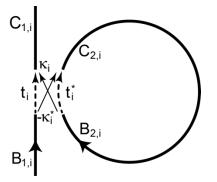
Supplementary Information

Supplementary Figure 1



Supplementary Figure 1 Diagram of coupling between a ring resonator and a waveguide. t_i and κ_i are the through- and cross-coupling coefficients, respectively. i represents f or SH. $B_{n,i}$ and $C_{n,i}$ are the mode amplitudes.

Supplementary Table

Supplementary Table 1. Microdisk quality factors and associated loss and transmission coefficients at fundamental and SH wavelengths.

	Q_i^0	Q _i tot	Q _i ^c	$1 - \alpha_i$	1– <i>t_i</i>
Fundamental	33000	16000	31000	2.2×10 ⁻³	2.4×10 ⁻³
SH	9000	4000	7200	2.9×10 ⁻²	3.6×10 ⁻²

Supplementary Discussion

Equation (1) in the main text,

$$\frac{dA_{\rm SH}}{d\theta} = A_{\rm f}^2 \left(K_+ e^{i(\Delta m+2)\theta} + K_- e^{i(\Delta m-2)\theta} \right), \tag{S1}$$

describes second-harmonic generation (SHG) in a cylindrically symmetric, nonlinearoptical microdisk made of a material from the \bar{a}_{3m} crystal class. The equation is derived¹¹ by considering the projection of the $\chi^{(2)}$ nonlinear susceptibility tensor for these crystals in the cylindrical propagation geometry, which we summarize here. The nonlinear interaction is governed by the wave equation with a nonlinear-optical driving polarization, \mathbf{P}^{NL}

$$\nabla^{2}\mathbf{E} - \mu \varepsilon \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = \mu_{0} \frac{\partial^{2}\mathbf{P}^{N}}{\partial t^{2}}.$$
 (S2)

Consider the \hat{z} -component of the second-harmonic (SH) field. In cylindrical coordinates utilizing the slowing varying envelope approximation, Eq. (S2) can be approximated as

$$2im_{\rm SH}\frac{\partial E_{\rm SH,z}}{\partial \theta} = \mu_0 \omega_{\rm SH}^2 P_{\rm SH,z}^{NL} \exp(-i\Delta m\theta)$$
(S3)

where $\Delta m = m_{SH} - 2m_f$. In GaAs and other $\overline{4}_{3m}$ point-group symmetry crystals, there is only one non-zero $\chi^{(2)}$ tensor element: $d_{xyz} = d_{14} = d_{25} = d_{36}$, so that

$$P_{\rm SH,z}^{\rm NL} = 2\varepsilon_0 d_{14} E_{\rm f,x} E_{\rm f,y} \,. \tag{S4}$$

In terms of $E_{f,r}$ and $E_{f,\theta}$,

$$E_{f,x} = E_{f,r} \cos\theta - E_{f,\theta} \sin\theta$$

$$E_{f,y} = E_{f,r} \sin\theta + E_{f,\theta} \cos\theta$$

$$P_{SH,z}^{NL} = 2\varepsilon_0 d_{14} \left\{ E_{f,r} E_{f,\theta} \cos 2\theta + \frac{1}{2} (E_{f,r}^2 - E_{f,\theta}^2) \sin 2\theta \right\}$$
(S5)

Combining Eqs. (S3) through (S5), we obtain

$$\frac{\partial E_{\text{SH},z}}{\partial \theta} = \frac{-i\mu_0 \varepsilon_0 d_{14} \omega_{\text{SH}}^2}{m_{\text{SH}}^2} \left\{ e^{-i(\Delta m-2)} \left[E_{f,z} E_{f,\theta} - \frac{i}{2} \left(E_{f,z}^2 - E_{f,\theta}^2 \right) \right] + e^{-i(\Delta m+2)} \left[E_{f,z} E_{f,\theta} + \frac{i}{2} \left(E_{f,z}^2 - E_{f,\theta}^2 \right) \right] \right\}.$$
(S6)

The cylindrical propagation geometry together with the crystal symmetry produce quasiphasematched frequency conversion when $\Delta m = +2$ or -2.

To calculate the nonlinear coupling coefficients, K_+ and K in Eq. (S1), a more careful analysis is needed. For a general three-frequency $\chi^{(2)}$ process inside a \hat{z} -surfacenormal microdisk, the d_{xyz} tensor element requires one TM-polarized wave to interact with two TE-polarized waves; for SHG, the fundamental wave is TE-polarized $(H_{t,z}, E_{t,r}, E_{t,\theta})$ while the SH wave is TM-polarized $(E_{SH,z}, H_{SH,r}, H_{SH,\theta})$. $H_{t,z}$ and $E_{SH,z}$ are separable functions that can be written as

$$F_{i,z}(r,\theta,z)\exp(i\omega_i t) = A_i(\theta)\tilde{\psi}_i(r)Z_i(z)\exp[i(\omega_i t - m_i \theta)] , \qquad (S7)$$

where $F_{i,z} = H_{f,z}$ or $E_{SH,z}$, and the normalization is chosen such that $|A_i(\theta)|^2$ represents the circulating power. The \hat{r} and $\hat{\theta}$ components of the waves may be calculated from the \hat{z} components by

$$TM = \{E_{z}, H_{r}, H_{\theta}\} \qquad TE = \{H_{z}, E_{r}, E_{\theta}\} H_{r} = \frac{m}{r\mu_{0}\omega} E_{z} \qquad E_{r} = -\frac{m}{r\varepsilon_{0}n^{2}\omega} H_{z} , \qquad (S8) H_{\theta} = \frac{1}{i\mu_{0}\omega} \frac{\partial E_{z}}{\partial r} \qquad E_{\theta} = \frac{i}{\varepsilon_{0}n^{2}\omega} \frac{\partial H_{z}}{\partial r}$$

where μ_0 and ε_0 are the vacuum permeability and permittivity, respectively; *c* is the speed of light and *n* is the refractive index.

Considering the \hat{z} component of the wave equation (Eq. (S2)), one can expand $E_{SH,z}$ in terms of the eigenmodes of the microdisk. If we focus on one particular SH

resonance characterized by integers (m_{SH} , p_{SH} , q_{SH}) that are the azimuthal, radial and vertical indices, respectively, then the nonlinear coupling is calculated from the overlap integral between this SH eigenmode and $P_{SH,z}^{NL}$, which is a function of the fundamental wave that we assume is also on-resonance. For a SH eigenmode characterized by $E_{SH,z} = A_{m_{SH}\rho_{SH}q_{SH}}(\theta)\tilde{\psi}_{\rho_{SH}}(r)\tilde{Z}_{q_{SH}}(z)\exp[-im_{SH}\theta]$ and a fundamental eigenmode characterized by $H_{t,z} = A_{m_{t}\rho_{t}q_{t}}(\theta)\tilde{\psi}_{\rho_{t}}(r)\tilde{Z}_{q_{t}}(z)\exp[-im_{t}\theta]$, the result of using $P_{SH,z}^{NL}$ in Eq. (S5) with $E_{t,r}$ and $E_{t,r\theta}$ calculated from Eq. (S8), applying the slowly varying envelope approximation, and performing the overlap integral is¹¹

$$\frac{\partial A_{m_{\text{SH}}P_{\text{SH}}q_{\text{SH}}}}{\partial \theta} = \frac{-d_{14}}{2\varepsilon_0 \omega_{\text{SH}}} \left(\frac{A_{m_t p_t q_t}}{n_t^2} \right)^2 \int_{-h/2}^{h/2} \tilde{Z}_{q_{\text{SH}}}(z) \tilde{Z}_{q_t}^2(z) dz \times \left[\int_{0}^{R} e^{i(\Delta m+2)\theta} r \tilde{\psi}_{\text{SH}} \left(\frac{m_t}{r} \tilde{\psi}_t + \frac{\partial \tilde{\psi}_t}{\partial r} \right)^2 dr - \int_{0}^{R} e^{i(\Delta m-2)\theta} r \tilde{\psi}_{\text{SH}} \left(\frac{m_t}{r} \tilde{\psi}_t - \frac{\partial \tilde{\psi}_t}{\partial r} \right)^2 dr \right],$$
(S9)

where R and h are the radius and height of the microdisk, respectively. Comparing Eq. (S9) to Eq. (S1), we identify

$$\begin{aligned}
\mathcal{K}_{+} &= -\frac{d_{14}}{2\varepsilon_{0}\omega_{SH}n_{f}^{4}} \int_{-h/2}^{h/2} \tilde{Z}_{q_{SH}}(z)\tilde{Z}_{q_{f}}^{2}(z)dz \int_{0}^{R} r\tilde{\psi}_{SH} \left(\frac{m_{f}}{r}\tilde{\psi}_{f} + \frac{\partial\tilde{\psi}_{f}}{\partial r}\right)^{2} dr \\
\mathcal{K}_{-} &= \frac{d_{14}}{2\varepsilon_{0}\omega_{SH}n_{f}^{4}} \int_{-h/2}^{h/2} \tilde{Z}_{q_{SH}}(z)\tilde{Z}_{q_{f}}^{2}(z)dz \int_{0}^{R} r\tilde{\psi}_{SH} \left(\frac{m_{f}}{r}\tilde{\psi}_{f} - \frac{\partial\tilde{\psi}_{f}}{\partial r}\right)^{2} dr .
\end{aligned} \tag{S10}$$

For second-harmonic generation in a 2.6-µm radius and 160-nm thickness GaAs microdisk between a TE-polarized fundamental (m_f=13, p_f=1, q_f=1) and TM-polarized second harmonic (m_{SH}=24, p_{SH}=2, q_{SH}=1), we calculate $K_{+} = 1.6 \times 10^{-3} \text{ W}^{-1/2}$ and $K_{-} = -1.0 \times 10^{-5} \text{ W}^{-1/2}$, where $\lambda_{f} = 1.99 \text{ µm}$, n_f = 3.34, and d₁₄ = 94 pm/V ²⁷.

The coupling of a waveguide to a ring resonator can be described by the sketch in Fig. S1. $B_{n,i}$ and $C_{n,i}$ are the complex mode amplitudes normalized such that $|B_{n,i}|^2$, $|C_{n,i}|^2$ = power. In the absence of reflections, coupling between the resonator and waveguide is described by³⁶

$$\begin{bmatrix} C_{1,i} \\ C_{2,i} \end{bmatrix} = \begin{bmatrix} t_i & \kappa_i \\ -\kappa_i & t_i \end{bmatrix} \begin{bmatrix} B_{1,i} \\ B_{2,i} \end{bmatrix}.$$
 (S11)

The coupler is taken to be lossless so that $|\kappa_i|^2 + |t_i|^2 = 1$. At the fundamental wave,

$$B_{2,f} = \alpha_f \exp(i\varphi_f) C_{2,f}, \qquad (S12)$$

where α_f is the resonator loss, and ϕ_f is the phase accumulated by propagation around the resonator. At the SH wave, there is loss (α_{SH}), phase shift (ϕ_{SH}) and SHG gain. By integrating Eq. (S1) from $\theta = 0$ to 2π , we find that each round trip in the microdisk produces an increase in the SH amplitude

$$A_{\rm SH}(2\pi) - A_{\rm SH}(0) = 2\pi A_{\rm f}^2 \left(K_+ e^{i(\Delta m+2)\pi} \operatorname{sinc}[(\Delta m+2)\pi] + K_- e^{i(\Delta m-2)\pi} \operatorname{sinc}[(\Delta m-2)\pi] \right)$$

= $A_{\rm f}^2 \tilde{K}$ (S13)

where sinc(*x*) = sin(*x*)/*x* and $A_{t} \approx$ constant. Combining Eq. (S13) with phase shift and loss, we obtain

$$\frac{B_{2,SH}}{\alpha_{SH}\exp(i\varphi_{SH})} - C_{2,SH} = |C_{2,f}|^2 \tilde{K} .$$
(S14)

Equations (S11) and (S12) imply that the circulating power is

$$|B_{2,f}|^{2} = \frac{\alpha_{f}^{2} (1 - |t_{f}|^{2})}{1 + \alpha_{f}^{2} |t_{f}|^{2} - 2\alpha_{f} |t_{f}| \cos(\psi_{f} + \varphi_{f})} |B_{1,f}|^{2} , \qquad (S15)$$

where $t_i = |t_i| \exp(-i\psi_i)$. Note that Eq. (S15) also describes the circulating-power spectrum of a "passive" resonator in the SH wavelength range.

Combining Eqs. (S11) and (S14) with $B_{1,SH} = 0$, we find

$$\begin{aligned} \left| C_{1,SH} \right|^{2} &= \left(1 - \left| t_{SH} \right|^{2} \right) \left| B_{2,SH} \right|^{2} \\ &= \left| B_{2,f} \right|^{4} \frac{\left(1 - \left| t_{SH} \right|^{2} \right) \left| \tilde{K} \right|^{2} \alpha_{SH}^{2}}{1 + \alpha_{SH}^{2} \left| t_{SH} \right|^{2} - 2\alpha_{SH} \left| t_{SH} \right| \cos(\psi_{SH} + \varphi_{SH})} \\ &= \left| B_{1,f} \right|^{4} \frac{\left(1 - \left| t_{SH} \right|^{2} \right) \left| \tilde{K} \right|^{2} \alpha_{SH}^{2}}{1 + \alpha_{SH}^{2} \left| t_{SH} \right|^{2} - 2\alpha_{SH} \left| t_{SH} \right| \cos(\psi_{SH} + \varphi_{SH})} \\ &\times \left(\frac{\alpha_{f}^{2} \left(1 - \left| t_{f} \right|^{2} \right)}{1 + \alpha_{f}^{2} \left| t_{f} \right|^{2} - 2\alpha_{f} \left| t_{f} \right| \cos(\psi_{f} + \varphi_{f})} \right)^{2}. \end{aligned}$$
(S16)

 $|B_{2,f}|^2$ and $|B_{2,SH}|^2$ are the circulating powers at the fundamental and SH, respectively, while $|C_{1,f}|^2$ and $|C_{1,SH}|^2$ are the output powers. Comparison of Eqs. (S16) to (S15) yields Eq. (3) in the main text.

The phase shifts (φ_i and φ_{SH}) are related to the azimuthal numbers m_i of the resonances. m_i plays a role analogous to the wavevector k_i in linear propagation geometries; both describe the rate of phase accumulation due to propagation. Even though m_i is only well-defined at resonant wavelengths, we can estimate an effective $m'_i(\lambda_i)$ for all wavelengths inside the microdisk by interpolating between resonances of the same spatial-mode family. The continuous function $m'_i(\lambda_i)$ allows us to calculate ϕ_i for all wavelengths, both on- and off-resonance with the cavity. The phase mismatch accumulated per round trip is then

$$-2\pi\Delta m' = \varphi_{\rm SH} - 2\varphi_{\rm f} , \qquad (S17)$$

so \tilde{K} defined in Eq. (S12) is a function of φ_{f} and φ_{SH} . The loss, α_{i} , and transmission coefficient, $|t_{i}|$, can be calculated from the intrinsic Q_{i}^{0} and coupling Q_{i}^{c} quality factors by^{11,36}

$$Q_{i}^{0} = \pi \frac{\sqrt{\alpha_{i}}}{1 - \alpha_{i}} \frac{c}{\lambda_{i} \delta f_{i,FSR}} \qquad \qquad Q_{i}^{c} = \pi \frac{\sqrt{|t_{i}|}}{1 - |t_{i}|} \frac{c}{\lambda_{i} \delta f_{i,FSR}}, \qquad (S18)$$

7

where $\delta f_{i,FSR}$ is the free spectral range of the resonator for wave *i* in frequency units.

For the resonant modes of the GaAs microdisk considered here, $\delta f_{f,FSR} = 6.4 \times 10^{12}$ Hz and $\delta f_{SH,FSR} = 3.6 \times 10^{12}$ Hz. The measured quality factors are summarized in Table S1, as are the calculated loss and transmission coefficients (Eq. (S18)) at both wavelengths. Using finite-element modeling, we calculate the wavelengths for several adjacent resonances near the fundamental ($m_f=13$, $p_f=1$, $q_f=1$) and second harmonic (m_{SH}=24, p_{SH}=2, q_{SH}=1) resonances in order to construct $m_i'(\lambda_i)$. We then used Eq. (S16) and $\phi_i = -2\pi m_i'(\lambda_i)$ to calculated the round-trip phases. Using values for the loss and transmission coefficients in Table S1, $K_{+} = 1.6 \times 10^{-3} \text{ W}^{-1/2}$ and $K_{-} = -1.0 \times 10^{-5} \text{ W}^{-1/2}$ ^{1/2} calculated earlier, and taking $\psi_f = \psi_{SH} = 0$, Eq. (S16) predicts peak, normalized conversion efficiency $\eta = |C_{1,SH}|^2 / |B_{1,f}|^4 = 1 \times 10^{-3} / \text{mW}$ for a microdisk with $|| | \lambda_f^{\text{res}} - 2\lambda_{SH}^{\text{res}} |= 2.2 \text{ nm}$. By decreasing the theoretical microdisk radius by 9 nm, $|\lambda_{f}^{res} - 2\lambda_{SH}^{res}| = 0$ nm and the theoretical peak, normalized conversion efficiency increases to $\eta = 8 \times 10^{-2}$ /mW. We note that the GaAs microdisk described here may also supports $\overline{4}$ -QPM between the fundamental ($m_f=13$, $p_f=1$, $q_f=1$) resonance and the second harmonic ($m_{SH}=28$, $p_{SH}=1$, $q_{SH}=1$) resonance ($\Delta m = +2$). As calculated in Ref. 11, the nonlinear coupling coefficients for these modes are $K_{\perp} = 9.7 \times 10^{-4}$ W^{-1/2} and $K_{\perp} = -1.9 \times 10^{-3}$ W^{-1/2}. If $|\lambda_t^{res} - 2\lambda_{SH}^{res}| = 0$ nm for the resonances satisfying $\Delta m = +2$, then the normalized conversion efficiency would be $\eta = 1.2 \times 10^{-1}$ /mW.

Supplementary Reference

34. Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. *Electron. Lett.* **36**, 321–322 (2000).