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ABSTRACT Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to
properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions
governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference
to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution
(with acquisition of a few minutes). Upon applying these analytical tools to glycine neurotransmitter receptors at inhibitory
synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for glycine neurotransmitter receptors, with a
depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be
used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population,
and thereby, to model the stochastic fluctuations of physiological parameters (such as the number of receptors at synapses).
Overall, our approach provides a powerful and comprehensive framework with which to analyze biochemical interactions in living
cells and to decipher the multiscale dynamics of biomolecules in complex cellular environments.
INTRODUCTION
Determining the parameters that regulate the mobility of
proteins in cells is key for many cellular functions. The
motion of proteins depends on a variety of factors, including
the local viscosity, their intermittent binding to other
proteins, the molecular crowding, and the dimensionality
of the accessible space (1). Because all these factors are
difficult or impossible to reconstitute in vitro using purified
constituents, there is a compelling need for analytical tools
that bypass in vitro assays and directly access the properties
of macromolecular assemblies and the kinetics of their
interactions in their native cellular environment.

Thanks to single-molecule imaging tools, it is now
possible to record trajectories of individual proteins in a
variety of cellular systems. An important challenge is to
extract relevant biochemical and biophysical information
from these trajectories. This is commonly done by com-
puting the mean-square displacement (MSD) along the tra-
jectories and estimating the effective diffusion coefficient of
the molecule. By associating the diffusional states to the
functional states of the biomolecules, one can identify
molecular behaviors (1) and evaluate the transition kinetics
Submitted July 24, 2013, and accepted for publication October 15, 2013.

*Correspondence: jbmasson@pasteur.fr or triller@biologie.ens.fr or

maxime.dahan@curie.fr

Patrice Dionne and Charlotte Salvatico contributed equally to this article.

Editor: Anne Kenworthy.

� 2014 by the Biophysical Society

0006-3495/14/01/0074/10 $2.00
between them (2). Although this approach has often proved
useful, it is conceptually inappropriate in many biological
situations. Measuring a diffusion coefficient places
emphasis on the friction encountered by the protein and
assumes that the movement is characterized by an MSD
scaling linearly with time. Yet, the primary factor control-
ling the motion of a protein is often not the friction but,
instead, its interactions with molecular or macromolecular
partners leading to transient stabilization or transport. In
this case, the relevant information is not the diffusion coef-
ficient but the binding energies between the protein of inter-
est and its interacting partners. Furthermore, regulatory
processes are often mediated by changes in these binding
energies, which should ideally be evaluated with in situ
measurements.

Methods that go beyond the computation of the MSD
generally aim to identify deviations from Brownian move-
ment within single-molecule trajectories, due for instance
to trapping or transport (3–5). However, these methods
essentially remain ad hoc tools and do not constitute a
comprehensive framework to describe the parameters
underlying the motion. Furthermore, biological media are
often spatially inhomogeneous and this heterogeneity is
poorly conveyed by measuring a few, sparse trajectories.
A conceptually different approach using Bayesian infer-
ence methods has been recently proposed to analyze the
motion of molecules (6,7). It assumes that the membrane
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environment is characterized by two spatially varying
quantities:

1. The diffusivity D(r) ¼ kBT/g(r) (where g(r) is the local
viscosity).

2. The potential energy V(r) that reflects the biochemical
interactions of the molecule.

In this framework, the protein is a random walker with
a motion governed by the Langevin equation (6),

dr

dt
¼ �DðrÞVVðrÞ

kBT
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2DðrÞ

p
xðtÞ; (1)

where x(t) is a rapidly varying Gaussian noise with zero
mean. From a general standpoint, a knowledge of D(r)
and V(r), which are protein-specific, can reveal not only
how fast the protein moves in the membrane, but also how
to identify areas where it can be stabilized (energy traps)
or from which it is excluded (energy barriers). However,
in the few cases where D(r) and V(r) have been experimen-
tally determined (8,9), the analysis has been limited to
movements confined in local regions (<1 mm2), falling short
of providing a complete description of the heterogeneous
diffusivity and energy landscapes in the cell membrane.

Here, we introduce what we believe to be a novel and
generic approach, combining high-density, single-molecule
imaging, and computational tools to enable the mapping of
the environment of membrane receptors across the entire
cell surface and at ~100 nm resolution. This approach
allows the mapping of the membrane over regions of several
hundred mm2 in a few minutes of data acquisition. Further-
more, the inferred maps are used to numerically generate
massive number of trajectories. These simulated trajec-
tories, whose characteristics match those of the experi-
mental ones, enable a complete analysis of the dynamics
in the complex membrane environment by means of various
statistical estimators.

To illustrate the relevance and benefits of our approach,
we applied it to the neuronal membrane, a cellular system
in which the spatial organization is critical for the detection
and processing of external information. In past years,
tracking experiments have underlined the role of membrane
dynamics in ensuring rapid exchange of receptors (e.g.,
glutamate, glycine, or GABA receptors) between extrasy-
naptic and synaptic localizations (10). Therefore, the num-
ber of receptors at synapses depends on the motion of
receptors at the cell surface and their stabilization at syn-
aptic loci, the latter being regulated by the number of
scaffolding molecules and the affinity of the receptor-
scaffold interactions (11). A quantitative analysis of the pro-
tein mobilities and of their regulatory mechanisms is thus
paramount for characterizing and modeling the variability
of the synaptic response and the plasticity of the nervous
system (involved in higher brain functions such as learning
and memory or during pathological processes).
MATERIALS AND METHODS

Antibody coupling

Rat anti-GFP monoclonal antibody (Roche Molecular Diagnostics,

Pleasanton, CA) was labeled with Atto-647 dye using standard conjugation

methods. In brief, 40 mL of antibodies at 0.4 mg/mL in phosphate-buffed

saline (PBS) were mixed with 4 mL of 1 M sodium bicarbonate buffer at

pH 8.5. This solution was incubated with 10-fold molar excess of Atto-

647-NHS-ester (Sigma, St. Louis, MO) diluted at 1 mg/mL in anhydrous

dimethyl sulfoxide. After 1 h of incubation at room temperature, the solu-

tion was filtered with a Microspin G50 column (GE Healthcare, Little

Chalfont, Buckinghamshire, UK) to remove unconjugated dye. The overall

coupling efficiency of the dye, estimated by UV-Vis absorption, was ~12%.

The labeled antibodies were washed with PBS and concentrated using three

rounds of centrifugation with a Vivaspin500 10-kDa cutoff PES membrane

filter (GE Healthcare). The concentrated antibody solution was stored at

4�C and used for up to one week.
Cell culture and plasmid transfection

Hippocampal neurons from Sprague-Dawley rats at embryonic day 18 were

cultured at a density of 6� 104 cells/cm2 on18-mmcoverslips precoatedwith

80 mg/mL poly-D,L-ornithine (Sigma) and 5% fetal calf serum (Invitrogen,

Carlsbad, CA) as described previously in Dahan et al. (19). Cultures were

maintained in serum-free neurobasal medium supplemented with 1� B27

and 2 mM glutamine (Invitrogen). Cells were transfected after 6–8 days

in vitro using Lipofectamine 2000 (Invitrogen), and imaged 1–2 days after

transfection. All coverslips were cotransfected with mRFP-tagged gephyrin

and pHluorin-tagged transmembrane (TM) constructs, using 0.4 mg of each

plasmid per coverslip. The expression constructs bWT-TM-pHluorin,

bS403D-TM-pHluorin, and b�-TM-pHluorin are all described in Specht

et al. (12). In brief, bS403D corresponds to the mutation of serine S403 of

the GlyRb subunit that mimics the phosphorylation of the residue by protein

kinase C. b�-TM corresponds to the double mutation F398A and I400A of

the wild-type GlyR b-loop that abolishes binding to gephyrin.
Cell labeling

Before imaging, we prepared a stock solution of diluted antibodies using

casein (Vector Laboratories, Burlingame, CA) as a blocking reagent. We

added 2 mL of Atto-647 conjugated anti-GFP antibodies and 10 mL of

10 mg/mL casein to 40 mL of PBS, resulting in an antibody solution of

0.1–0.2 mM. We also prepared a stock of Tetraspeck fluorescent

microbeads (Invitrogen) by mixing 1 mL of 0.1 mM microbeads with

400 mL of imaging solution. These multicolor fluorescent beads were

used as a reference to align the different imaging channels and to correct

for x/y drifts of the stage and the coverslip. The coverslip was mounted

in an imaging chamber and incubated with 20 mL of warmed microbead

solution for 10 s. After rinsing, the chamber was filled with 600 mL of

warmed imaging solution (MEMair: phenol red-free minimum essential

medium (MEM), glucose 33 mM, HEPES 20 mM, glutamine 2 mM,

Na-pyruvate 1 mM, and B27 1�) and placed on the microscope. To avoid

saturating the cell membrane with fluorescent antibodies, we first selected

a transfected neuron and added the fluorescent antibodies at a final concen-

tration of 0.3–0.6 nM directly before the start of the acquisition.
Imaging

Measurements were performed on an inverted epi-fluorescence microscope

(modelNo. IX70;Olympus,Melville,NY) equippedwith a 100� 1.45NAoil

objective and a back-illuminated electron-multiplying charge-coupled

device camera (Quantum; Roper Scientific, Trenton, NJ). We imaged the

neurons at 37�C in MEMair recording medium using a heated stage. For
Biophysical Journal 106(1) 74–83
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each neuron, we first recorded images of the pHluorin signal of the TM

constructs and of mRFP-gephyrin fluorescence, using an ultraviolet lamp

(Uvico; Rapp OptoElectronic, Wedel, Germany) and standard sets of

filters for GFP (excitation 475AF40, dichroic 515DRLP, and emission

535AF45) and RFP (excitation 580DF30, dichroic 600DRLP, and emission

620DF30). Next we acquired a movie in uPAINT (J-T-L Development,

http://j-t-l.com/) of the transmembrane proteins labeled with Atto-647-

coupled anti-GFP antibodies (20,000 images at 20 frames/s). Atto-647

dyes were excited with a 640-nm laser and their fluorescence was collected

through using a 650DRLP dichroic and a 690DF40 emission filter. The laser

was tightly focused on the back-focal plane of the objective. The angle of

incidence of the beam on the coverslip, controlled by laterally moving the

focused spot, was just under the limit of total internal reflection, such that

the laser beam in the sample was almost parallel to the glass surface. This

angle was slightly adjusted in each experiment to maximize the signal/noise

ratio of the single fluorescent spots diffusing in the membrane.
Di,j

Vi,j

i

j

Δ

dt kBT
Data analysis

Tracking analysis of the movies was carried out using an adapted version of

the multiple target-tracking algorithm (13). In brief, fluorescence spots

corresponding to the point-spread function of single emitting fluorophores

were fitted with a two-dimensional Gaussian. The center of the fit yielded

the position of single molecules with localization accuracy ~30 nm. Trajec-

tories were then computed from individual detections with a nearest-

neighbor algorithm.
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FIGURE 1 General scheme of the assay. (a) Principle of the Bayesian

inference method. (Left) High-density single-molecule data (red dots) are

recorded at the cell surface. (Right) In a mesh domain, multiple transloca-

tions (top) are used to infer the local diffusivity and force (gradient of the

potential) that underlie the motion (bottom). (b) GlyRs (blue) diffuse in

the membrane and are in dynamic equilibrium between synaptic and extra-

synaptic domains in the neuronal membrane. At synapses, GlyRs are stabi-

lized by their interactions with gephyrin clusters (orange), which can be

modeled as trapping potential (with depth US). (c) Expression constructs

of transmembrane proteins with an extracellular pHluorin tag and an intra-

cellular interaction loop derived from the GlyR b-subunit. (d) Principle of

high-density single-molecule uPAINT imaging (16). To see this figure in

color, go online.
Simulations in the landscapes

The maps of the diffusion and energy landscapes, D(r) and V(r), can be

used to simulate the behavior of the molecules at different time- and space

scales. In each mesh subdomain (i, j) a diffusivity Di,j is associated with a

potential energy value Vi,j. The dynamics of the molecules are described by

the Fokker-Planck equation

vPðr; tjr0; tÞ
vt

¼ �V:

�
� VVðrÞPðr; tjr0; tÞ

gðrÞ

� VðDðrÞPðr; tjr0; tÞÞ
�
; (2)

where P(r, tjr0, t) is the conditional transition probability from (r0, t0) to

(r, t). Fokker-Planck equations can always be approximated by Master

equations,

dPði;jÞðtÞ
dt

¼
X

ði0 ;j0Þ˛Nði;jÞ
Wði;jÞ;ði0 ;j0ÞPði0 ;j0Þ�

X
ði0;j0Þ˛Nði;jÞ

Wði0 ;j0Þ;ði;jÞPði;jÞ;

(3)

with, in our case,

Wði;jÞ;ði0 ;j0Þ ¼ Dði0; j0Þ
Dx2

exp

�
� DxFx

ði;jÞ;ði0 ;j0Þ
2gði0; j0ÞDði0 ;j0Þ

�
; (4)

if the transition is in the x direction and a similar formula in the y direction,

and with W(i,j),(i0 ,j0) as the transition rate from the (i0,j0) site to the (i, j), Dx

(Dy) as the mesh size in the x(y) direction, and with Fx
ði; jÞ;ði0 ; j0 Þ as the

potential gradient acting on the random walker in the x direction when

moving from (i, j
0
) to (i, j). Following Eq. 4, the motion of the molecule

was simulated using the Gillespie scheme (27). When the molecule

was at the site (i, j), the transitions rates, rewritten an to match
Biophysical Journal 106(1) 74–83
Gillespie formalism, n taking values from 1 to 4, were evaluated on all

neighboring sites. We define a0 ¼ Snan. The time, t, to move from the

site (i, j) to a neighboring site is extracted from an exponential probability

density function of rate a0, so that t ¼ ð1=a0Þ logð1=r1Þ with r1 a random

number in [0,1]. The destination site, k, is chosen to satisfyPk�1
n¼0 an % r2a0 %

Pk
n¼0 an with r2 a random number in [0,1]. Limits

of the neuronal cells and unvisited sites are defined as inaccessible sites.

Note that the trajectory generation process leads to trajectories with non-

constant time steps. To evaluate the different estimators, trajectories were

regularized to obtain the molecule position at regular time lags by imposing

that as long as each t was not reached, the molecule did not move.

http://j-t-l.com/
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RESULTS AND DISCUSSION

Mapping the diffusion and energy landscapes
with Bayesian inference

Our approach for the large-scale mapping of D(r) and
V(r) builds on Bayesian statistical tools recently developed
to analyze the motion of individual particles (6,7).
The principle of the method is as follows (see details
in the Supporting Material): We first acquire high-density
single-molecule data (15,16), with a number of individual
translocations of 1000–10,000/mm2. Next, the surface
of the cell is meshed with subdomains Si,j (labeled with
the index (i,j) along the x and y axis) with a size proportional
by a factor d ~2–3 to the average step size of a translocation,
such that consecutive positions of the molecules are either
in the same or in adjacent domains (Fig. 1 a). From the
information contained in the massive number of individual
translocations, we determine Di,j and VVi,j in each subdo-
main (i,j) using Bayesian inference techniques adapted
from Türkcan et al. (7). In brief, we compute the global
posterior distribution P of the parameters {Di,j}(i,j) and
{VVi,j}(i,j) given the observed trajectories {Tk}(k). Since all
the subdomains are independent, P is the product of the
posterior distributions inside each of them:

P
��

VVi;j

�
ði;jÞ;
�
Di;j

�
ði;jÞ
��fTkgðkÞ

	

¼
 Y

ði;jÞ
P


VVi;j;Di;j

��fTkgðkÞ
�! � PðVV;DÞ (5)
f
Y
ði;jÞ

0
BBBBBBBBB@
Y
k

Y
m:rkm˛Si;j

exp

0
BB@�



rkmþ1 � rkm � Di;jVVi;jDt=kBT

�2
4

�
Di;j þ s2

Dt

�
Dt

1
CCA

4p

�
Di;j þ s2

Dt

�
Dt

� D2
i;j


Di;jDt þ s2
�2

1
CCCCCCCCCA

(6)
where m designates the index for which the points rkm of the
kth trajectory are in Si,j, the value s is the experimental
localization accuracy (~30 nm), Dt is the acquisition time,
and P(VV, D) is the prior information on the potential and
the diffusivities. In the second line of Eq. 5, we display
the prior we commonly used, Jeffrey’s prior, that is
discussed in the Supporting Material. The estimators
fDMAP

i;j ;VVMAP
i;j gði;jÞ of the local diffusivity and force are

the maximum a posteriori of the posterior distribution
P (17,18). Finally, we solve the inverse problem to deter-
mine in each subdomain the potential field Vi,j associated
to the force. The estimation of Vi,j is performed by mini-
mizing x({Vi, j}), defined as
x

�

Vi;j

���ði; jÞ˛fNði; jÞgs0
� ¼

X
ði;jÞ

�
VVi;j � VVMAP

i;j

	2

þ bðdÞ
X
ði;jÞ



VVi;j

�2
;

(7)

with N(i,j) the number of neighboring occupied mesh
domains and b(d) a constant (optimized on numerically gene-
rated trajectories) depending on d (see the Supporting Mate-
rial). Eventually, the set of quantities fDMAP

i;j ;VVMAP
i;j gði;jÞ

constitute the diffusivity and potential energy maps.
Glycine receptors and their interactions with
scaffolding proteins

We applied our inference-based mapping method to investi-
gate the dynamics of glycine neurotransmitter receptors
(GlyRs) in the neuronal membrane as well as their stabi-
lization at inhibitory synapses (19). This stabilization is
achieved through the binding of the receptors to the scaffold
protein gephyrin (Fig. 1 b) via an intracellular loop (the
b-loop) present in the two b-subunits of the pentameric
GlyR complex. The high affinity component of the
b-loop-gephyrin interaction is in the nanomolar range
(KD~20 nM), as determined by isothermal titration
calorimetry (12). To characterize the GlyR-gephyrin inter-
action in living neurons, we used recombinant membrane
proteins consisting of a TM domain and a C-terminal
pHluorin tag (a pH-sensitive GFP mutant that is quenched
in intracellular acidic vesicular compartments) that were
fused N-terminally to the intracellular GlyR b-loop
(Fig. 1 c). This bWT-TM-pHluorin construct recapitulates
the interactions of the endogenous GlyR complexes with
the gephyrin scaffold proteins, with the important benefit
that individual elements of the receptor-scaffold interaction
can be manipulated independently (12). It also overcomes
the difficulty of defining the subunit composition of oligo-
meric receptors where transfected subunits compete with
endogenous ones. As a control, we used b�-TM-pHluorin,
a construct with a mutated b-loop that does not interact
with gephyrin.
Biophysical Journal 106(1) 74–83
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High-density single-molecule imaging of TM
proteins

We acquired a high density of individual trajectories using
uPAINT, a single-molecule movie-making technique in
which cells are imaged at an oblique illumination in a buffer
containing dye-labeled primary antibodies (16). Because
antibodies (in our case, anti-GFP antibodies coupled to
Atto647N dyes) continuously bind to their membrane
targets, they can be tracked until they either dissociate or
photobleach (Fig. 1 d and see Movie S1 and Movie S2 in
the Supporting Material). Hence, the entire field of view is
constantly replenished with new fluorescent labels and a
large number of individual trajectories covering a field of
view of ~500–1000 mm2 can be recorded. Experiments
were performed on cultured rat hippocampal neurons
cotransfected with mRFP-tagged gephyrin and with the
pHluorin-tagged transmembrane constructs (Fig. 1 c). In
typical measurements, movies were recorded for ~5–
15 min with an acquisition time Dt ¼ 50 ms (see Movie
S1 and Movie S2), yielding up to hundreds of thousands
of individual translocations per field of view, with an
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average of 30 points per mesh domain (size ~100 �
100 nm2). On this timescale, the cells and synaptic sites re-
mained relatively stable, meaning that the diffusivity and
energy landscapes could be considered constant.
Diffusion and energy maps of TM proteins

Fig. 2, a–f, shows examples of the diffusivity and energy
maps for the two constructs bWT-TM-pHluorin and
b�-TM -pHluorin. In both cases, the diffusion map exhibits
fluctuations at short scale (%1 mm or less), with local peaks
and valleys and a characteristic diffusivity in the range of
0.05-0.2 mm2.s�1 (Fig. 2, b and e). More striking differences
were observed between the energy landscapes. For bWT-TM,
the landscape is characterized by the existence of small re-
gions (<0.5 mm2) corresponding to local energy minima
(Fig. 2 c). Importantly, gephyrin clusters coincide with
energy minima, consistent with the stabilization of the trans-
membrane proteins at synaptic sites. Yet, we also observed
that some other minima did not colocalize with gephyrin
clusters, suggesting that bWT-TM-pHluorin might interact
us [μm]  
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FIGURE 2 Diffusion and energy maps in live

neurons. (a) Fluorescence images of cultured

neurons expressing mRFP-gephyrin and bWT-TM-

pHluorin. Scale bar: 10 mm. (b and c) Diffusion

and energy maps. (d–f) Equivalent set of images

and maps for b�-TM-pHluorin. (g) Distribution

of diffusion coefficients for the membrane con-

structs bWT-TM (black), bS403D-TM (blue), and

b�-TM (red). (Vertical bars on the x axis) Mean

values of the respective distributions. (Inset) Distri-

bution in a lin-log scale. (h) Rugosity of the mem-

brane potential as a function of the region radius.

To see this figure in color, go online.
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with other partners outside of synapses (such as the cyto-
skeleton or lipid domains). It is possible that these extrasy-
naptic interactions are still mediated by gephyrin (present in
number too small to be detected), because gephyrin is
known to associate with GlyRs both inside and outside of
synapses (20). In contrast, the energy map for b�-TM
(Fig. 2 f) shows variations at a longer length-scale, without
correlation to gephyrin clusters.

To more quantitatively compare the heterogeneous prop-
erties of the neuronal membrane for bWT-TM and b�-TM,
we computed two quantities (averaged over seven cells in
each case):

1. The distribution of diffusion coefficients in the maps
(Fig. 2 g), and

2. The rugosity of the energy landscape (Fig. 2 h and see
the Supporting Material), was defined as the standard
deviation of the potential inside an area of defined radius
averaged over the complete surface of the cell.

These parameters revealed that the interacting b-loop
led to a lower average diffusivity (0.06 mm2.s�1 and
0.13 mm2.s�1 for bWT-TM and b�-TM, respectively) and a
larger rugosity of the potential. This is consistent with the
notion that moving TM proteins, when bound to intracel-
lular scaffolding proteins, encounter more obstacles that
increase the viscosity of their environment. They are also
more likely to interact with membrane or submembrane
structures that contribute to the energy landscapes.
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Synaptic scaffolds as crowded energy traps

Given the pronounced differences between the energy
landscapes of the bWT-TM and b�-TM constructs, we exam-
ined the behavior of bWT-TM at gephyrin clusters in closer
details. An example of the energy profile of bWT-TM pro-
teins at a synaptic cluster (identified by the presence of
mRFP-gephyrin fluorescence) is shown in Fig. 3 a. The pro-
file reinforces the view that clusters of scaffolding proteins
act as energy traps for membrane receptors (9,10,19). The
average trap depth was 3.6 5 0.4 kBT (mean 5 SE, n ¼
69 clusters), a relatively shallow potential from which re-
ceptors can escape rapidly. Yet, ~15% of clusters had stabi-
lization energies greater than 6 kBT, corresponding to a
much more stable anchoring of receptors (Fig. 3 b). This re-
flects the heterogeneity of the synaptic domains in the
neuronal membrane and underlines the need for measure-
ments at the single synapse level.

Of note, the binding energies between bWT-TM and
gephyrin seem to be significantly lower than the stabiliza-
tion energy of AMPA receptors at synaptic sites, for which
25% of the wells had a depth larger than 8 kBT (9). The
method used in Hoze et al. (9), also based on a combination
of high-density single-molecule imaging and statistical
inference, evaluates the diffusion and drift by computing
the maximal likelihood estimation in a mesh square as
described in Türkcan et al. (7). The confining potentials
were subsequently evaluated by L2 minimization of a para-
bolic-shaped potential from the force (drift) fields. In Hoze
S403D-TM
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et al. (9) the authors do not discuss the role of known biases
with confining potentials (see (7,8,21)) or the effect of the
positioning noise, and do not provide information on the
posterior distribution of the parameters. It is thus difficult
to precisely compare their experimental results with ours.
Yet, given that the diffusivity of AMPARs at excitatory
synapses appears to be higher than the diffusivity of GlyRs
at inhibitory synapses (gephyrin clusters), higher confining
potentials may be necessary to stabilize the AMPARs.
In addition, we noticed that the average diffusivity of
bWT-TM (~0.01 mm2.s�1) inside gephyrin clusters was
reduced by a factor ~6 compared to extrasynaptic regions
(Fig. 3 c), probably due to the combined effect of membrane
crowding within synaptic sites and the binding to scaf-
folding elements. In comparison, the diffusivity of b�-TM
proteins inside gephyrin clusters, which we expect to be
predominantly influenced by molecular crowding (22),
was 0.07 mm2.s�1 (Fig. 3 c), only a factor ~2 lower than
in extrasynaptic domains. In other words, the synaptic scaf-
fold stabilizes the receptor by simultaneously diminishing
the diffusivity of the receptor and by acting as a trapping
potential.
Modulation of the b-loop gephyrin binding affinity

Because the computation of the energy landscape allows the
unambiguous distinction between interacting membrane
constructs and those lacking interaction domains, we tested
the sensitivity of our approach with the phosphomimetic
construct bS403D-TM, a mutated b-loop known to have a
lower gephyrin binding affinity in vitro (KD ~0.9 mM (12))
(Fig. 1 c). As a result, bS403D-TM displayed increased
membrane diffusion and reduced synaptic accumulation
compared to bWT-TM. The phosphorylation of the amino-
acid residue S403 of the GlyRb subunit by protein kinase
C thus contributes to the regulation of GlyR levels at
inhibitory synapses (12). The diffusion and energy land-
scapes of bS403D-TM (computed over six different cells)
yielded a diffusivity (average value 0.11 mm2.s�1) and an
energetic rugosity precisely intermediate between those
of the wild-type and of the binding-deficient constructs
(Fig. 2,g andh). Compared tobWT-TM, the average trapdepth
of bS403D-TM at synaptic sites was reduced to 2.45 0.4 kBT
(n ¼ 58 clusters), with less than 5% of the traps above
6 kBT (Fig. 3 b). Inside clusters, the average diffusivity
(0.015 mm2.s�1) was slightly higher than for the wild-type
(Fig. 3 c).

Importantly, the binding energy reported here corre-
sponds to TM proteins moving in a two-dimensional
membrane and interacting with macromolecular gephyrin
scaffolds that are believed to be two-dimensional as
well (23,24). This is in contrast with measurement of
the equilibrium constant KD by isothermal calorimetry,
which reports on the individual interaction between the
b-loop and the scaffolding protein in an isotropic, three-
Biophysical Journal 106(1) 74–83
dimensional measurement of the b-loop-scaffold interac-
tion. Obtaining the stabilization energy thus constitutes a
first and important step to bridge the gap between in vitro
and in situ biochemical measurements. When further com-
plemented with data on the ultrastructure and stoichiometry
of synaptic scaffolds (that are now accessible with single-
molecule imaging techniques (24,25)), we expect our
approach to enable a true determination of the two-dimen-
sional affinity of the membrane proteins for the synaptic
scaffolds (26).
Connecting the landscapes and the global
mobility of proteins

An important question for the dynamics of proteins is how
the variability of their diffusion and energy landscapes at
short scale (~100 nm) affects their long-distance mobility
and, thereby, the kinetics of many intermolecular reactions.
Reaching a multiscale description of the motion in the
membrane has long been a challenge in single-molecule
experiments. High-density sampling is usually achieved
with poorly stabilized probes, yielding numerous but
short trajectories (15,16). In contrast, long trajectories ob-
tained with more stable markers such as quantum dots
(27) only provide a sparse sampling of the cell surface.
Furthermore, the nature of the motion, such as subdiffu-
sion, may prevent efficient space sampling with single
long trajectories. Here, we adopted a different strategy
and used the inferred maps as phenomenological templates
to simulate the motion of proteins. Practically, we used the
Gillespie scheme (31) to generate individual trajectories
lasting up to 500 s (see Materials and Methods and the
Supporting Material).

From a large number of simulated trajectories, we could
compute ensemble-averaged quantities. We first evaluated
the propagatorP(d, t), namely the probability density func-
tion of moving a distance d in a time t, which is the funda-
mental estimator characterizing the random motion in a
complex environment (28). Although the difference in the
average trapping energy at gephyrin clusters was only
~1 kBT between bWT-TM and bS403D-TM, it led to signifi-
cant changes in the mobility, reducing the probability of
moving over long distances with increasing strength of the
b-loop-gephyrin interaction (Fig. 4 a). To more carefully
examine the nature of the movement of bWT-TM, we plotted
P(d, t), at different times t. The curves could be approxi-
mated by Gaussian curves exp(�d2/2c2(t)) with c(t) a ta

and a¼ 0.33, less than 0.5 the value expected for a standard
Brownian motion (Fig. 4, b and c). In fact, these results
are consistent with a subdiffusive movement resulting
from a fractional Brownian motion due to heteroge-
neities in the diffusion and energy landscapes (28). Similar
results were obtained for bS403D-TM and b�-TM, with a

increasing to 0.39 and 0.41, respectively (Fig. 4 c). The
subdiffusive nature of the motion could be further illustrated
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by computing the ensemble-averaged MSD for the three
transmembrane constructs (Fig. 4 d). On the timescales
0.05–5 s, all the MSDs increased sublinearly, with an
anomalous exponent a equal to 0.75, 0.82, and 0.89 for
bWT-TM, bS403D-TM, and b�-TM, respectively. The MSD
anomalous exponents are slightly larger than 2a, likely
due to boundary effects associated to the size and geometry
of the neurons.

Finally, we examined the implications of the local prop-
erties of the mobility of individual GlyRs on their global
distribution in the membrane and on the receptor occu-
pancy at synapses. To do so, we simulated the membrane
dynamics of a population of receptors, using surface
densities derived from prior experimental reports (see the
Supporting Material). We computed in particular the
time course of the number of receptors at individual syn-
aptic clusters, which we expect to fluctuate due to the
exit and entry fluxes of receptors (Fig. 4 e and see the
Supporting Material). The exit kinetics at a given synapse
is determined by the shape and amplitude of the trapping
potential combined with the reduced diffusivity in the
cluster. In contrast, the entry kinetics depends on the
motion of all the receptors over the entire cell surface
and need to be computed using the diffusion and energy
maps. The number of receptors varied significantly over
times, as illustrated by the distribution of their minimal
and maximal numbers at individual synapses (Fig. 4 e).
Furthermore, the timescale of these fluctuations, analyzed
by computing the autocorrelation function, is comprised
between ~1 s and a few tens of seconds, showing a large
heterogeneity among gephyrin clusters (Fig. 4 f). These
observations may account for the dynamic range of
receptor numbers at synapses and for the variability of
synaptic transmission (29). The receptor fluctuations,
which are equivalent to a noise, may also favor the transi-
tion from one steady state to another during synaptic
plasticity (29,30).
CONCLUSION

The motion of proteins in the plasma membrane is influ-
enced by both a viscous landscape, g(r), and an interaction
potential, V(r). We have introduced a method to map
the interaction energy and diffusion landscapes in the
cellular membrane with ~100 nm resolution over surfaces
of several hundred mm2. The possibility of simulating tra-
jectories in the inferred maps offers many possibilities to
address the multiscale dynamics of membrane proteins.
In particular, it bridges the gap between the information
obtained from numerous, dense—but short—trajectories
acquired using uPAINT (15) or single-particle tracking
PALM techniques (14), and that from the much longer,
but usually sparse, trajectories extracted through the
tracking of proteins labeled with photostable fluorophores
Biophysical Journal 106(1) 74–83
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(Qdots, nanoparticles). These trajectories can be used
to accurately evaluate various statistical estimators, thus
enabling the analysis of the dynamics of biomolecules in
complex media.

We anticipate that our method will be instrumental to
identify the factors governing the mobility of specific
molecules (such as friction, molecular interactions and
geometry of the cell) and thereby to model and analyze re-
action-diffusion processes in biological media. As illus-
trated in the case of GlyR-gephyrin binding, it also paves
the way to in situ biochemical measurements, which is
key for a quantitative analysis of the regulation of molecular
interactions in a cellular environment. Our approach should
also be helpful to describe the molecular noise that results
from variability of protein concentrations across the cell
surface and may play an important role in information pro-
cessing at the single cell level (29). Beyond the case of re-
ceptor-scaffold interactions, our analytical tools can be
applied to other biological questions, such as the stability
of macromolecular assemblies in the cytoplasm or the
nucleus, or to the sequence-dependent movement of pro-
teins along DNA (32).
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1. Elements on the inference scheme 
 
 
General Procedure of the Bayesian inference. The inference scheme features two generic steps: first, the derivation of 

the posteriori probability distribution of the unknown parameters given the experimental observations and second the 

sampling of the posterior distribution to estimate the parameters. It follows from Bayes rule that the posterior probability 

distribution P({Ul}|{Tk})  of the set of the unknown parameters {Ul} given the set of observed trajectories {Tk} reads  

 P Ul{ } Tk{ }( ) = P Tk{ } Ul{ }( )P Ul{ }( )
P Tk( )  

(S1) 

where P({Tk}|{Ul}) is the likelihood of the trajectories given the set of parameters {Ul}, P({Ul}) is the prior probability of 

the set of parameters and P({Tk})=∫ P({Tk}|{Ul})P({Ul})d{Ul} is the evidence of the model. Without any prior knowledge 

we used Jeffrey’s prior as a prior distribution  (discussed below). The estimator of the set of parameters {Ul} (in this 

paper) is the Maximum A Posteriori (MAP), i.e. the values of {Ul} that maximize the posterior distribution. 

 
Prior Information. There are various choices of priors for the inference depending on its expression and on what 

characteristics of the diffusion and potential fields are to be extracted.  

Jeffrey’s rule: Results displayed in the paper were inferred using the following prior. Experimentally, there are no prior 

information on the diffusion and potential fields.  Yet, in Bayesian inference, prior knowledge can be extracted from the 

symmetries of the likelihood distribution [1]. Jeffrey’s rule states that: 

 P U{ }( )! J  (S2) 
where J is the matrix defined by 
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and !U  is the gradient with respect to the components Ul  of the N-dimensional hypothesis  
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with N the total number of parameters. The operator !U!U '
T is the dyadic product of the gradients, i.e. the matrix of the 

second derivatives. Note that J
 
is proportional to the Fisher Information of the likelihood [2,3].  

Inside a mesh domain the likelihood reads 
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where all the sources of positioning noise, such as Poisson noise, background fluorescence, algorithm to fit the intensity 

profile… are modelled into one Gaussian distribution with null average and σ standard deviation. This leads to the prior  

 P Di, j,!xVi, j,!yVi, j( )" Di, j
2

Di, j#t +!
2( )2

 (S6) 

An example of prior is plotted in Fig. S1: 

 
Figure S1. Prior distribution of the parameters with Δt= 0.05s and σ= 30nm. The Prior distribution cannot be 

normalized. 

 

Interestingly, this prior is still improper (it cannot be normalized) and if there were no positioning noise the prior would 

be flat which would lead to maximum likelihood optimization for the estimation of the diffusion and potential fields.  

The smoothing prior: In the version of the inference scheme used in the analysis of the data, high gradient damping is 

introduced in the potential optimization scheme. It was also possible to introduce it directly, through a prior penalizing 

high gradients values:  
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It is worth noting that in that case, the potential evaluation could be performed by minimizing: 

 ! Vi, j{ } i, j( )! N i, j( ) " 0{ }( ) = #Vi, j $#V
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(S8) 

For our measurements, the two damping methods led to similar results.  

Experimental Prior: Experimental data accumulated on various cells can be used as priors for future inference. Statistics 

of diffusion values in the mesh cells can be used as a global prior on diffusion values. Similarly, the smoothness of the 

diffusion and potential fields can be extracted from experimental data by fitting the distribution of !Vi, j
2

and !Di, j

2

with the distribution p! x( ) = e!!x  to find the optimal βopt and then use p!opt . 

 

Likelihood of the diffusivity and gradient potential over the cell surface. The local surface of the cell is meshed with 

regular subdomains whose dimensions are proportional to the average jump lengths. The typical length of the subdomains 

is designed so that the biomolecule motion between two consecutive frames happens either inside the same mesh 

subdomain or between two nearing subdomains. Note that nothing prevents irregular meshing of the surface of the cell, as 

long as there is no undersampling of internal mesh rectangles. Within each mesh subdomain the potential gradient is 

approximated to be constant. So inside the mesh square (i,j) the solution of Fokker-Planck equation reads 
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As all the mesh domains are independent, the global posterior distribution P is the product of the posteriori inside each of 

them [4]: 
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where μ designates the index for which the points   of trajectory  are in Si,j, σ is the experimental localization 

accuracy (~30 nm) and Δt the acquisition time. The estimators  of the local diffusivity and force field 

are the Maximum a Posteriori (MAP) of the posterior distribution of the parameters. 

 
Potential optimization from the gradient field. The potential at the surface of the cell is extracted from the MAP values 

of its gradient field. The estimation is performed by minimizing ξ({Vi,j }), which is defined as 

 
 

(S9) 

with |N(i,j)| the number of neighboring occupied mesh domains, β(δ) a constant (optimized on numerically generated 

trajectories) depending on δ that is the ratio between the size of the domains and the average length of the protein motion 

during Δt. In order to diminish the bias that the mesh could induce in the evaluation of ∇Vi,j, the gradient along the two 

directions x and y was fitted, using two neighboring sites, by parabolic functions  !x x, y( )  and !y x, y( )  so that 

!xVi, j = "#x x, y( ) "x  and !yVi, j = "#y x, y( ) "y . ξ({Vi,j}) is the sum of two terms: the first one aims to minimize the 

difference between the gradient of the potential field and the inferred gradient field while the second one penalizes the 

strong gradients. This penalization allows better convergence towards the true value of the potentials; it also prevents 

anomalous generation of very high potential areas that would modify the potential on a large scale.  

 

We emphasize that typical experimental trajectories lead to several hundred to thousands of variables. The quality of the 

optimization on such a large number of variables was investigated numerically. Typical procedures, similar to the ones 

used in [5-9], have been employed to test the convergence and the quality of the inference. Here we discuss the choice of 

β(δ). Numerical simulations with the same diffusivities, the same average number of points per mesh rectangle, the same 

average trajectory duration and globally the same potential energy landscape were used to generate trajectories that were 

subsequently inferred for various values of β. The optimal β was the one that minimized the average square difference 

(ψ) between the input and the inferred potential field. 

 
Figure S2. A) Evolution of the average difference ψ (normalized here) between the theoretical potentials and inferred 
ones with β for a mesh subdomain with δ=2. B) Evolution of the average difference ψ (normalized here) between the 
theoretical potentials and inferred ones with β for a mesh subdomain with δ=3. 
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 β was found to mainly depend on the choice of δ, which in our experiments was always set between 1 and 3 to minimize 

the number of holes in the mesh structure. Note that the choice of β may also be driven by the search of some specific 

structures in the potential field, low values of β would favor large local variations of the potential whereas high values 

favor low variations over large scale and damp the large local variations of the potential. 

 
Inference applied to a synaptic cluster. When dealing with local motion (i.e. inside a cluster), the inference scheme was 

derived from the ones introduced in [5-8]. Trajectories entering the synaptic area, identified as the translocations entering 

the fluorescent signal of the tagged gephyrin, were grouped together to be analysed. The potential was developed on a 

basis of function so that the inference is performed on the coefficient of the development. A simple polynomial basis 

provided good results (see refs [5-9]): 

 V2D x, y( ) = ! k x ! xc( )l y ! yc( )m
l+m"N
#  (S11) 

with xx, yc( )  the barycenter center of mass of the trajectory points, k = l +m( ) l +m +1( )
2

+ l  and N the order the polynomial. 

The posteriori reads: 
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With Si, j  the mesh rectangle (i,j), μ the index where the biomolecule is in (i,j), Δt the acquisition time. Each mesh 

rectangle was treated independently and they were coupled together by the potential polynomial development. In the 

numerical implementation of the scheme, positions were expressed in µm, the diffusivity in µm2s-1 and the potential in 

kBT. Theoretically, the choice of the optimal order of the polynomial is made by comparing, for varying value of N, the 

evidence of the model. As the order increases, the space of integration gets larger. Due to the shape of the posteriori 

(product of Gaussians) integrals may be approximated by the Laplace method, i.e. the posteriori is approximated by a 

Gaussian probability distribution centered on the MAP and so the integral is evaluated directly. Yet, in a practical 

manner, the algorithm runs fast and so the criterion to choose the order of the polynomial may simply be the absence of 

change in the potential shape and the lowest error on the coefficient of the development.   

Note that simple polynomial development is not the only possible basis. Depending on the type of motion and on 

the global geometry of the trajectory, 2D Fourier series and 2D orthogonal Hermitte functions are useful bases. The latter 

is interesting when dealing with local confinement surrounded by free motion. Yet, both are much less versatile in their 

use than the simple polynomial basis. 

 

Error estimation. An estimate of the error on the various parameters can be obtained using one of the two following 

general strategies: first, the direct sampling of posterior distribution using Monte Carlo algorithm and second the 

evaluation of the eigenvalues of the log-posteriori Hessian at the MAP values. The latter method takes advantage that 

most of the relevant quantities are extracted from the neighborhood of the maximum of the distribution. However, the 



 

Hessian, which is much faster to compute than the Monte Carlo Algorithm, will tend to slightly over-estimate the noise of 

the diffusivities. Furthermore, if one is interested in the error evaluation for the difference of potential between two 

points, Monte Carlo sampling of the posteriori is the more efficient way. 

 
Initialization of the parameters before optimization. In the two inference schemes, the potential and the diffusivity 

fields have to be initialized to accelerate the convergence of the optimization processes. When the inference is performed 

on large surfaces, the potential is initialized by the thermal equilibrium values, i.e. Vi, j = !kBT log Ni, j NMax( )  with Ni, j  the 

number of points in the mesh subdomain (i,j) and NMax the maximal number of points inside one of the mesh 

subdomains. The diffusivity fields can be initialized in two ways leading to approximately the same computation time. 

The most common consists in approximating the diffusivity along the arbitrarily defined x-axis and y-axis as

Dx = lx
2 /!t   and 

 

Dy = ly
2
/!t  with lx , ly  that are the average step sizes along x and y during Δt. Then, the 

diffusivity field is initialized to Di, j =1/ 3 Dx + Dy( ) . The other one consisted on performing the same calculus but 

locally on groups of mesh subdomains. When the inference is performed locally, the diffusivity field is initialized in the 

same manner as for the inference on large surfaces. The coefficient of the polynomial development of the potential are 

initialized on an harmonic approximation of the potential with the spring constant k = 2V0 rmax ! rmean
2

with rmean  the 

average position, rmax the position corresponding to the largest distance from rmean  and V0  a user defined potential value, 

usually set to 5kBT. 

 
Possible bias during the potential landscape optimization. Here, we want to emphasize an important point. In all the 

possible applications of the different schemes shown here, it is essential to quantify their behaviors with extensive 

simulations. Furthermore, most of the bias that we have encountered (see for example [7,8]) can be analytically corrected. 

Fortunately, the overdamped Langevin equation framework is fast to simulate, allowing direct testing of the various types 

of inference schemes. Theoretically, the quality, the rate of convergence and the optimality have to be evaluated by 

computing the Fisher Information [2,3]. Unfortunately, in most of these systems, the summation over all possible 

parameters state is impossible due to its large size. Hence, we have to rely on extensive simulations to study the behavior 

of the inference. 

 

In order to illustrate the bias that can appear on the potential maps, we show on the next figure an example of complex 

field inference. As an example of complex field, we chose an oscillating potential because it induces a very incomplete 

sampling of space due to the proximity of low potential region to high potential region: 
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with λ=800 nm. The inferred potential (Fig S3. A,B) matches the structure and the amplitude of the potential used to 

generate the trajectories. The advantage of using symmetric potential fields is that it highlights (by propagating them) the 

defects of the optimization procedure. Interestingly, the potential is well inferred near the boundaries of the domains, 



while in some parts near the center, there are small differences between the inferred and the simulated potential but these 

errors do not propagate thanks to the damping term !
!
!V r( )"# $%

2  in the optimization function. Overall, the inference is able 

to recover fast variation of the potentials with local bias near high potential structures.  

 
 

 
 
 
Figure S3.  A) Potential map used to generate the trajectories. B) The inferred potential field with trajectories simulated 
in A). C) Potential map used to generate the trajectories. D) The inferred potential field with trajectories simulated in C). 
The red ellipses point the two local areas where there is a significant bias. Simulations to generate the trajectories were 
made with reflecting boundary conditions on the borders, shown here by the black curves. E) Potential map used to 
generate the trajectories. F) The inferred potential field with trajectories simulated in E). G) Potential map used to 
generate the trajectories. H) Inferred potential field with trajectories simulated in G). The white square is the un-sampled 
part of space due to the removal of the trajectory points. Simulations are performed with a diffusion field with constant 
value D=0.1μm2s-1 and Δt=50ms. Note that the colorbar may be different between the simulated and inferred landscape. 
 
 

More generally, the borders tend to generate limited or very localized bias. In Fig.S3C,D we show on a complex 

geometry (with an identical potential as the one used in Fig.S3A,B) that the borders do not shift significantly the inferred 

potential from their true values in the internal part of the maps, and that mainly on the top right of the geometry, in a 

region mostly unvisited the potential is locally biased. In most parts of the border regions there are no biases in the 

inferred potentials. Note that the differences in the color of the maps are induced by the high potential region on the top of 

Fig.S3D. The inference is not going to detect every possible structure. Obviously, diffusion or interaction structures on 

scales largely inferior to the scale of the diffusion motion (~ 4Di, j!t ) cannot be seen. Note that it does not mean that 

other estimators could not be used to extract characteristics of these structures, yet in order to access these scales prior 

knowledge would be necessary. One of the key interests of the mapping scheme is that no prior information is needed to 

extract information from the random motion. Some structures of potential are also going to shield others from being 

accessible to the inference. In Fig.S3E,F we show an example on a more heterogeneous potential. The potential is well 

inferred except in the region of high potential that is partially inaccessible due to its high value. Yet, the average 



difference between local maxima and minima of the potential, in the periodic structure, is the theoretical value (4 kBT). 

This proves that some potential structures can prevent the inference from accessing local information but that this will not 

have large scale effects. Finally, some regions may be unvisited for technical reasons such as regions that are out of focus 

or simply the absence of experimental points. In Fig.3G,H we show the effect of un-sampled areas by removing all the 

points in the trajectories inside a square. We made the empty square larger than the ones met experimentally to induce a 

noticeable effect. Again the inference is slightly biased near the anomaly (lack of points) but remains of good quality on 

the rest of the surface. There are no biases in the estimation of the difference between the maxima and the minima of the 

potentials (4 kBT). 

 

Finally, we tested the inference scheme in the absence of potentials to ensure that optimization on large surfaces did not 

generate local potentials (this test had already been performed for the confined trajectories in local potentials [7,8]). 
 

 
Figure S4. A) Constant potential used to generate trajectories. B) Inferred potential. Note the low values of the potential 
value; the noise in the potential is 0.15 kBT; it is the consequence of the mesh with small variation of potential near 
neighboring mesh subdomains. 

 
Some of the possible structures that may appear when there is a constant potential are small oscillations of potential 

values between neighboring mesh subdomains. They are mostly the consequence of the finite mesh size. Yet, if 

experimentally we would expect small potential values or large areas without potentials variations, the value of β should 

be raised. Another possible way to deal with flat regions and other possibly complex structures would be to build non-

regular types of mesh. Meshes generated to have identical number of trajectory points lead to very good results by 

diminishing the bias in the inferred potential. Yet, the relations between the numbers of points in each mesh subdomain, 

the characteristics of the potential and diffusion landscape and the value of β are less direct than for regular meshes. In 

Fig.S5, we show an example of these structures in the experimental energy landscape for the β--TM construct 

 



 
Figure S5. Energy Maps for membrane construct β--TM. 

 
 

 
2. Simulations and measurements in the landscapes 
 

Why performing Simulations in the Maps. Probing a biological environment using single molecule technics (SPT, 

PALM, UPaint etc.) involve a tradeoff between 3 main phenomena: 

• Spatial Sampling 

• Duration of Recording 

• Typical time of biological variations 

Efficient spatial sampling, especially for large areas (>1μm2), can either be achieved by long trajectories or by numerous 

short trajectories. It is also worth noting that the nature of the motion (fractional Brownian Motion, Continuous Time 

Random Walk etc.) may prevent efficient spatial sampling. Precise measures of temporally averaged estimators (MSD, 

first time passage) require long trajectories to be discriminative. Yet, the possible heterogeneities of the surrounding 

media are going to be inserted in the estimators preventing their direct use as parameters estimators or as model 

discriminant. Finally, All measures have to be made with minimal variations of the biological system. Again, it is worth 

noting that in most biological systems all the characteristics times of biological variations are not known, hence measures 

based on the fluctuations of interests estimators are useful to detect significant variations of the biological system.  

In order to analyse, at multiple scales, the neuronal membrane, we combined the UPaint recording, the inference scheme 

and the simulations in the maps. Large numbers of short trajectories allow efficient space sampling even for complex 

media. Short individual recordings prevent the use of estimators on individual trajectories. The total time of recording 

(few minutes) does not lead to significant changes in the measures (done by the inference). The inference allows the 

measure of the diffusion and potential field on the membrane. Hence, we have shifted the balance towards space mapping 

and short time recording. Simulations in the maps allow studying any estimator without limitations in time or in number 

of trajectories. Furthermore, they allow the use of “Ensemble Averaged” estimators that are more selective than 

temporally estimated estimators. 
  



!

Simulations in the landscapes. The maps of the diffusion and energy landscapes, D(r) and V(r), can be used to simulate 

the behavior of the molecules at different time and space scales. In each mesh sub-domain (i,j) a diffusivity Di,j  is 

associated with a potential energy value Vi,j. The dynamics of the molecules are described by the Fokker-Planck equation: 
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where 

 

P r, t r0,t0( )  is the conditional transition probability from (r0,t0) to (r,t). Fokker-Planck equations can always be 

approximated by Master equations: 
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with in our case 

 Wi, j( ), i ', j '( ) =
D i ', j '( )

!x2
exp "

!xFi, j( ), i ', j '( )
x

2! i ', j '( )D i ', j '( )

#

$
%
%

&

'
(
(  (S16) 

if the transition happens in x direction and  
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if the transition happens in the y direction and with W(i,j),(i’,j’) the transition rate from the (i’,j’) site to the (i,j), Δx (Δy) the 

mesh size in the x (y) direction, and  the potential gradient acting on the random walker in the x (y) direction 

when moving from (i’,j’) to (i,j). The motion of the molecule following equation (S19) was simulated using the Gillespie 

scheme [10]. When the molecule was at the site (i,j), the transitions rates, rewritten aυ to match Gillespie formalism, υ 

taking values from 1 to 4, were evaluated on all neighboring sites. We define a0=Σνaν. The time, τ, to move from the site 

(i,j) to a neighboring site is extracted from an exponential probability density function of rate a0, so that 

 
 

(S18) 

with r1 a random number in [0,1]. The destination site, k, is chosen to satisfy  

 
 

(S19) 

with r2 a random number in [0,1]. Limits of the neuronal cells and unvisited sites are defined as inaccessible sites. Note 

that the trajectory generation process leads to trajectories with non-constant time steps. In order to evaluate the different 

estimators (see below), trajectories were regularized to obtain the molecule position at regular time lags by imposing that 

as long as each !  was not reached the molecule did not move. 

 
Computations of the estimators of the protein movement. Here, we explain how the various estimators of the protein 

movement were extracted and also show other possible estimators that were not included in the main text. Unless 

mentioned otherwise, the estimators were obtained by averaging trajectories coming from different neuronal maps or 

from different clusters. Using the simulated data, we computed: 
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- The propagator ∏(d,t), i.e. the probability of moving a distance d in a time t.  
- The scaling factor χ(t) (Fig.4c), computed from ∏(d,t) 
- The ensemble-averaged mean squared displacement (MSD) defined as 

r2 t( ) =
1
N

ri t( ) ! ri 0( )( )
i=1

N

"
2

 (S20) 

with N the total number of trajectories.  

- The time statistics to escape gephyrin clusters (Fig.S6A), computed by generating trajectories beginning in 

the clusters and measuring the time needed to exit the clusters. 
 
re S6. A) Example of “time to escape gephyrin clusters” statistics based on simulations on subsets of βWT-TM 
cules, shown in log-log scale. Black points are results of simulation and colored lines are linear fits (in log-log) with 
 α=-1.8 in red and in α=-8. in green. B) Example of “time to reach a gephyrin cluster” statistics based on 
lation on subsets of βWT-TM expressing neurons in log-log scale. Black points are results of simulation and colored 
 are linear fits (in log-log) with slope α=-0.5 in red, α=-1.7 in green and α= -2.6 in blue. C) Statistics of first time 
age for a distance of 1μm, average over the complete set of neurons. Colors are associated to receptors, βWT-TM in 
, βS403D-TM in Blue and β--TM in Red. D) Evolution of the distance that receptors first reach with the average first 
to reach it. Colors are associated in the same fashion as for C). the distance scales as tη with η=0.44 for βWT-TM, 

 η=0.48 for βS403D-TM and with η=0.49 for β--TM. 
- The time statistics to enter a gephyrin cluster (Fig.S6B), computed by measuring the time needed to get to a 

cluster, starting from any point outside of clusters. 

- The first passage time statistics to reach a specific distance (Fig.S6C), computed by generating trajectories 

starting from any point at the surface of the neuron and measuring the time needed to reach the defined 

distance for the first time.  



- The evolution of the distance to reach with the average first time to reach it (Fig.S6D), computed from the 

first passage time statistics.   

 
Simulations of the fluctuations of receptor numbers. Fluctuations of the number of receptors in the gephyrin clusters 

were (numerically) measured by placing receptors at the surface of a neuron with experimentally measured densities, i.e. 

500 receptors per μm2 inside gephyrin clusters and 5 receptors per μm2 outside, and then letting them evolve using the 

Gillespie scheme. We thus deduced the time course of the number of receptors at individual synapses (see results in 

Fig.4). Using the same method, we also computed a map of relative variations of receptor numbers (Fig.S7). 

 
 

 
Figure S7. Map of the relative variation (standard deviation over mean) of receptor number during a 100 s temporal 
window. 

 
3D Biases. The inference scheme is not limited to 2D motion and may be applied in 3D. In our case the transmembrane 

proteins movements were analyzed in 2D although the membrane can exhibit curvature. However, we show that the 

possible local curvature of the membrane has a limited effect on the inferred values.  

 

We first simulated the random walk on a cylinder with high curvature κ=4 μm-1 (R=250nm) and inferred the diffusivity 

field using the inference scheme developed in the paper. The motion was not limited along the axis of the cylinder. We 

show, on figure S8A, the statistics of diffusivity values inside all mesh squares  
 

 



Figure S8 . Inferred diffusivity statistics of a random walker on a cylinder A) and on a sphere B) of radius 250nm with 
Δt=50ms. The diffusion used to generate the trajectories is D=0.1μm2s-1 and is indicated by the red lines. Trajectories are 
recorded on (x,y) plane. The statistics is made with the MAP values of the diffusivity in each mesh square of the mesh. 
 

We next simulated the random walk on sphere with high curvature κ=4 μm-1 (R=250nm). Results are shown on Fig.S8B. 

The statistics show two local maxima centered on the true value of diffusivity, and the average value of the distribution is 

<D>=0.11±0.02 μm2s-1. We observe that for high curvature the inference scheme tends to slightly shift the diffusivities. 

Interestingly, when there is curvature the diffusivity statistics have characteristics that differ from the ones on flat 

surfaces. Furthermore, the statistics of the points’ positions that are concentrated on the limit of the cylinder or the sphere 

indicate the presence of curvature. So, here we deliberately applied the inference without taking the noticeable curvature 

effect (very inhomogeneous repartition of points) into account. Note that in both cases if the curvature is taken into 

account, by modifying the expression of the likelihood, both statistics become unbiased and centered on the true value of 

diffusivities. 

 

Here, we show how to generate the trajectories on the cylinder and the sphere. The simulation of the random walk on the 

cylinder was straightforward because of the parameters values:  

 
!t+dt =!t +

2Ddt
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dUt

yt+dt = yt + 2DdtdVt

, (S21) 

with R the radius of the cylinder, θ the radial angle, y the direction of the cylinder, D the diffusivity, Δt the time between 

each move, and dUt,dVt( )  Gaussian random numbers of null average and of unit standard deviation. 

 

In that case the propagator reads 
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The simulation of the random walk on the sphere could not be simulated with a similar scheme   

 
!t+dt =!t +

2Ddt
R2

dUt

"t+dt ="t +
Ddt

R2 tan "t( ) + 2DdtdVt

, (S23) 

 

Since a suitable dt would have to be such as dt ! R2 D , diffusion was simulated on a shell of width h such that 

! = h R < 0.01  with reflecting boundary conditions on the inner and outer shell. dt was adjusted so that the relation 

cos ! t( )( ) = e
!2Dt
R2  was respected. Note that another way to efficiently simulate the random walk on the sphere, or more 

generally on a n sphere in an n+1 Euclidian space, can be found in [11]. 



 

In that case the propagator reads. 
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with  

 Yk
m !,"( ) = eim!Pkm cos !( )( ) , (S25) 

with Pk
m  the Legendre functions.  

 

 
 
 
 
3. Supplementary Videos 
 
 
 

 
Sup Movie 1: example of a uPaint movie for the beta- TM construct (red), labeled with anti-GFP antibodies 
coupled to Atto647N dues, and gephyrin molecules (green). Acquisition time: 50 ms/image. 
 
 



 
 
Sup Movie 2 : example of a uPaint movie for the betaWT- TM construct (red), labeled with anti-GFP antibodies 
coupled to Atto647N dues, and gephyrin molecules (green). Acquisition time: 50 ms/image. 
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