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Supporting Material

Proof of Theorem 9

For simple insulating modularizations, there (i) exists a path of length 2
from the low-confidence reaction Rj = lR(j) ∈ VR,η, j ∈ {1, . . . , |VR,η|}, to
species Si = lS(i) ∈ VS , i ∈ {1, . . . , n} if the element aij of ARS,η is equal
to one. There (ii) exists a path of length 3 from species Sj = lS(j) which
is not measured (Sj ∈ VS \ VS,η) to species Si = lS(i) ∈ VS including only
high-confidence reactions if element aij of ARS,�η

ASR,�η
F is unequal zero. (iii)

Species Sj = lS(j) ∈ VS is measured if ∃i : cij = 1, C = [cij ].
A path from a low-confidence reaction Rj ∈ VR,η to a measured output

Si ∈ VS,η that does not contain any other low-confidence reactions or outputs
is a combination of (i), an arbitrary amount of (ii), and (iii). Thus, such a
path exists if and only if at least one element of the jth column of

Mi =


cTi [AF ]0ARS,η
cTi [AF ]1ARS,η
...

cTi [AF ]n−1ARS,η

 (1)

is unequal zero, with cTi the ith row of C, and A = ARS,�η
ASR,�η

. Note that
the longest possible simple path in a network with n species vertices is of
length smaller or equal to 2n+1, thus allowing Mi to be finite. The graph is
a simple insulating modularization iff |VS,η| = |VR,η| =: |η|, and all matrices
Mi, i ∈ 1 . . . |η|, have at least one nonzero entry in the ith column, and only
zero entries in all other columns.

When discarding the explicit information about the length of the path,
the requirement for insulating modularizations (Eq. 1) can be written more
compactly as

DΣ(C) = C

(
m≥n−1∑
k=0

ak(AF )k

)
ARS,η, (2)

with ak > 0 arbitrary, positive constants. In this formulation, the graph is a
simple insulating modularization, iff |VS,η| = |VR,η| =: |η| and if the matrix
DΣ(C) is a diagonal matrix with nonzero diagonal elements.

By choosing ak = 1
k! and m→∞, we obtain

DΣ,0(C) = CeAFARS,η (3)

where e is the matrix exponential defined by eX =
∑∞

k=0
1
k!X

k.
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For strict insulating modularizations, there (i) exists a path of length
2 from the low-confidence reaction Rj = lR(j) ∈ VR,η, j ∈ {1, . . . , |VR,η|},
to species Si = lS(i) ∈ VS , i ∈ {1, . . . , n} if the element aij of ARS,η is
equal to one. There (ii) exists a path of length 3 from species Sj = lS(j)
which is not measured (Sj ∈ VS \ VS,η) to species Si = lS(i) ∈ VS including
only high-confidence reactions if element aij of ARS,�η

ASR,�η
F is unequal zero.

(iii) There exists a path of length 2 from species Sj = lS(j) which is not
measured (Sj ∈ VS \ VS,η) to the low-confidence reaction Ri = lR(i) ∈ VR,η,
i ∈ {1, . . . , |VR,η|}, iff element aij of ASR,ηF is unequal zero.

A path from a first low-confidence reaction Rj ∈ VR,η to a second low-
confidence reaction Ri ∈ VR,η that does not contain any other low-confidence
reactions or a measured output is a combination of (i), an arbitrary amount
of (ii), and (iii). According to simple insulating modularizations, one can
derive that such a path exists iff the element δij of

DΣ,0(ASR,ηF ) = ASR,ηFe
AFARS,η (4)

is greater than zero. Since for a strict insulating modularization such a path
must not exist for two distinct low confidence reactions (δij = 0 ∀i 6= j),
DΣ,0(ASR,ηF ) must be a diagonal matrix.

Alternative Representation of Theorem 9

Eq. 2 can be extended to

DΣ(C) = a0CARS,η + CAF

( ∞∑
k=0

ak+1(AF )k

)
ARS,η (5)

By using the identity that F = (I−CTC) = (I−CTC) · (I−CTC), one
obtains

DΣ(C) = a0CARS,η + CA

( ∞∑
k=0

ak+1 [FAF ]k
)
FARS,η. (6)

Finally, by choosing a0 = 1, ak = 1
(k−1)! ∀k = 1, 2, . . ., we obtain a more

“symmetric” (in terms of the exponent) version of the formula:

DΣ,1(C) = CARS,η︸ ︷︷ ︸
feed-through

+ CA︸︷︷︸
observed

inner
dynamics

eFAF︸ ︷︷ ︸
inner

dynamics

FARS,η︸ ︷︷ ︸
non-feed-
through
inputs

. (7)
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Note that–in general–DΣ,0 6= DΣ,1 due to the different choice for the
values of ak.

The symmetry of the exponent in Eq. 7 allows us to rewrite the formula
in a computationally more efficient way. We consider the (n− r × n) 0− 1
matrix C0 such that (C̃ = (CT , CT0 )T ) is orthonormal and has full rank,
with n = |VS | and r = |VR,η|. Additionally, we define Ir,n = (Ir,r, 0n−r,r)

T ,
with Ir,r the (r× r) identity matrix and 0n−r,r the (n− r, r) matrix of zeros.
With these two definitions, Eq. 7 can be rewritten into

DΣ,1(C) =CARS,η + CAe(I−CTC)A(I−CTC)(I − CTC)ARS,η (8a)

=CARS,η + CA
(
e(I−CTC)A(I−CTC) − CTC

)
ARS,η (8b)

=CARS,η+ (8c)

CA
(
C̃T C̃e(I−CTC)A(I−CTC)C̃T C̃ − C̃T In,rIr,nC̃

)
ARS,η

=CARS,η+ (8d)

CAC̃T
(
eC̃(I−C̃T In,rIr,nC̃)A(I−C̃T In,rIr,nC̃)C̃T − In,rIr,n

)
C̃ARS,η

Since C̃ is orthonormal (C0 · CT = 0), and the matrix in the exponential
may have only non-zero elements in its lower-right n− r×n− r sub-matrix,
this leads to:

DΣ,1(C) = CARS,η + CACT0 e
C0ACT

0 C0ARS,η (9)

Eq. 9 is computationally advantageous over Eq. 7 because the matrix
in the exponential is (n − r × n − r) instead of (n × n), thus reducing the
computational costs for taking the matrix exponential.

NP-Hardness of Modularization Problems

To show that the modularization problem (Problem 11 in the main text)
is NP-hard (see (1)), we define for the corresponding decision problem the
formal language

Definition S1 (Modularizable)

MODULARIZABLE = {〈GSR = (VS , VR, E), ηR〉 :

∃ηS, such that GIM = (VS , VR, E, ηS , ηR)

is a simple insulating modularization} .
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Definition S1 corresponds to deciding if at least one simple modulariza-
tion exist for the corresponding modularization problem (Problem 11 in the
main text). Clearly, a polynomial-time algorithm solving the modulariza-
tion problem could be used to solve the decision problem in polynomial time,
too, by simply checking if the set LΣ of possible simple modularizations is
empty or not:

MODULARIZABLE ≤P MODULARIZATION. (10)

However, the following theorem shows that a polynomial-time algorithm is
unlikely to exist.

Theorem S2 The modularizable problem is NP-complete.

Theorem 12 in the main text follows because the modularizable problem
is polynomial-time reducible to the modularization problem (Eq. 10).

Our proof for Theorem S2 is conceptually related to the proofs that the
clique problem (1, page 1003ff), respectively the Hamiltonian-cycle prob-
lem (1, page 1008ff), are NP-complete. Furthermore, we utilize that the
3-conjunctive normal form (3-CNF) satisfiability problem is NP-complete
(1, page 998ff). In the remainder of this section, we (i) shortly summa-
rize the definition of the 3-CNF satisfiability problem, and (ii) utilize this
satisfiability problem to proof Theorem S2.

3-CNF-SATISFIABILITY

The problem 3-CNF-SATISFIABILITY considers the decision problem if
a Boolean formula φ(x1, . . . , xn) in conjunctive normal form (CNF) with
exactly three distinct literals lr1, lr2, and lr3 in each of the k clauses Cr,
r ∈ 1, . . . , k, is satisfiable, that is, if at least one assignment (TRUE or
FALSE) for the variables x1, . . . , xn exists such that φ evaluates to TRUE
(1, page 998ff). In this definition, a literal is an occurrence of a variable xj ,
j ∈ 1 . . . n, or its negation ¬xj . A clause Cr, r ∈ 1, . . . , k, is the OR of one
or more literals, and a Boolean formula in CNF is the AND of one or more
clauses. For example,

φ = (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C3

(11)

is a 3-CNF Boolen formula with three clauses (C1, C2, and C3) and six
distinct literals (x1, ¬x1, x2, ¬x2, ¬x3, and x4).
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Proof of Theorem S2

To prove Theorem S2, we have to show that MODULARIZABLE belongs to
NP, and that deciding it is NP-hard. To show that MODULARIZABLE∈NP,
for a given species reaction graph GSR = (VS , VR, E) and a low-confidence
reaction label function ηR, we use the output label function ηS as a certifi-
cate. The verifying algorithm checks if |ηR| = |ηS |, and if the binary labeled
species reaction graph GBLSR = (VS , VR, E, ηS , ηR) is a simple insulating
modularization by utilizing the formulas given in Theorem 9 in the main
text.

To prove that the decision problem MODULARIZABLE is NP hard, we
show that 3-CNF-SATISFIABILITY≤PMODULARIZABLE. For this, we
construct a SR-graph GSR and a low-confidence reaction label function ηR
for a given Boolean formula φ = C1 ∧C2 ∧ . . .∧Ck in 3-CNF and show that
φ is satisfiable if and only if 〈GSR, ηR〉 is modularizable.

Similar to (1, page 1008ff), we create a widget (a sub-graph enforcing
certain properties; see Figure S1) for every clause Cr, r ∈ 1, . . . , k, in φ.
For each of the three literals lr1, lr2, and lr3 in Cr, we create a low-confidence
reaction node ROr,i, i ∈ {1, 2, 3} as well as two species vertices S+

r,i and S−r,i
that correspond to the literal lri , respectively its negation ¬lri . Furthermore,
we add a directed edge from ROr,i to each species vertex S+

r,i and S−r,i. For

each vertex S+
r,i (but not for S−r,i), we add a high-confidence reaction RCr,i,

a species SCr,i, and the directed edges (S+
r,i, R

C
r,i) and (RCr,i, S

C
r,i). Finally, we

create one additional low-confidence reaction RFr per widget, and the three
directed edges (RFr , S

C
r,i), i ∈ {1, 2, 3}.

It is easy to validate that in a simple modularization, ∀i ∈ {1, 2, 3} either
S+
r,i or S−r,i (but not both), as well as one of the nodes SCr,1, SCr,2, SCr,3 have to

be assigned as a measured species: a module defined by the measured species
S+
r,i or S−r,i will always have ROr,i in its interface, and a module defined by

the measured species SCr,1, SCr,2, or SCr,3 will always have RFr in its interface.
Note that such an assignment is only possible if at least one of the species
S+
r,i, i ∈ {1, 2, 3}, is measured: selecting S−r,i and SCr,i as measured species

does not lead to a simple modularization because the module defined by SCr,i
contains at least two low confidence reactions (ROr,i and RFr ) in its interface
(compare Lemma 5 in the main text).

Selecting species S+
r,i (S−r,i) as a measured output corresponds to the

assignment that the corresponding literal lri in the clause Cr evaluates to
TRUE (FALSE). One has to select one of the species SCr,i, i ∈ {1, 2, 3} as a
measured species because at least one literal in every clause has to evaluate
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Figure S1: Reduction of an instance of the 3-CNF-SATISFIABILITY prob-
lem (Eq. 11) to an instance of the MODULARIZABLE problem. Box shaped
vertices represent species, diamond shaped ones reactions. Low-confidence
reaction vertices are marked by two borders. The light-gray boxes demar-
cate the widgets corresponding to the three clauses C1, C2 and C3 in the
Boolean formula φ. For convenience, the species vertices S+

r,i and S−r,i,

r ∈ 1, . . . , k ∧ i ∈ {1, 2, 3} as well as the reaction vertices R+
x,j and R−x,j ,

j ∈ 1, . . . , n are labeled with their corresponding literals. For each widget,
a simple modularization enforces for each literal that either the species cor-
responding to the literal or the species corresponding to its negation are
measured, as well as that at least one species corresponding to one of the
literals is measured. In a simple modularization, the high-confidence reac-
tions connecting the widgets enforce that only sets of species are measured
that correspond to a consistent TRUE assignment of the Boolean variables
(respectively the literals) in and between the clauses.

to TRUE.
To enforce a consistent truth assignment of the Boolean variables (re-

spectively the literals) in and between the clauses/widgets, we add two high-
confidence reactions R+

x,j , respectively R−x,j , for each Boolean variable xj ,
j ∈ 1, . . . , n, to the graph (see Figure S1), corresponding to the assign-
ment xj = TRUE, respectively xj = FALSE. We add a bidirectional
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edge (or two unidirectional edges in opposing directions) between a vertex
in {S+

r,i, S
−
r,i : r ∈ 1, . . . , k ∧ i ∈ {1, 2, 3}} and a vertex in {R+

x,j , R
−
x,j : j ∈

1, . . . , n} if the corresponding literal lri is equivalent to the assignment of xj .
In a simple modularization, this enforces to either assign all species vertices
adjacent to a reaction vertex R+

x,j , respectively R−x,j , to be measured, or
none: a partial assignment would lead to multiple low-confidence reactions
in the interfaces of the corresponding modules (see Figure S1).

For a given 3-CNF-SATISFIABILITY problem with n Boolean variables
and k clauses, our reduction algorithm described above creates a SR-graph
with 2n + 7k reaction vertices (4k of which are labeled low-confident), 9k
species vertices, and 27k directed edges. Hence, the SR-graph GSR and the
low-confidence reaction label function ηR can be computed from a Boolean
function φ in 3-CNF in polynomial time.

To show that the transformation of φ into (GSR, ηR) is a reduction, we
have to show that a satisfying assignment to the variables in φ corresponds
to a simple modularization of (GSR, ηR), and, conversely, that a simple
modularization of (GSR, ηR) corresponds to a satisfying assignment of the
variables in φ. A satisfying assignment of φ directly corresponds to measur-
ing either species S+

r,i or S−r,i, r ∈ 1, . . . , k, i ∈ {1, 2, 3}, since for each literal
in each clause either the literal or its negation is TRUE. In each clause at
least one literal has to evaluate to TRUE, say lrj . Then, species SCr,j can
be assigned to be a measured. Finally, in each widget there is a consistent
choice of measuring either S+

r,i or S−r,i, implying that all or none of the species

adjacent to a reaction vertex R+
x,j , j ∈ 1, . . . , n, respectively R−x,j , are mea-

sured. Thus, the number of measured outputs is the same as the number
of low-confidence reactions, and each module defined by a measured species
has exactly one low-confidence reaction in its interface, corresponding to a
simple modularization.

Conversely, if (GSR, ηS , ηR) is a simple modularization, it is guaranteed
that the truth assignments of the literals between the clauses is consistent;
otherwise at least one module defined by a measured species S+

r,i or S−r,i that
has more than one low-confidence reaction in its interface would exist. Fur-
thermore, in each widget either SCr,1, SCr,2, or SCr,3 is a measured species, say

SCr,j , which implies that also S+
r,j is measured. Hence, in the respective clause

at least the literal lrj evaluates to TRUE. Because the literals in the clauses
are assigned consistently and at least one literal in each clause evaluates to
TRUE, φ evaluates to TRUE corresponding to a satisfying assignment of
the Boolean variables in φ.
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Branch-and-Bound Algorithm for Modularization Problems

An exhaustive search to find all insulating modularizations for a given mod-
ularization problem would require to iterate over |VS |!

(|VS |−|ηR|)! possible assign-

ments of |ηR| output labels to |VS | different species. However, |ηR|! of these
tests include the same set of outputs, albeit in different order. Computa-
tionally, the correct order of the measured outputs for an insulating modu-
larization can be efficiently determined a posteriori, if the set of measured
outputs is known. Thus, instead of directly searching tuples of outputs such
that DΣ,1(C) is a diagonal matrix with non-zero diagonal entries (Eq. 9),
we first search for sets of outputs such that DΣ,1(C) has exactly one non-
zero element in each row and column, and afterwards we sort the outputs to
fulfill the original condition. This reduces the number of necessary checks
to
(|VS |
|ηR|
)

= |VS |!
|ηR|!(|VS |−|ηR|)! .

Checking if one output labeling function is part of the solution to a mod-
ularization problem—solving Eq. 9 for a given C—requires calculating two
matrix multiplications and a matrix exponent (the costs for left or right
multiplying a matrix X with C or C0 are negligible). The two matrix mul-
tiplication require less than O(|ηR|(|VS | − |ηR|)2) (2). The exponential of a
matrix X can be precisely and efficiently calculated via Padé approximation

with τ = 6 + max
(⌈

log2
‖X‖∞

5.4

⌉
, 0
)

matrix multiplications (3). The value

of τ depends on the maximal amount of inward connections of a vertex
in the network, and, thus, scales with increasing connectivity of the net-
work (usually τ < 10). Each of these matrix multiplications has complexity
O((|VS | − |ηR|)3), such that an exhaustive search has complexity

O

((
|VS |
|ηR|

)
·
(
2|ηR|(|VS | − |ηR|)2 + τ(|VS | − |ηR|)3

))
. (12)

In the following, we present our recursive branch-and-bound algorithmic
solution for simple insulating modularizations (see main text for an intuitive
description); if a given simple insulating modularization is strict can be
easily checked with the formulas given in Theorem 9 in the main text, and
the species and reactions belonging to a given module or interface can be
obtained with the formulas given in Lemma 10 in the main text.

The complexity and, thus, the expected evaluation time of our recursive
branch-and-bound algorithm highly depends on the specific modularization
problem, and can only be upper bounded (see main text). However, to
validate that our branch-and-bound algorithm performs significantly better
than an exhaustive search for many modularization problems, we decided
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Data: SR graph GSR = (VS , VR, E) defining the network, and the
tuple VR,η of low-confidence reactions.

Result: Set LΣ of all tuples of outputs leading to a simple
modularization.

begin
Create matrices ASR,�η

, ARS,�η
, ASR,η, ARS,η

if length VR,η = 1 then
L0 := ()

else
L0 := InsuMod((VS , VR \ {VR,η(end)}, E), VR,η(1:end-1))

end
LΣ := {}
foreach VS,η ∈ L0 do

foreach S ∈ VS \ VS,η do

ṼS,η := VS,η concat (S)

Construct matrix C from ṼS,η
Calculate DΣ,0 (see Theorem 9)
if DΣ,0 = diag(σi), σi > 0 then

LΣ := LΣ ∪ {ṼS,η}
end

end

end

end
Function InsuMod(GSR, VR,η)
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to compare the runtime of the two algorithms for automatically generated
modularization problems of various complexity in |ηR|.

The structures of naturally evolved molecular signaling networks are
constrained by their functionality. However, since these constraints are only
poorly understood, it is not possible to automatically generate “typical”
signaling networks for speed assessments of our algorithm. Therefore, we
decided to take the network structure of the JAK2/STAT5 signaling model
(4), and to generate in total 700 artificial modularization problems by ran-
domly assigning low-confidence labels to the reactions in this model. We
implemented our branch-and-bound algorithm and an exhaustive search in
MATLAB (Release R2010a, The MathWorks, Natick, MA) and determined
their computational times on an Intel Core 2 Duo, 3.16GHz, with 4GB
RAM.

Fig. S2 shows that the computational time of the exhaustive search algo-
rithm scales–as theoretical predicted (Eq. 12)–approximately exponentially
with |ηR|. For less than two low-confidence reactions, the computation time
of the exhaustive search is slightly lower than for our recursive branch-and-
bound algorithm (both below 1 second). However, for more than two low-
confidence reactions, the computational time required by the branch-and-
bound algorithm seems to saturate, such that it significantly outperforms
an exhaustive search for more complex modularization problems.

We also assessed the maximal, minimal, and mean number of possi-
ble distinct insulating modularizations for different numbers |ηR| of low-
confidence reactions, as well as the percentage of modularization problems
for which at least one insulating modularization is possible (Fig. S2). As ex-
pected, for all modularization problems with |ηR| = 1 there exist 25 different
modularizations, equal to the number of dynamic states (the concentration
of Epo is not influenced by any reaction, and, thus, is constant in the model).
This shows that the dual feedback mechanism in the model has as a con-
sequence that the concentration of all species (except Epo) are–directly or
indirectly–influenced by the turn-over of any reaction. For increasing num-
bers of low-confidence reactions in the network, the maximal number of
possible modularizations increases due to combinatorial explosion, whereas
the percentage of modularization problems having a non-empty solutions
decreases. Note that for |ηR| = 7 already around a fifth of all reactions are
marked as being low-confident, and that in a valid insulating modularization
more than a quarter of all states have to be measured. As stated in the main
text, our modularization approach was designed for relatively well-known
networks. Thus, it is rather surprising that still more than 10% of all ran-
domly generated modularization problems with |ηR| = 7 have a non-empty
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Figure S2: Evaluation of the branch-and-bound algorithm. (A) Computa-
tional time of an exhaustive search (red; median, 25% and 75% quantiles)
and of our branch-and-bound algorithm (blue) to solve a modularization
problem with |ηR| low-confidence reactions generated as described in the
text, compared to the theoretically predicted complexity (black, dashed;
compare Eq. 12). Note the logarithmic scale of the y-axis. (B) Maximal,
minimal, and mean number of modularizations found by either algorithm
(blue), and percentage of modularization problems with a non-empty so-
lution (black, dashed), i.e., for which at least one possible modularization
exists. Both plots are based on 100 randomly generated modularization
problems for each value of |ηR|.

solution. In this assessment, the majority of modularization problems with
less than 10% of reactions marked as being low-confident has a non-empty
solution. In reality, when encountering modularization problems with very
high numbers of low-confidence reactions compared to the total number of
reactions and species, one should consider merging several low-confidence
reactions into one, especially if they are closely related, i.e. belong to a
single hypothetical network extension.

It is important to note that our evaluation of the required computational
time, as well as of the number of possible distinct insulating modularizations
for different numbers |ηR| of low-confidence reactions, highly depends on
the specific way to generate the modularization problems. In general, we
expect modularization problems in, for example, highly connected protein-
protein interaction networks to have fewer possible solutions, and problems
in networks including, for example, many non-reversible transcription and
translation reactions to have higher probability that at least one possible
modularization exists. The model of Bachmann et al. (4) can be seen as an
intermediate between these two extremes since it includes protein-protein
interactions at the Epo receptor complex as well as transcription and trans-
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lation of socs3 and cis. Note, however, that the evaluations of computa-
tional time and number of possible modularizations for this specific problem
is meant to provide intuition for our modularization approach, rather than
to represent an exhaustive analysis.

Construction of Models

In this section, we shortly describe how to create the models with and with-
out the low-confidence reaction of a module. These models can be used for
the assessment of the existence of the respective low-confidence reaction us-
ing, for instance, Bayesian inference (5). Here, we assume that a model of
the full network is given, as well as that an insulating modularization was
already identified using our branch-and-bound algorithm. Furthermore, we
assume that experimental time-series data {yit}t∈Ti of each measured output
Si ∈ VS,η is available.

For simple modularizations, to construct the model of the ith mod-
ule without the low-confidence reaction, we utilize the formulas given in
Lemma 10 in the main text to determine the species and reactions be-
longing to the module. All species (and their initial conditions) and the
reactions with rate equations only depending on the species in the module
are simply taken over from the model of the full network. For reactions
with rates depending on the concentrations of species not in the module,
the corresponding term in the rate equation is replaced by the respective
measurement data {yit}t∈Ti , or by an appropriate spline approximation of
the measurement data for continuous models. This is possible because all
species on which the rate of a reaction in the module might depend are, by
Definition 4 in the main text, either part of the module or of its interface,
and all species in the interface of a module are measured outputs (Lemma 5
in the main text).

For modules of strict modularizations, also models can be constructed
including the respective low-confidence reaction. To identify the species and
reactions belonging to this model, we remove the low-confidence label of the
respective reaction, that is, we append the column (row) of ARS,η (ASR,η)
corresponding to the low-confidence reaction to the matrix ARS,�η

(ASR,�η
),

and apply the formulas given in Lemma 10 in the main text (without recal-
culating the outputs). Given the species and reactions which belong to the
model, we proceed as described above. Note that, by Definition 3b in the
main text, the concentration of none of the species in this model is influenced
by any other low-confidence reaction.

The models constructed as described above do not depend on any species
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or reactions not in the module, but only on experimental measurement data
that is used for the virtual inputs. Thus, it is possible to simulate the models
and compare them to the experimental measurement data of the respective
output separately, and in any order: the models of the modules are insu-
lated from each other by using the concept of virtual inputs. For strict
modularizations, if the models of different modules do not share common
parameters, which is given if the modules do not overlap, the probability for
the existence of one low-confidence reaction becomes conditionally indepen-
dent of the existence of all other low-confidence reactions by applying our
modularization approach, as stated in the main text.
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