Supporting Information:

Controllable In-Situ Synthesis of Magnetite Coated Silica-Core Water-Dispersible Hybrid Nanomaterials

Haiou Qu,^{*,†} Sheng Tong,[§] Kejing Song,[⊥] Hui Ma,[†] Gang Bao,[§] Seth Pincus,[⊥] Weilie Zhou,[†] Charles O'Connor^{*,†}
[†]Advanced Materials Research Institute, University of New Orleans, New Orleans, 70148 United States
[§]Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
[⊥]Research Institute for Children, Children's Hospital, New Orleans, LA 70118 United States Email: haiou.qu@fda.hhs.gov; coconnor@uno.edu.

Figure S1. TEM images of 100 nm $Fe_3O_4@SiO_2$ prepared under different iron precursor to silica weight ratio. (a) 1.77:1 (original ratio and concentration), (b) 1.77:2, (c) 1.77:3, (d) 1.77:0.5, (e) 3.54:1, (f) single $Fe_3O_4@SiO_2$ prepared with a 3.54:1 iron precursor to silica ratio, (g) 0.88:1 (h) original ratio and concentration (1.77:1) and refluxing time was decreased from 3h to 1h. Note: the volume of TEG solvent was 10 ml in all preparations.

Figure S2. Histogram of magnetite nanocrystals on silica surface prepared with iron precursor to silica ratio (a) 1.77:1 (original ratio and concentration), (b) 3.54:1.

Figure S3. TEM images of samples taken at different intermediates. (a) 140 °C, (b) 180 °C, (c) 210 °C, (d) after 45 min at 210 °C.

Figure S4. Electron microscopy images of 200 nm $Fe_3O_4@SiO_2$ (a) as-prepared, (b) sonication for 1h, (c) sonication for 5h (Insets: higher magnification)

Figure S5. X-ray diffraction patterns of $Fe_3O_4@SiO_2$ with standard reference magnetite (JCPDS No. 19-0629)

Figure S6. A typical XPS spectra of Fe₃O₄@SiO₂ nanoparticles.

Figure S7. Room temperature hysteresis loops of (a) 60 nm, (b) 110 nm, (c) 300nm, (d) 400 nm $Fe_3O_4@SiO_2$.

Figure S8. Stability of Fe₃O₄@SiO₂ in PBS and Serum.

The stability of functionalized materials was studied in the sedimentation test. An amount of 1 mg of different sized $Fe_3O_4@SiO_2$ was dispersed in 10 ml of pH 7 PBS buffer solution or bovine calf serum at room temperature. Sample solutions (upper level) were taken at different time interval after incubation. The iron concentrations were measured in ICP-AES. The Fe concentration of sample at 0 h was set to be 100%.

Figure S9. Confocal microscope images of Hela cell treated with dye doped $Fe_3O_4@SiO_2$ under sectioning mode. Cells were imaged from bottom to the top of the cells.

Figure S10. Cell viability test for Fe₃O₄@SiO₂ of variable sizes.