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Supplementary Figure 1. Laser Bragg diffraction pattern of BCC plastic crystal phase. We 

confirm the BCC crystal structure by this diffraction. A crystalline sample inside a 0.1 x 2 mm 

capillary was illuminated with a 543.5 nm green HeNe laser (Melles Griot) and projected on a 

white screen behind the sample. The diffraction patterns were recorded as digital pictures of the 

screen. We extracted the lattice parameter from the image: angle 1 = 70.9°, angle 2 = 54.5 °, 

angle 3 = 55.5°. Accounting for refraction at the sample/air interface the results are in agreement 

with the real space measurement by confocal microscopy. The size of silica rods is 2.29 μm 

(6.0%) in length and 0.6 μm (6.5%) in diameter (L/D = 3.8). The suspension medium is CHC and 

volume fraction φ is 0.005. The scale bar is 10 mm. The projection plane was ca. 16 cm behind 

the sample.  



 

 

 

Supplementary Figure 2. Confocal images of a BCC plastic crystal. The image size is 238 

μm × 238 μm. It reveals that the silica rods were capable of forming a large, stable plastic crystal 

phase. The image contains some domains with different crystal orientations. The scale bar 

represents 20 μm. The size of silica rods is 2.36 μm (6.3%) in length and 0.58μm (10.6%) in 

diameter (L/D = 4.1). The suspension medium is CHC and volume fraction φ is 0.005. The inset 

is an image with high magnification, where the scale bar represents 10 μm. 
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Supplementary Figure 3. The dipole-dipole interaction potential as a function of the angle 

between the center-center direction and the applied field. a) Erms = 100 V mm
-1

; b) Erms = 200 V 

mm
-1

; c) Erms = 300 V mm
-1

; d) Erms = 400 V mm
-1

. The model parameters are:  L = 2.29 μm; D = 

0.6 μm; εrod = 4.5; εCHC = 7.4.  
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Supplementary Figure 4. The dipole-dipole interaction potential as a function of the rod-rod 

separation at a fixed center-center direction, a,c)  parallel to and b,d) perpendicular to the applied 

field. The model parameters are:  L = 2.29 μm; D = 0.6 μm; εrod = 4.5; εCHC = 7.4. 



       

 

Supplementary Figure 5. Schematic model of (a) BCC, (b) FCC and HCP structure, which 

illustrate the nearest neighbour symmetries of a rod in each crystal structure.   



 

 

 

 

Supplementary Figure 6. Models for the distorted BCC and close packed structures. The 

electric field is along the c axis. We measured the lattice parameters by confocal microscopy. For 

volume fraction φ = 0.02 we observed distorted BCC and close packed structures. For the 



distorted BCC phase at Erms = 100 V mm
-1

, the lattice parameters were as follows: a = 3.2 µm, b 

= 5.0 µm, c = 8.3 µm, b/a = 1.56, c/b = 1.66 µm. Compared to a perfect BCC with b/a = 1.414, 

c/b =1, the unit cell was elongated along the electric field (c axis) and b axis. For the distorted 

close packed structure at Erms = 300 V mm
-1

, the lattice parameters were as follows: a = 3.2 µm, 

c = 8.2 µm, c/a = 2.56. Compared to a perfect close packed structure, which has c/a = 1.633, the 

structure was elongated along the electric field (c axis).   
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Supplementary Figure 7. The comparison of the two form factors for the diffraction peaks from 

1
st
 order to 4

th
 order (n). The horizontal lines are the average values over every angle θ with 

equal probability. θ is the angle between the cylinder’s long axis and the scattering vector q. The 

curves are with a different orientation of the rods from 0 to 90. For the aligned rods in the 

electric field, the θ is 86.05°, 82.07°, 78.06° and 73.99° for n being 1, 2, 3, and 4, respectively. 

The arrows indicate their positions in the curves. The model parameters are:  L = 2.29 μm; D = 

0.6 μm; and the separation of two nearest crystal planes is 3.94 μm (φ = 0.006). See 

Supplementary Note 2 for the calculation details.   
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Supplementary Figure 8. The comparison of the two form factors as a function of Bragg 

diffraction order. Their ratio is shown in green. See Supplementary Note 2 for the calculation 

details.   

  



 

 

Supplementary Figure 9. Example analysis results for a system of rod-like particles in a 

BCC phase. The white lines in the image are the identified “backbones” of the rods in the 2D 

plane of observation.  

 
 

  



Neighbour(#) r (Separation/μm)  (0 ~ /2) Udip/kBT 

1 0.866a /2 0.348 

2 0.866a 0.196 -0.344 

3 a /4 -0.083 

4 1.414a 0 -0.224 

Supplementary Table 1. The calculated Udip in BCC structure at Erms= 400 V mm
-1

. For BCC, 

each rod has four types of nearest neighbours as shown in Supplementary Figure 7a.  

 Neighbour(#) r (Separation/μm)  (0 ~ /2) Udip/kBT 

1 a /2 0.348 

2 a 0.196 -0.344 

3 1.732a 0.108 -0.147 

4 2.449a 0 -0.062 

Supplementary Table 2. The calculated Udip in BCC structure at Erms= 400 V mm
-1

. For FCC, 

each rod has four types of nearest neighbours as shown in Supplementary Figure 7b.  

Neighbour(#) r (Separation/μm)  (0 ~ /2) Udip/kBT 

1 a /2 0.348 

2 a 0.196 -0.344 

3 1.633a 0 -0.224 

Supplementary Table 3. The calculated Udip in HCP structure at Erms= 400 V mm
-1

. For HCP, 

each rod has three types of nearest neighbours as shown in Supplementary Figure 7b.   

  



Supplementary Note 1: Model calculation of electric-field-induced dipole-

dipole pair interaction 

 

Here, we estimated the electric-field-induced dipole-dipole pair interaction potential as a 

function of the field strength and the rod-rod separation. The shape of our rods is nearly a 

spherocylinder with a length L (end to end) and a diameter D. To simplify the calculation, we 

make four assumptions: 1) a dipole is regarded as two point charges with a separation of (L-D) at 

a distance D/2 from the two ends
37

; 2) the dipole moment is only induced by the applied electric 

field, and not influenced by its neighbours or its surface charge (double layer); 3) the long axis of 

the rods has the same orientation as the field; 4) the rods cannot be overlapped. 

    The dielectric polarizability of a particle is dependent on its shape. However, they are not 

easily analytically solved except for some easy geometries such as spherical and ellipsoidal 

shape
38

. A numerical approach is probably needed for other more complicated particle shapes 

such as the spherocylinder shape of our rods. For simplification, we use an ellipsoidal 

approximation of our spherocylinder rods to estimate their dielectric polarizability. A numerical 

study has already shown that the polarizability of a circular cylinder differs less than 10% from 

that of an ellipsoid with the same volume and aspect ratio
38

. Therefore, we also expect that such 

an ellipsoid approximation is reasonable also for our particles. Based on the following 

calculation results that the maximum interaction potential is at most on the order of kBT, we think 

that the deviation from shape approximation does not give a big influence on our conclusion.  

The dipole moment P of a colloidal particle is the product of the polarizability αe and the applied 

field E: 
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The normalized polarizability is given as: 
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where εs is the dielectric constant of the solvent and V is the particle volume.

 

For a prolate ellipsoid, with three orthogonal semi axes of ax, ay, and az, with ay = az, the 

polarizability in the ax direction is 
38

:  
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Where εp is the dielectric constant of the particle, Nx is called the depolarization factor in the ax 

direction, and e is the eccentricity of the ellipsoid. For the other depolarization factors Ny or Nz, 

interchange ax, ay, and az.  

We estimate the point charge q from the effective dipole moment Peff by 

                                                                    DL

P
q
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Then we calculate the pair interaction energy of two aligned rods along the electric field 

separated by a distance r using Coulomb’s law: 
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Equation (S7) can be further expanded to formula (S8), where θ is the angle between the center-

center direction of the two rods and the electrical field.  
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By using formula (8), we plot Udip as a function of θ (0 ~ 2π) (Supplementary Figure 3) with four 

different r. The curves indicate that Udip is affected by all of these parameters: θ, r, and Erms. For 

the same r, the maximum attractive potential occurs for  = 0 or  that corresponds to a head-to-

toe structure, and the maximum repulsive potential occurs for  = /2 or 3/2 that corresponds to 

a side-by-side structure. These interactions are less than 1 kBT if r is larger than 1.5L of rods for 

the head-to-toe structure and 1L for rods in side-by-side structure (Supplementary Figure 4). For 

the highest fields used, Erms = 400 V mm
-1

, the maximum attractive Udip is only around 1.26 kBT 

for r = 3 μm (corresponding to φ = 0.02) at a   of 0 or . Apparently, this maximum Udip did not 

occur in our experimental conditions due to the formed crystal structure, for example, distorted 

BCC or distorted CP (Fig. 3a  in main text). In these crystal structures, the rods arrange their 

positions such that  is never 0 or . Therefore, we think that the actual Udip must be lower than 

1.26 kBT. In order to confirm this, we calculated the Udip of rods in the BCC, FCC and HCP 

structures, separately, with a minimum r of 3 μm (See the schematic model in Supplementary 

Fig. 5). These results are shown in Supplementary Tables 1-3. These results suggest that for all 

these possible crystal structures, the electric-field-induced dipole-dipole interactions are 

considerably less than 1 kBT even at the highest field strengths. Furthermore, when φ is lower, 



then r increases, for example, at φ = 0.005, to 5.65 μm. In this case, the Udip is 2 orders of 

magnitude lower than the thermal energy. Therefore, the dipole-dipole interaction is negligible 

under our experimental conditions. 

 

 

  



Supplementary Note 2: Increase in intensity of Bragg diffraction peaks from 

the alignment of the rod-like particles 

 

For a colloid suspension the scattering intensity I(q) can be factorized into a form factor F(q) and 

a structure factor S(q) 
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Where vc is the volume of the individual particle, Vc(r) is the scattering potential of an individual 

particle, q is the scattering vector in the reciprocal space, N is the number of particles in the unit 

cell, Ri is the position vector of an individual particle, and i sums over all the particles in the unit 

cell. 

 

For an individual cylinder, the form factor can be written as  
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where L and R are the length and the radius of the cylinder, respectively, and θ is the angle 

between the cylinder’s long axis and q. However, in the plastic crystal phase, the orientation of 

the rods is random. In the perfectly freely rotating case, we can take the orientation with equal 

probability in every direction, and use the integral form: 
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    In the perfectly aligned case, all the rods have the same orientation, so we could directly use 

supplementary equation 12, the form for individual particle. The structure factor depends solely 

on the positions of the individual colloids Ri, that is to say, the possible scattering intensity 

difference of a specific set of crystal planes only originates from the change of the form factor. In 

the transition from plastic BCC to BCC, the particle positions changed little (less than 6% for 

two nearest crystalline planes at Erms = 100 V mm
-1

), therefore, the strengthening of the 

diffraction intensity we observed, must be explained by a change in the form factor.  

The following is the comparison of the form factors before and after the alignment of the rods. 

In the field, the rod’s long axis is parallel to the field and incident light, and the angle θ is 

dependent on diffraction order. Supplementary Figure 7 illustrates that the alignment of the rods 

along the incident light direction increases the value of the form factor and thus diffraction 

intensity, which can be observed for diffraction orders 1 to 3 (Supplementary Figure 8). In our 

experiments, we observed an increase in the Bragg peak heights up to the 3
rd

 order (Figs. 5a-5b 

in main text).  
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