Supplementary information S1 (table) | Genetic interactions with Mre11 complex alleles in the mouse.

The Mre11 complex mutation and second mutated locus are listed in the first and second columns. A brief phenotypic summary is provided in the third followed by the corresponding reference(s).

Locus 1	Locus 2	Phenotypes	Refs
$Nbs1^{\Delta B/\Delta B} \over Nbn^{tm1lpt}$	p53 ^{-/-}	Reduced latency of lymphoma onset and reduced survival.	1
$Nbs1^{\Delta B/\Delta B}$	p53 ^{+/-}	Reduced latency of tumor onset and reduced survival.	1
$Nbs1^{\Delta B/\Delta B}$	Atm ^{-/-}	Synthetic lethality.	1
$Nbs1^{\Delta B/\Delta B}$	Mre11 ^{ATLD1/ATLD1}	Synthetic lethality.	2
$Nbs1^{\Delta B/\Delta B}$	Chk2 ^{-/-}	Broad spectrum late onset tumorigenesis. Enhanced intra-S phase checkpoint defect.	3
Nbs1 ^{ΔB/ΔB}	Prkdc ^{scid/scid}	Synthetic lethality (incomplete penetrence). Severe runting and shortened lifespan. Chromosomal instability and increased radiation sensitivity.	4
Nbs1 ^{ΔΒ/ΔΒ}	Rad54 ^{-/-}	Synthetic lethality (incomplete penetrence). Severe runting and shortened lifespan. Chromosomal instability and increased radiation sensitivity.	5
Nbs1∆B/∆B	Art ^{-/-}	No overt synthetic phenotypes.	4
Nbs1∆B/∆B	Smc1 ^{2SA/2SA}	No overt synthetic phenotypes.	4
Nbs1 ^{m/m} Nbn ^{tm1Xu}	H2AX ^{-/-}	Synthetic lethality.	6
Nbs1 ^{m/m}	p53 ^{-/-}	Reduced latency of lymphoma onset.	6
hNbs1 ^{tr735/tr735}	53BP1 ^{-/-}	Enhanced TCR and IgH associated metaphase abnormalities.	7
Mre11 ^{ATLD1/ATLD1} Mre11 ^{tm1lpt}	p53 ^{-/-}	Reduced latency of lymphoma onset and reduced survival.	2
Mre11 ^{ATLD1/ATLD1}	p53 ^{+/-}	Reduced latency of tumor onset and reduced survival.	2
Mre11 ^{ATLD1/ATLD1}	Chk2 ^{-/-}	Heterogenous late onset tumorigenesis. Enhanced apoptotic defect.	3
Mre11 ^{ATLD1/ATLD1}	Nbs1 ^{∆B/∆B}	Synthetic lethality.	2
Mre11 ^{ATLD1/ATLD1}	Atm ^{-/-}	Synthetic lethality.	2
Mre11 ^{ATLD1/ATLD1}	Prkdc ^{scid/scid}	Synthetic lethality.	4
Mre11 ^{ATLD1/ATLD1}	Lig4 ^{-/-}	Reduced neuronal apoptosis (with conditional nestin-Lig4 allele). Embryonic lethality.	8
Rad50 ^{S/S} Rad50 ^{tm2lpt}	p53 ^{-/-}	Decreased haematopoietic stem cell (HSC) attrition, abrogation of anemia. Reduced tumor latency.	9
Rad50 ^{S/S}	p53 ^{+/-}	Decreased HSC attrition, abrogation of anemia. Reduced tumor latency.	9
Rad50 ^{S/S}	Atm ^{-/-}	Decreased HSC attrition, enhanced survival. Increased latency of lymphoma. Improved cell growth.	10
Rad50 ^{s/s}	Chk2 ^{-/-}	Decreased HSC attrition, enhanced survival. Late onset lymphoma.	10
Rad50 ^{S/S}	Mre11 ^{+/ATLD1}	Decreased HSC attrition, enhanced survival. Increased tumorigenesis and reduced anemia.	10
Rad50 ^{S/S}	Mre11 ^{ATLD1/ATLD1}	Decreased HSC attrition, enhanced survival. Increased latency of lymphoma.	10
Rad50 ^{S/S}	Nbs1⁺/∆B	Decreased HSC attrition, enhanced survival.	10
Rad50 ^{S/S}	Nbs1 ^{ΔΒ/ΔΒ}	Decreased HSC attrition, enhanced survival.	10
Rad50 ^{S/S}	Smc1 ^{25A/25A}	No overt synthetic phenotypes.	10
Rad50 ^{S/S}	Eμ-Bcl2 transgene	Decreased HSC attrition, enhanced survival.	10
Rad50 ^{S/S}	Nbs1 ^{∆C/∆C}	Decreased HSC attrition, enhanced survival. Abrogation of anemia and tumorigenesis.	11
Rad50 ^{S/S}	p21 ^{-/-}	Enhanced survival.	12
Rad50 ^{S/S}	p27 ^{-/-}	Enhanced survival. Increased bone marrow CFCs.	12
Rad50 ^{S/S}	MEF-/-	Enhanced survival. Increased G0 LSK cells in bone marrow and reduced apoptosis.	12

SUPPLEMENTARY INFORMATION

- Williams, B. R. et al. A murine model of nijmegen breakage syndrome. Curr Biol 12, 648-653, (2002).
- Theunissen, J. W. et al. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 12, 1511-1523, (2003).
- Stracker, T. H., Couto, S. S., Cordon-Cardo, C., Matos, T. & Petrini, J. H. Chk2 suppresses the oncogenic potential of DNA replication-associated DNA damage. *Mol Cell* 31, 21-32, (2008).
- Stracker, T. H. et al. Artemis and nonhomologous end joining-independent influence of DNA-dependent protein kinase catalytic subunit on chromosome stability. Mol Cell Biol 29, 503-514, (2009).
- Brugmans, L. et al. NBS1 cooperates with homologous recombination to counteract chromosome breakage during replication. DNA Repair (Amst) 8, 1363-1370, (2009).
- Kang, J. et al. Functional Interaction of H2AX, NBS1, and p53 in ATM-Dependent DNA Damage Responses and Tumor Suppression. Mol Cell Biol 25, 661-670, (2005)
- Difflippantonio, S. et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456, 529-533, (2008).
- Shull, E. R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev 23, 171-180, (2009).
- Bender, C. F. et al. Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev 16, 2237-2251, (2002).
- Morales, M. et al. The Rad50S allele promotes ATMdependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev 19, 3043-3054, (2005).
- Stracker, T. H., Morales, M., Couto, S. S., Hussein, H. & Petrini, J. H. The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 647, 218-221 (2007)
- complex. Nature 447, 218-221, (2007).

 12. Morales, M. et al. DNA damage signaling in hematopoietic cells: a role for Mre11 complex repair of topoisomerase lesions. Cancer Res 68, 2186-2193, (2008).