
Mutations in the S6 Gate Isolate a Late Step in the Activation Pathway and Reduce 4-AP Sensitivity in *Shaker* K_v Channel

Evelyn Martinez-Morales, Dirk J. Snyders, and Alain J. Labro*

Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, Antwerp, Belgium

Supporting Material

Figure S1: Voltage-dependence of activating gating charge movement (QV curves) of P475A. A, Scaled up view of the I_{Odeac} recordings at -90 mV from the activation protocol shown in Figure 2B. The green, blue and red colored recordings were obtained upon depolarization to 0, +50 and +130 mV, respectively. Note the reduction in I_{Qdeac} amplitude upon stronger depolarizations, which indicates a slowing in the decay times of I_{Odeac} due to BC gate opening. **B**, Red symbols and line (which represent average fit by a sum of two Boltzmann distributions) represent the QV curve of P475A obtained from integrating the I_{Odeac} recordings of the activation protocol as shown in panel A. Integrating these I_{Qdeac} currents yielded a split QV curve, similar to the QV curve obtained from integrating the I_{Qac} recordings (blue symbols and line), with two components. The first carried 87 \pm 3% of the charges and displayed a V_{1/2} of -40.5 \pm 1.2 mV with a slope factor of 13.4 ± 0.9 mV (n = 6). The second component carried the remaining 13% of charges and had a $V_{1/2}$ of 32.5 \pm 2.9 mV with a slope factor of 7.1 \pm 2.8 mV. For comparison, the GV curve is represented in dotted lines. The reduction in charge at more depolarized potentials, noted in the QV curve obtained from the I_{Odeac} recordings (red symbols), is due to the slowing in the decay time of I_{Qdeac}, which manifest itself by a reduction in I_{Qdeac} amplitude (panel A).

