Size Influences the Effect of Hydrophobic

Nanoparticles on Lung Surfactant Model Systems

Mridula.V. Dwivedi^{\dagger ‡}, *Rakesh Kumar Harishchandra*^{\dagger ||}, *Olga Koshkina*^{\bot ¶}, *Michael Maskos*^{\$¶},

Hans-Joachim Galla $^{\dagger}*$

[†] Institute of Biochemistry, Westfälische Wilhelms Universität, Wilhelm-Klemm-Str.2, 48149 Münster, Germany.

[‡]NRW International graduate school of chemistry, University of Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster, Germany

^L BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany

[§] Institute of Physical Chemistry, Johannes Gutenberg University, Jakob-Welder Weg 11, 55128 Mainz, Germany.

[¶] Institut für Mikrotechnik Mainz (IMM), Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany.

^{||}current address: Dept. of Chemistry & Biochemistry Worcester Polytechnic Institute (WPI) 60 Prescott Street, Worcester, MA 01605 USA.

*Corresponding author: gallah@uni-muenster.de

Mailing address: Institute of Biochemistry, Westfälische Wilhelms Universität, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany. Tel.: +49-251-8333200. Fax: +49-251-8333206.

Keywords: Lung Surfactant, nanoparticle size, Surface activity, atomic force microscopy, vesicle insertion kinetics, Multilayer protrusion structures.

Supporting Material

Outgrowths at the periphery of domains

Figure S1: Epi-fluorescence microscopy images for DPPC in the presence of increasing concentration of small nanoparticles (~12 nm) on water as the subphase at 20°C. The DPPC monolayer is doped with 0.5 mol% BODIPY-PC which preferentially partitions into the liquid expanded phase. The images are taken at varying surface pressure values. Scale bar is 50 μ m.

Figure S2: Epi-fluorescence microscopy images for DPPC in the presence of increasing concentration of large nanoparticles (~136 nm) on water as the subphase at 20°C. The DPPC monolayer is doped with 0.5 mol% BODIPY-PC which preferentially partitions into the liquid expanded phase. The images are taken at varying surface pressure values. Scale bar is 50 μ m.

Figure S3: (a) Cyclic compression-expansion cycles for DPPC/DPPG/SPC/12 nm NPs (100 μ g/mL). (b) Cyclic compression-expansion cycles for DPPC/DPPG/SPC/136 nm NPs (100 μ g/mL) with 25 mM Hepes + 3 mM CaCl₂ as the subphase at 20°C.

Figure S4: Surface pressure-area isotherm of (a) 12 nm nanoparticles (~12 nm) and (b) 136 nm nanoparticles with 25 mM Hepes + 3 mM CaCl₂ as the subphase at 20°C.

Figure S5: AFM topography images of (a) pure DPPC/DPPG/SPC (80:20:0.4 mol %) monolayer lipid film (b) with 50 μ g/mL 12 nm nanoparticles (c) with 100 μ g/mL 12 nm nanoparticles transferred at plateau region. The film was compressed on 25 mM Hepes + 3 mM CaCl₂ as the subphase at 20°C. The clusters of nanoparticles around the protrusion structures are marked by arrows.

Figure S6: AFM topography images of DPPC/DPPG/SPC (80:20:0.4 mol %) monolayer lipid film with (a) 50 µg/mL 136 nm nanoparticles at initial plateau region (b) 50 µg/mL 136 nm nanoparticles at end plateau region (c) 100 µg/mL 136 nm nanoparticles at initial plateau region (d) 100 µg/mL 136 nm nanoparticles at end plateau region. The film was compressed on 25 mM Hepes + 3 mM CaCl₂ as the subphase at 20°C. The clusters of nanoparticles around the protrusion structures are marked by arrows.

Figure S7: TEM micrograph images of (a) 12 nm nanoparticles (b) 136 nm nanoparticles. Samples were deposited from chloroform. Scale bar is 100 nm.