Supplementary information S1 (table) | Genetic interactions with Mre11 complex alleles in the mouse. The Mre11 complex mutation and second mutated locus are listed in the first and second columns. A brief phenotypic summary is provided in the third followed by the corresponding reference(s). | Locus 1 | Locus 2 | Phenotypes | Refs | |--|------------------------------|--|------| | $Nbs1^{\Delta B/\Delta B} \over Nbn^{tm1lpt}$ | p53 ^{-/-} | Reduced latency of lymphoma onset and reduced survival. | 1 | | $Nbs1^{\Delta B/\Delta B}$ | p53 ^{+/-} | Reduced latency of tumor onset and reduced survival. | 1 | | $Nbs1^{\Delta B/\Delta B}$ | Atm ^{-/-} | Synthetic lethality. | 1 | | $Nbs1^{\Delta B/\Delta B}$ | Mre11 ^{ATLD1/ATLD1} | Synthetic lethality. | 2 | | $Nbs1^{\Delta B/\Delta B}$ | Chk2 ^{-/-} | Broad spectrum late onset tumorigenesis.
Enhanced intra-S phase checkpoint defect. | 3 | | Nbs1 ^{ΔB/ΔB} | Prkdc ^{scid/scid} | Synthetic lethality (incomplete penetrence). Severe runting and shortened lifespan. Chromosomal instability and increased radiation sensitivity. | 4 | | Nbs1 ^{ΔΒ/ΔΒ} | Rad54 ^{-/-} | Synthetic lethality (incomplete penetrence). Severe runting and shortened lifespan. Chromosomal instability and increased radiation sensitivity. | 5 | | Nbs1∆B/∆B | Art ^{-/-} | No overt synthetic phenotypes. | 4 | | Nbs1∆B/∆B | Smc1 ^{2SA/2SA} | No overt synthetic phenotypes. | 4 | | Nbs1 ^{m/m}
Nbn ^{tm1Xu} | H2AX ^{-/-} | Synthetic lethality. | 6 | | Nbs1 ^{m/m} | p53 ^{-/-} | Reduced latency of lymphoma onset. | 6 | | hNbs1 ^{tr735/tr735} | 53BP1 ^{-/-} | Enhanced TCR and IgH associated metaphase abnormalities. | 7 | | Mre11 ^{ATLD1/ATLD1} Mre11 ^{tm1lpt} | p53 ^{-/-} | Reduced latency of lymphoma onset and reduced survival. | 2 | | Mre11 ^{ATLD1/ATLD1} | p53 ^{+/-} | Reduced latency of tumor onset and reduced survival. | 2 | | Mre11 ^{ATLD1/ATLD1} | Chk2 ^{-/-} | Heterogenous late onset tumorigenesis.
Enhanced apoptotic defect. | 3 | | Mre11 ^{ATLD1/ATLD1} | Nbs1 ^{∆B/∆B} | Synthetic lethality. | 2 | | Mre11 ^{ATLD1/ATLD1} | Atm ^{-/-} | Synthetic lethality. | 2 | | Mre11 ^{ATLD1/ATLD1} | Prkdc ^{scid/scid} | Synthetic lethality. | 4 | | Mre11 ^{ATLD1/ATLD1} | Lig4 ^{-/-} | Reduced neuronal apoptosis (with conditional nestin-Lig4 allele).
Embryonic lethality. | 8 | | Rad50 ^{S/S}
Rad50 ^{tm2lpt} | p53 ^{-/-} | Decreased haematopoietic stem cell (HSC) attrition, abrogation of anemia. Reduced tumor latency. | 9 | | Rad50 ^{S/S} | p53 ^{+/-} | Decreased HSC attrition, abrogation of anemia.
Reduced tumor latency. | 9 | | Rad50 ^{S/S} | Atm ^{-/-} | Decreased HSC attrition, enhanced survival.
Increased latency of lymphoma.
Improved cell growth. | 10 | | Rad50 ^{s/s} | Chk2 ^{-/-} | Decreased HSC attrition, enhanced survival.
Late onset lymphoma. | 10 | | Rad50 ^{S/S} | Mre11 ^{+/ATLD1} | Decreased HSC attrition, enhanced survival. Increased tumorigenesis and reduced anemia. | 10 | | Rad50 ^{S/S} | Mre11 ^{ATLD1/ATLD1} | Decreased HSC attrition, enhanced survival. Increased latency of lymphoma. | 10 | | Rad50 ^{S/S} | Nbs1⁺/∆B | Decreased HSC attrition, enhanced survival. | 10 | | Rad50 ^{S/S} | Nbs1 ^{ΔΒ/ΔΒ} | Decreased HSC attrition, enhanced survival. | 10 | | Rad50 ^{S/S} | Smc1 ^{25A/25A} | No overt synthetic phenotypes. | 10 | | Rad50 ^{S/S} | Eμ-Bcl2 transgene | Decreased HSC attrition, enhanced survival. | 10 | | Rad50 ^{S/S} | Nbs1 ^{∆C/∆C} | Decreased HSC attrition, enhanced survival.
Abrogation of anemia and tumorigenesis. | 11 | | Rad50 ^{S/S} | p21 ^{-/-} | Enhanced survival. | 12 | | Rad50 ^{S/S} | p27 ^{-/-} | Enhanced survival.
Increased bone marrow CFCs. | 12 | | Rad50 ^{S/S} | MEF-/- | Enhanced survival.
Increased G0 LSK cells in bone marrow and reduced apoptosis. | 12 | ## SUPPLEMENTARY INFORMATION - Williams, B. R. et al. A murine model of nijmegen breakage syndrome. Curr Biol 12, 648-653, (2002). - Theunissen, J. W. et al. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 12, 1511-1523, (2003). - Stracker, T. H., Couto, S. S., Cordon-Cardo, C., Matos, T. & Petrini, J. H. Chk2 suppresses the oncogenic potential of DNA replication-associated DNA damage. *Mol Cell* 31, 21-32, (2008). - Stracker, T. H. et al. Artemis and nonhomologous end joining-independent influence of DNA-dependent protein kinase catalytic subunit on chromosome stability. Mol Cell Biol 29, 503-514, (2009). - Brugmans, L. et al. NBS1 cooperates with homologous recombination to counteract chromosome breakage during replication. DNA Repair (Amst) 8, 1363-1370, (2009). - Kang, J. et al. Functional Interaction of H2AX, NBS1, and p53 in ATM-Dependent DNA Damage Responses and Tumor Suppression. Mol Cell Biol 25, 661-670, (2005) - Difflippantonio, S. et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456, 529-533, (2008). - Shull, E. R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev 23, 171-180, (2009). - Bender, C. F. et al. Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev 16, 2237-2251, (2002). - Morales, M. et al. The Rad50S allele promotes ATMdependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev 19, 3043-3054, (2005). - Stracker, T. H., Morales, M., Couto, S. S., Hussein, H. & Petrini, J. H. The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 647, 218-221 (2007) - complex. Nature 447, 218-221, (2007). 12. Morales, M. et al. DNA damage signaling in hematopoietic cells: a role for Mre11 complex repair of topoisomerase lesions. Cancer Res 68, 2186-2193, (2008).