor
number (p = 4) all methods including LR produced an almost uniform distribution of p-values
(A=1-1.04) as expected (Table S3 and Figure S3). For the case of non-orthogonal hidden factors
under this same null scenario b), the performance for LR diverged far from the null expectation
where far too many small p-values were returned, a result that in practice would result in a large
number of false positives (Table S3 and Figure S4). This result is expected given that linear
regression is unable to distinguish an eQTL signal from the effects of hidden factors. Again, we
note that we could not check LORS under this null scenario.

For the standard eQTL scenario ¢ (50 non-pleiotropic eQTL with no hidden factors) and
scenario d (50 non-pleiotropic eQTL and 20 pleiotropic eQTL affecting 20 expressed genes each
with no hidden factors), HEFT and LR had equivalent performance as expected (Table S4 and
Figure S5-S6). For scenario ¢ (no pleiotropy), HEFT-TS, PEER, and PANAMA had equivalent
performance. We note LORS also had equivalent performance for this scenario when considering
AUC in the 0-0.001 and 0-0.01 FPR range, where the slightly lower performance in the 0-0.05
FPR range occurs because the method pre-selects markers to include by linear regression, which
caps the maximum number of true positives that can be identified (and hence the True Positive
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Figure S2: Histograms and boxplots showing the distributions of p-values for all SNP-gene tests
of association for the scenario where there are no genotypic effects and no hidden factors (scenario
a). The left column shows the histogram of the p-values for a specific simulation with factor
number of 2 (when selection of factor number applies), and the right column shows the boxplots
of the inflation factor for p-values for number of factors (NF) 1 and 2 for all ten simulations (again
when factor number applies). From top to bottom are respectively LR (linear regression), HEFT,
HEFT-TS, PEER, LMM, SVA and PANAMA. Note that LORS does not produce p-values and
is therefore not included.



Inflation factor
096 100 104
I
i A}l{

Frquency
0 100000 250000

Frquency
0 100000 250000

Frquency

0 100000 250000
Inflation factor
1.02
I

Frquency
0 100000 250000

Frquency
0 100000 250000

Inflation factor
1015
L
" 4}.{

Frquency
0100000 250000
Infiation factor

103 1039

P-values

<
z 8
8
3 3
g
i
3
8
8
1

Inflation factor
0.0000 0.0010 0.0020
L

. A}IQ

P-values

Figure S3: Histograms and boxplots showing the distributions of p-values for all SNP-gene tests
of association for a scenario with no eQTL and hidden factors that are orthogonal to the SNPs
(orthogonal scenario b). The left column shows the histogram of the p-values for a specific
simulation with factor number of 7 (when selection of factor number applies), and the right
column shows the boxplots of the inflation factor for p-values for number of factors (NF) 3, 4, 5,
and 7 for all ten simulations. From top to bottom are respectively LR (linear regression), HEFT,
HEFT-TS, PEER, LMM, SVA and PANAMA. Note that LORS does not produce p-values and
is therefore not included.
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Figure S4: Histograms and boxplots showing the distributions of p-values for all SNP-gene tests
of association for a scenario with no eQTL and hidden factors that are non-orthogonal to the
SNPs (non-orthogonal scenario b). The left column shows the histogram of the p-values for
a specific simulation with factor number of 7 (when selection of factor number applies), and
the right column shows the boxplots of the inflation factor for p-values for number of factors
(NF) 3, 4, 5, and 7 for all ten simulations. From top to bottom are respectively LR (linear
regression), HEFT, HEFT-TS, PEER, LMM, SVA and PANAMA. Note that LORS does not
produce p-values and is therefore not included.
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Figure S5: Average Receiver Operating Characteristic (ROC) curves (top) and boxplots of the
area under the curve (AUC) for the ROC for a false positive rate in the range 0-0.05 (bottom) for
simulated data in the case of non-pleiotropic eQTLs but no hidden factors (scenario ¢), where the
left and right columns correspond to providing factor numbers of 1 and 2 (when factor number
selection applies). The methods are color coded as: red=regression, blue=HEFT, orange=HEFT-
TS, green=PEER, purple=LMM, skyblue=PANAMA, black=SVA, brown=LORS. Note the the
leveling off of the ROC curve for LORS is a consequence of this method pre-selecting markers to
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Table S3: The range of genomic inflation factor for genome-wide p-values returned by analysis
methods when applied to data simulated under null scenarios a and b when being provided with
different numbers of factors, where plots of a subset of these are presented in Figure S2-?7. The
values in the table show the average inflation factor for the analysis of each of the 10 simulated
datasets for a given scenario with + confidence intervals. For LR and LMM there is no factor
number selection so the same numbers are repeated in each column. PANAMA is not shown as
the output q values cannot be easily assessed with an inflation factor and LORS is not shown as
it does not produce p-values

a b
#Factor 1 2 3 4 5 6
LR 14+0 1+0 1.21+£0.04 1.21+0.04 1.214+0.04 1.2140.04
HEFT 1+0 1.014+0 1.334+0.12 1.014+0 1.024+0 1.02+0
non-orthogonal ~HEFT-TS 1+£0 1+0 1.144+0.1 0.994+0 0.9940 0.9940
PEER 1+0 140 1.16+0.08 1.14+0.08 0.994+0 0.994+0
LMM 1.01£0 1.01+0 1.01£+0 1.01+0 1.01+0 1.01+0
SVA 1.04+0 1.04+£0 1.044+0 1.0440 1.0440 1.04+0
LR 1+0 1£0 140.03 140.03 1+0.03 1£0.03
HEFT 14+0 1.01£+0 1.1+0.07 1.014+0 1.02+0 1.02+0
orthogonal HEFT-TS 1+0 1+0 1.0140.02 14+0 1+0 1+0
PEER 1+0 14+0 1.014+0.03 140.02 1+0 1+0
LMM 1.01+£0 1.01+£0 1.01+0 1.01+0 1.01+0 1.01+0
SVA 1.04+£0 1.04+0 1.044+0 1.044+0 1.044+0 1.04+0

Rate) resulting in the leveling off of LORS performance in this higher FPR range. For scenario
d (pleiotropy and no hidden factors), the two step methods (HEFT-TS, PEER) had equivalent
performance when the assumed number of factors was <2 (where the true number was zero)
but significantly worse performance than HEFT when the assumed number of factors was 2,
indicating that fitting of additional hidden factors resulted in these two-step methods accounting
for pleiotropic effects of eQTL, while the simultaneous fitting of eQTL and hidden factors in
HEFT allows this method to be robust to the wrong number of factors. PANAMA and LORS
also fit eQTL and hidden factor effects simultaneously but unlike scenario ¢ (no pleiotropy and
no hidden factors) when there are pleiotropic effects of eQTL in scenario d, these methods had
significantly worse performance compared to HEFT. It therefore appears that PANAMA and
LORS are fitting the pleiotropic effects of eQTL as hidden factors, where we discuss possible
reasons for this behavior in the next section (S.3.1.2). We note that SVA and LMM also had
significantly worse performance than HEFT, which we also suspect is due to over-fitting of these
methods. For SVA this may be a consequence of the permutation approach for determining the
number of factors while for LMM, it is possible that fitting a full rank random effect in the mixed
model accounts for some of the eQTL effects and reduces the power of the method. We also
discuss possible reasons in section S.3.1.2 below.

S.3.1.2 Performance for eQTL and hidden factors.

For the scenarios where there are both eQTL and hidden factors, performance depended heavily
on the type of eQTL effects, specifically whether there was no pleiotropy (scenario e) or pleiotropy
(scenario f). In scenario e where there were 50 eQTL each affecting an individual gene expres-
sion level (no pleiotropy), HEFT outperformed LR as expected (as measured by AUC) but had
qualitatively equivalent performance compared to HEFT-TS, PEER, and PANAMA (Table S4),
where these results were consistent regardless of whether the hidden factors were orthogonal or
non-orthogonal to the eQTL effects and regardless of whether the correct (4) or incorrect number
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Table S4: Comparisons of HEFT to each of the other methods when applying two-sided t tests
to the area under the ROC curves (AUC), when considering False Positive Rates (FPR) in the
range 0-0.05. The average total number of significant hits recovered is also provided, where
each non-duplicated SNP-gene pairing found to have a significant association is considered a hit.
The comparisons are performed when HEFT is provided two different factor numbers, where
the correct number of factors for scenario ¢ (non-pleiotropic eQTL and no hidden factors) and
scenario d (both non-pleiotropic / pleiotropic eQTL and no hidden factors) is zero and the correct
number of factors for scenario e (non-pleiotropic eQTL and no hidden factors) and scenario d
(both non-pleiotropic / pleiotropic eQTL and hidden factors) is four. Note that for the non-
pleiotropic scenarios there are 50 total eQTL associations and for non-pleiotropic / pleiotropic
scenarios there are 450 total eQTL associations (50 non-pleiotropic eQTL and 20 pleiotropic
eQTL each affecting 20 gene expression levels). Also note that the each AUC comparison and
average number of hits is over 10 simulated data sets such that the same average number of hits
can correspond to a different p-value depending on the standard error. Finally, note that SVA

is not included as the performance was far worse than the other methods.

HEFT LR HEFT-TS PEER LMM PANAMA LORS
df—1 p—Va¥ue 0.765 0.848 0.843 0.00185 0.0576 1.02e-05
Non-orth #Hits 40.7 41 40.9 40.9 36 38.6 33.6
df—2 p-value 0.765 1 0.843 0.00185 0.0576 1.02e-05
c #Hits 40.7 41 40.7 40.9 36 38.6 33.6
df=1 p—va?ue 0.907 0.812 0.732 0.0133 0.389 0.000236
Orth #Hits 39.2 39.1 39 38.9 34.6 38 31.9
df=2 p-value 0.907 0.566 0.732 0.0133 0.389 0.000236
#Hits 39.2 39.1 38.6 38.9 34.6 38 31.9
HEFT LR HEFT-TS PEER LMM PANAMA LORS
df=1 p—va?ue 1 0.159 0.116 3.77e-12 4.86e-07 6.58e-08
Non-orth #Hits 348 348 343 344 221 292 305
df=2 p-value 0.864 0.00881 0.000509 6.2e-12 5.4e-07 6.69e-08
d #Hits 349 348 340 337 221 292 305
dfi=1 p-Va?ue 0.831 0.257 0.275 5.98e-14 1.5e-09 8.68e-06
Orth #Hits 351 350 346 347 226 294 312
df=2 p-value 0.722 0.0189 0.0193 5.51e-14 1.26e-09 7.22e-06
#Hits 352 350 341 341 226 294 312
HEFT LR HEFT-TS PEER LMM PANAMA LORS
df—4 p—va?ue 0.00348 0.867 0.15 0.00925 0.0816 1.82e-05
Non-orth #Hits 40.4 34.9 40.7 38.6 36.6 37.8 31.4
df=7 p-value 0.00265 0.927 0.93 0.00595 0.0629 1.3e-05
o #Hits 40.6 34.9 40.7 40.7 36.6 37.8 31.4
df—4 p—Va¥ue 0.0236 1 0.396 0.0363 0.179 0.000272
Orth #Hits 39.6 36.1 39.6 38.4 35.6 37.2 32
df=7 p-value 0.0375 0.933 0.931 0.0531 0.25 0.000398
#Hits 39.2 36.1 39.1 39.4 35.6 37.2 32
HEFT LR HEFT-TS PEER LMM PANAMA LORS
df—4 p-value 7.9e-08 0.861 0.00333 4.74e-13 1.83e-10 2.41e-08
Non-orth #Hits 346 312 347 336 229 293 298
df=7 p-value 8.26e-08 0.00293 0.000235 2.01le-13 1.8e-10 1.73e-08
¢ #Hits 347 312 332 332 229 293 298
df—d p-value 1.45e-05 0.934 0.00169 4.85e-11 1.84e-07 1.15e-05
Orth #Hits 349 325 349 337 235 293 300
df=7 p-value 7.85e-06 0.000304 7.27e-05 1.23e-10 2.65e-07 1.37e-05
#Hits 350 325 332 334 235 293 300
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Figure S6: Average Receiver Operating Characteristic (ROC) curves (top) and boxplots of the
area under the curve (AUC) for the ROC for a false positive rate in the range 0-0.05 (bottom)
for simulated data in the case of pleiotropic eQTLs but no hidden factors (scenario d), where the
left and right columns correspond to providing factor numbers of 1 and 2 (when factor number
selection applies). The methods are color coded as: red=regression, blue=HEFT, orange=HEFT-
TS, green=PEER, purple=LMM, skyblue=PANAMA, black=SVA, brown=LORS. Note the the
leveling off of the ROC curve for LORS is a consequence of this method pre-selecting markers to
include, which caps the maximum number of true positives that can be identified.

(3, 5, 7) of hidden factors was considered by HEFT (Figures S7-S8). We note that the hidden
factor method LORS also had qualitatively equivalent performance to HEFT for scenario e when
considering AUC in the 0-0.001 and 0-0.01 FPR range, where the leveling off of LORS perfor-
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mance occurs because this method pre-selects markers to include by linear regression, which caps
the maximum number of true positives that can be identified (TPR) and therefore leading to
the appearance of slightly lower performance when measured by AUC in the 0-0.05 FPR range.
Interestingly, while HEFT and these other hidden factor methods had comparable performance
for scenario e, the hidden factor methods SVA and LMM, had significantly worse performance
(Table S4 and Figures S7-S8). In the case of SVA, we suspect this is due to fitting too many
hidden factors as selected using their default permutation approach, although we note that it is
not entirely clear why their factor selection heuristic should be over-fitting for this scenario. For
LMM, the lower performance is almost certainly due to over-fitting as a consequence of using a
full rank random effect matrix in the mixed model, since PANAMA, which allows for reduced
rank random effects in the same framework, had equivalent performance compared to HEFT.

For scenario f, where there are a combination of 50 non-pleiotropic and 20 pleiotropic eQTL
(where each of the pleiotropic eQTL affect 20 expressed genes) and either orthogonal or non-
orthogonal hidden factors, HEFT had significantly better performance overall compared to LR
and all hidden factor methods (Table S4 and Figures S9-S10). We note that when the two-step
form HEFT-TS considers the correct number of factors (4), the performance of HEFT and HEFT-
TS is equivalent as expected. However, when assuming too many factors (7), the simultaneous
fitting of eQTL and hidden factors in HEFT allows this method to correctly reduce the variance
attributable to these extra hidden factors, such that they do not fit the pleiotropic effects of
the eQTLs, where HEFT-TS cannot make this correction and performs significantly worse. The
simultaneous fitting in HEFT also explains why this method outperforms the two-step method
PEER, where the difference in performance is more significant when HEFT and PEER assume
too many hidden factors. In the cases of SVA and LMM, the better performance of HEFT is
attributable to the same reasons for the observed better performance in scenario e where there
is no pleiotropy, i.e. possible over-fitting of hidden factors using the permutation approach of
SVA and over-fitting of hidden factor effects in LMM due to the full rank of the random effects
in the mixed model.

Why HEFT has significantly better performance compared to PANAMA for scenario f is not
as clear. We suspect this result is due to PANAMA fitting the effects of some of the pleiotropic
eQTL as hidden factors but given that PANAMA simultaneous fits eQTL and hidden factors it is
not as clear why this method cannot as accurately fit eQTL even when assuming too many hid-
den factors. One possibility is that PANAMA simultaneously fits a subset of eQTL at the same
time and this could impact performance for identifying pleiotropic effects. Another possibility
is that by integrating over both eQTL and hidden factor effects in the mixed model framework
used by PANAMA, the resulting pooling of the hidden factor and error covariance (see section
S.1.1 above) can lead to over-estimates of the variance component terms associated with hidden
factors. However, disentangling the precise theoretical reasons for the better performance of
HEFT compared to PANAMA for this scenario is a complex problem that is beyond the scope
of this paper.

Similarly, it appears that LORS fits some of the pleiotropic eQTL effects in scenario f as hidden
factors leading to significantly worse performance than HEFT regardless of the AUC considered
(0-0.001, 0-0.1, 0-0.05) where we note that this is not a consequence of the marker pre-selection
of LORS (the leveling off of the ROC curve). Again, it is not completely clear why this simulta-
neous method cannot correctly fit the pleiotropic effects of eQTL in this scenario. One possibility
is that LORS places a penalty on the nuclear norm accounting for factor effects (the entire AF
matrix in HEFT), as opposed to HEFT which places a penalty on the factor effects F. LORS
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therefore penalizes all factors as a group (i.e. the model penalty does not have the flexibility to
explicitly consider fitting of different numbers of factors), while HEFT separately penalizes the
effects of each factor. This separate penalization in HEFT may induce a greater overall penalty
and may prevent over-fitting, although determining whether this is the case and the theoretical
basis if so, is a complex problem beyond the scope of the current work. Another possibility is
that, LORS simultaneously fits a subset of eQTL at the same time making use of a lasso penalty
or considers one SNP marker at a time, where for the latter approach, the method applies no
penalty. In contrast HEFT always fits one marker at a time and always applies a ridge penalty
to the possible genetic effects such that the genetic effects and the factors are regularized in the
same way. We have observed that placing a ridge penalty on both the marker under consid-
eration and the hidden factor effects is essential to achieving appropriate model fit in cases of
pleiotropy for HEFT and this may therefore lead to the better performance of HEFT compared
to LORS in scenario f. However, again, determining the precise theoretical reasons for this result
is a complex problem beyond the scope of this current work.
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Figure S7: Average Receiver Operating Characteristic (ROC) curves (top) and boxplots of the
area under the curve (AUC) for the ROC for a false positive rate in the range 0-0.05 (bottom) for
simulated data in the case of non-pleiotropic eQTL effects and orthogonal hidden factors (sce-
nario e), where from left to right correspond to provided factor numbers of 3, 4, 5, and 7 respec-
tively (when factor number selection applies). The methods are color coded as: red=regression,
blue=HEFT, orange=HEFT-TS, green=PEER, purple=LMM, skyblue=PANAMA, black=SVA,
brown=LORS. Note the the leveling off of the ROC curve for LORS is a consequence of this
method pre-selecting markers to include, which caps the maximum number of true positives that
can be identified.
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Figure S8: Average Receiver Operating Characteristic (ROC) curves (top) and boxplots of the
area under the curve (AUC) for the ROC for a false positive rate in the range 0-0.05 (bottom) for
simulated data in the case of non-pleiotropic eQTL effects and non-orthogonal hidden factors (sce-
nario e), where from left to right correspond to provided factor numbers of 3, 4, 5, and 7 respec-
tively (when factor number selection applies). The methods are color coded as: red=regression,
blue=HEFT, orange=HEFT-TS, green=PEER, purple=LMM, skyblue=PANAMA , black=SVA,
brown=LORS. Note the the leveling off of the ROC curve for LORS is a consequence of this
method pre-selecting markers to include, which caps the maximum number of true positives that
can be identified.
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Figure S9: Average Receiver Operating Characteristic (ROC) curves (top) and boxplots of the
area under the curve (AUC) for the ROC for a false positive rate in the range 0-0.05 (bottom) for
simulated data in the case of pleiotropic eQTL effects and orthogonal hidden factors (scenario
f), where from left to right correspond to provided factor numbers of 3, 4, 5, and 7 respectively
(when factor number selection applies). The methods are color coded as: (red=regression,
blue=HEFT, orange=HEFT-TS, green=PEER, purple=LMM, skyblue=PANAMA , black=SVA,
brown=LORS. Note the the leveling off of the ROC curve for LORS is a consequence of this
method pre-selecting markers to include, which caps the maximum number of true positives that
can be identified.
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Figure S10: Average Receiver Operating Characteristic (ROC) curves (top) and boxplots of the
area under the curve (AUC) for the ROC for a false positive rate in the range 0-0.05 (bottom) for
simulated data in the case of pleiotropic eQTL effects and non-orthogonal hidden factors (scenario
f), where from left to right correspond to provided factor numbers of 3, 4, 5, and 7 respectively
(when factor number selection applies). The methods are color coded as: (red=regression,
blue=HEFT, orange=HEFT-TS, green=PEER, purple=LMM, skyblue=PANAMA , black=SVA,
brown=LORS. Note the the leveling off of the ROC curve for LORS is a consequence of this
method pre-selecting markers to include, which caps the maximum number of true positives that
can be identified.
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S.3.1.3 Recovery of the smoking factor when treated as hidden

As an empirical assessment of the ability of HEFT to recover hidden factors, we used the factor
learning component of HEFT to analyze the lung SAE gene expression data, where the known
information about whether individuals were smokers or nonsmokers was treated as missing.
Smoking has a well-characterized effect throughout the SAE transcriptome. For this analysis,
HEFT was able to learn the effects of smoking status when this covariate was treated as a hidden
factor, providing good separation of smokers and nonsmokers (Figure S11). From the analysis,
the influence of smoking appears to be more complex than could be well modeled with a single
fixed covariate, indicating that even in the unusual case where the critical factors are known and
measured, it may be of value to learn hidden factors in an eQTL analysis.
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Figure S11: Plot showing the separation of smokers (blue) and nonsmokers (red) plotted on the
hidden factors learned by HEFT, where loading 1 and 2 for the factor are plotted on the top and
loading 2 and 3 are plotted at the bottom.
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Figure S12: Venn diagram showing the total number of non-duplicate SNP-gene associations
(left) and the subset of these that are cis- (right) identified by HEFT, PEER, PANAMA and
LR when applying a Bonferroni correction for multiple tests.

Table S5: List of the 96 non-duplicated top eQTL associations
identified by HEFT significant at a Bonferroni threshold, where
only the top associated SNPs are listed. From left to right the
columns represent respectively the ranking, ensemble code for the
genes, the top SNP associated with this gene, and the p-values.

Ranking  Gene ID  Chr(SNP)  Position SNP P-Values

1 5906 1 112038561  rs1886498  1.46499485948337e-33
2 140686 20 43836276  1rs2664529  2.27127502421512e-31
3 89778 18 59530818  rs4940595  7.75169142022207¢-28
4 374491 13 24078151 rs943049  1.50554696527431e-25
5 80177 6 153052613  1rs2250514  1.74101297874152¢-25
6 6840 0 0 rs3858231  2.12530111251114e-25
7 63928 16 23697839  1s194788  8.46873720736218e-25
8 23421 1 63837368  rs855325  3.53979830579298e-24
9 114757 17 72058534  rs752049  7.33012802900279e-24
10 388335 17 10556076  1rs397278  6.39394600924099¢-23
11 1915 6 74287580  1s3822960  7.95367824562483e-22
12 5340 6 161064326  1rs1321200  6.63854323347397e-21
13 116285 16 20587707 rs433598  2.02376243218272e-20
14 155368 7 72863628  rs4355658  2.35431495370645¢-20
15 340542 23 101168380  rs2858353  2.61556705576623e-20
16 8000 8 143761003  1s2976396  5.75349616679876e-20
17 164781 2 228485182  rs3748863  6.47663988110386e-20
18 51144 11 43796511  rs10768983  9.78888533972432e-20
19 318 9 34271390  1rs7045680  1.26766986219884¢-19
20 5947 3 140736561 rs12485273 1.86700120545829¢-19
21 26751 2 270819 rs7605824  4.43726175926121e-19
22 403314 1 181889002 rs6699011  1.26809312494076e-18
23 7976 8 28491587  rs11779401 1.77971301988934e-18
24 90637 7 1171226 rs2960840  2.07643459155093e-18
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Figure S13: QQ plots showing the p-value distribution for all tests of association between the
191,959 SNPs and 7,575 genes (points have been thinned) expressed in human lung SAE for
HEFT (blue), PEER (green), and LR (red). Note that PANAMA returns p-values automatically
corrected for multiple tests by calculating ¢ values, such that producing a QQ plot is not possible
for this method. The grey bands in the QQ plots correspond to the 95% confidence interval (CI)
of the order statistics, where we note that this is the CI for 1.45e9 p-values such that it is quite
tight, and the slight early deviation of all methods beyond the estimated CI (including LR) is
therefore likely an artifact and not a reflection of poor model fit.
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Figure S14: A genome-wide heat map representing p-values obtained from the analysis of associ-
ations of all 191,959 SNPs with all 7,575 genes expressed in human lung SAE using LR (top) and
HEFT (bottom) where the p-values have been averaged for every 15 genes and 100 SNPs. Genes
are arranged in rows and SNPs arranged in columns, where colors from yellow to red represent
large to small (significant) p-values. Note that LR identified SNPs associated with almost all
expressed genes, indicating unaccounted for hidden factors, where this trend is not observed with
HEFT.
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Figure S15: Manhattan plots (left column) and QQ plots (right column) for example genes where
HEFT (blue plots) identified a significant cis-eQTL for a gene with a lung related phenotype or
disease association that were not identified by a linear regression (red and orange/yellow plots),
where the genes ordered from the top to bottom are: GTF2H1, MTRR, TEFM (C170rf42), and

RUVBLI. The grey band corresponds to the 95% confidence interval.
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