Sodium current reduction unmasks a structure-dependent substrate for arrhythmogenesis in the normal ventricles

Patrick M. Boyle^{1†}, Carolyn J. Park^{1†}, Hermenegild J. Arevalo¹, Edward J. Vigmond², Natalia A. Trayanova^{1*}

- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA.
 Institut LIRYC, Université Bordeaux 1, Bordeaux, France.
 - †: The first two authors contributed equally to this work.

*: Corresponding author: NA Trayanova, Phone: 410-516-4375, Fax: 410-516-5294, Email: ntrayanova@jhu.edu Mail: 3400 N Charles Street – 316 Hackerman Hall – Baltimore MD 21218 – USA

SUPPORTING FILE S1

Figure S1:

Figure S2:

Table S1:

Mesh Resolution (μm)	Conduction Velocity Along Wedge (<i>cm/</i> s)	Percent Difference (compared to highest- resolution model)
500	19.24	42.5%
250	30.60	8.79%
125	33.09	1.37%
62.5	33.55	N/A

Table S2:

Category	Parameter(s)	Value
Geometry	# of degrees of freedom (nodes)	843,507
	# tetrahedral elements	4,744,512
	mean element edge length	261.76 μm
Monodomain conductivity (mS/mm)	longitudinal (σ _{mL})	0.1845
		0.02376
	transverse (σ_{mT})	0.02376
	normal (σ _{mN})	0.02376
Computation	# of Intel X5660 CPUs @ 2.80 GHz	12
	wall time to simulate 1 second	2h07m

Appendix:

```
# Pseudocode for calculation of cardiac safety factor (SF)
# as described in Boyle, Park et al. (2013).
# This is an improved version of the formulation presented in
# Boyle & Vigmond (2010) Biophys J. Note that a correction to
# that paper was published in the December 2013 issue of the
# same journal (please see: http://goo.gl/DdHz0e).
# The process outlined here is for a single node but can be
# extended to deal with arbitrary geometry, as in the paper.
BEGIN CalcSF
   SET Vm = read file( Vm file )
                                           # transmembrane voltage data over time
   SET lion = read file( lion file)
                                           # ionic current data over time
   SET dt = 0.1
                                           # global time step between data values
   SET last_act = ...
                                           # the previous activation time for this node
   # First, compute Im = Cm dVm/dt + Iion:
   SET Im = compute_Im( Vm, Iion, dt)
   # Note 1: current units: uA/cm², voltage units: mV
   # Note 2: reduces to a simple sum since Cm = 1 \text{ uF/cm}^2
   # Note 3: use forward differencing to compute dVm/dt
   # Second, identify the first interval during which Vm is
   # above some empirically-defined threshold, e.g. -85 mV:
   SET Vm thr = -85
   SET i_depol = -1
   SET i repol = -1
   FOREACH Vm; in Vm,
      IF i_depol < 0 AND Vm<sub>i-1</sub> < Vm_thr AND Vm<sub>i</sub> >= Vm_thr,
             SET i_depol = i
       IF i repol < 0 AND Vm_{i-1} >= Vm thr AND Vm_i < Vm thr,
              SET i repol = i
       END IF
   END FOREACH
   # Note 4: To avoid spurious Vm crossings, it may be necessary to validate by ensuring
              that Vm stays above/below V thr for some length of time (e.g., 1 ms)
   # Finally, calculate SF as a maximization over the identified trans-threshold interval:
   set SFmax = -1
   FOREACH i FROM i depol+1 TO i repol,
       SET Qnet = integrate( Im, i_depol, i, dt )
       # Note 5: a simple numerical integrator is OK (e.g., rectangle/trapezoid methods)
       SET Qthr = Qthr_tA_CI( dt * (i - i_depol), dt*i_depol - last_act )
       # Note 6: see text + Fig. S2 for detailed information on estimating Qthr(tA,CI)
       IF Onet / Othr > SFmax,
              set SFmax = Qnet / Qthr
       END IF
   END FOREACH
   # All done!
   print SFmax
```