Plasmid	Description
pRS415	CEN/ARS, LEU2
pKHS443	pET28a-SGS11-N1-125
pKHS460	pGEX-6p-2-SGS1-N125-250
pKHS462	pET28a-SGS1-N1-250
pKHS463	pET28a-SGS1-N1-80
pKHS466	pGEX-6p-2-SGS1-N1-160
pKHS481	pRS415-SGS1 ⁱ
pKHS482	pRS415-SGS1-F30P
pKHS484	pRS415-SGS1-W92PL93P
pKHS485	pRS415-SGS1-L93P
pKHS489	pRS415 -SGS1-K26P
pKHS492	pRS415-SGS1-V29P
pKHS494	pRS415-SGS1-D25P
pKHS496	pRS415-SGS1-I33P
pKHS497	pRS415-SGS1-Q34P
pKHS546	pGEX-6p-2-SGS1-N1-250-K26P
pKHS547	pGEX-6p-2-SGS1-N1-250-V29P
pKHS548	pGEX-6p-SGS1-N1-250-F30P
pKHS582	pRS415-SGS1-L9P
pKHS583	pRS415-SGS1-H13P
pKHS584	pGEX-6p-2-SGS1-N1-250-L9P
pKHS585	pGEX-6p-2-SGS-N1-250-H13P
pKHS586	pGEX-6p-2-SGS1-N1-250-T21P
pKHS587	pGEX-6p-2-SGS-1N1-250-K17P
pKHS588	pRS415-SGS1-L181P
pKHS589	pRS415-SGS1-L215P
pKHS590	pRS415-SGS1-T61P
pKHS591	pRS415-SGS1-L176P
pKHS592	pRS415-SGS1-W15P
pKHS594	pRS415-SGS1-I37P
pKHS595	pGEX-6p-2-SGS1-N1-250-D25P
pKHS596	pRS415-SGS1.MYC.HIS3MX6
pKHS598	pRS415-SGS1-F30P.MYC.HIS3MX6
pKHS600	pRS415-SGS1-H13P.MYC.HIS3MX6
pKHS602	pET28a-SGS1-N1-80-F30P

Supplementary Table 1. Plasmids used in this study

ⁱ Gift from Dr. Steven Brill (Rutgers University)

Figure S1. Proline substitutions in Sgs1 that cause hypersensitivity to the DNAdamaging agent hydroxyurea do not affect expression levels of the sgs1 mutant proteins. The $sgs1 \Delta$ mutant KHSY1338 was transformed with plasmids pKHS596 (Sgs1.myc), pKHS598 (sgs1-F30P.myc) or pKHS600 (sgs1-H13P.myc). Whole cell extracts were prepared by TCA extraction from mid-log phase cultures and separated by 10% SDS-PAGE. Wildtype Sgs1 and the sgs1-F30P, sgs1-H13P mutants were detected by Western blotting with monoclonal antibody against the C-terminal myc-epitope. GAPDH was detected by a monoclonal antibody against GAPDH.

Figure S2. Helical content prediction for the N-terminus of *S. pombe* Rqh1 by AGADIR (57). The distribution of helical content for the first 322 residues, which are required for interaction with Top3 (9), are shown. The first prominent peak is predicted at residue M117 within a 15-residue segment spanning from D112 to Q127, and a second peak at I286 within a 27-residue segment spanning from H264 to R291.