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Cutting the Wires: Modularization of Cellular Networks for Experimental
Design
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ABSTRACT Understanding naturally evolved cellular networks requires the consecutive identification and revision of the
interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended
by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement
data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular
interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present
a graph-basedmodularization approach to facilitate the design of experiments targeted at independently validating the existence
of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such
that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a
module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation.
Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and
compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems
identification and modularization, an interplay that promises development of related approaches in the future.
INTRODUCTION
Our knowledge of the species and their interactions in most
cellular networks is incomplete. For many networks, a
consensus already exists about a set of core species and
high-confidence reactions, but this cannot yet explain all
experimental data. To close the gap between model predic-
tions and experimental results, one might extend the
network with hypothetical, low-confidence reactions. How-
ever, if several (sets of) competing model extensions exist
that are consistent with already available data, new experi-
ments have to be designed to either confirm or discard the
individual extensions. The corresponding tasks of model
discrimination and experimental design for model structure
identification pose substantial theoretical and computational
challenges.

In model discrimination (see Kirk et al. (1) for a recent
review), each possible combination of low-confidence reac-
tions defines a so-called candidate model Mi, i ˛ 1,., m,
typically with unknown parameterization (2–6). The goal
is to identify the most probable model bM , respective to
estimating the posterior probabilities p(MijD) in Bayesian
approaches, given the experimental data D. However, the
number of candidate models typically increases exponen-
tially with the number of low-confidence reactions, and
each model has to be evaluated in potentially high-dimen-
sional parameter spaces. In our opinion, the computational
complexity resulting from these two effects constitutes
one of the most important challenges in constructing larger
biomolecular models. Consequently, model discrimina-
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tion has focused on networks with typically only up to
20 or 30 parameters, and with only a small number of
mutually compatible hypothetical reactions (5) or candidate
models (2,6).

These approaches assume that the existence of a given
low-confidence reaction cannot be detected directly, but
only through its influence on the dynamics of measurable
species in the network. The decision of which species to
measure is thereby often not given a priori, but rather as
the subject of experimental design (5,7). For large, highly
interconnected networks including several—often only
poorly understood—low-confidence reactions, it becomes
challenging to identify which species concentrations
should be measured such that the experimentally observable
dynamics can be explained only by the existence or non-
existence of specific low-confidence reactions, and not by
a combination of other hypothetical reactions.

Here, we propose to solve this problem of experimental
design for model discrimination by modularization: with
an adequate definition of modularization, a module—which
is interpretable as a subnetwork—and the low-confidence
reactions therein can be (structurally) identified separately
from the rest of the network in a divide-and-conquer strat-
egy (see below for a discussion of identifiability issues).

Modularity has been hypothesized early to be a key
feature of biological network organization (8). Albeit mod-
ularization is an important tool for analyzing large-scale
networks, surprisingly few conceptually different modulari-
zation methods exist (9,10). Most approaches determine
highly connected cliques or communities of species, subnet-
works with relatively few connections to other modules, or
a combination thereof (11–15). Depending on the specific
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definitions of the terms ‘‘highly connected’’ and ‘‘modu-
larity’’, they utilize various automatic or semiautomatic
approaches including hierarchical clustering (11,16), graph
cuts based on the number of shortest paths through network
edges (i.e., ‘‘betweenness’’; see Girvan and Newman (14)),
aggregation of smaller elementary modules based on size
(12), greedy algorithms (17), or hybrid approaches based
on eigenvectors of a modularity matrix combined with
fine-tuning by local optimization (13). A recent approach
punishes only bidirectional connections between modules
to eliminate minimal, nontrivial feedback loops that estab-
lish retroactivity (18,19). These and similar approaches
are especially valuable when trying to initially understand
larger networks because the elements in a given module
typically have common—sometimes surprising—properties
that might help to explain the structure of the network (14).

Other module definitions aim at facilitating the analysis
of specific network properties (20). Pioneering work
on monotone network decompositions (21,22), however,
appears to have limited practical applicability because
analytical simplicity gained by monotone modules is often
compensated for by complex interfaces between modules.
For metabolic (mass-balanced) networks, elementary flux
modes are (minimal) sets of reactions that can operate at
steady state (23). This and similar concepts (24,25) can be
seen as modules describing functionally related sets of
reactions in steady state. Network motifs (26)—that is,
small subnetworks with a wiring that appears statistically
more often in networks than expected—constitute another
approach; their practical value lies in coarse-graining and
identification of small functional units, rather than in the
modularization of large networks.

Nearly all available modularization approaches have in
common what we consider an inherent design problem
(pathway-based methods such as from Stelling et al. (23)
are an exception): they will (nearly) always return at least
one network modularization. Therefore, the absolute signif-
icance of a given modularization typically cannot be quan-
tified because scores and similar metrics provide relative
assessments only. Note that this holds also for approaches
like those of Newman (13) and Clauset et al. (17), which
might return a single module containing the whole network,
but for which only slightly worse performing modulariza-
tions with more than one module might exist. Often, this
inherent design problem results from weakly defined goals
of modularization approaches beyond visualization, data
mining, and similar.

Here, we propose that modularization methods should
provide experimental designs for structural systems identifi-
cation, and succeed if and only if a given type of experi-
mental design is possible. Our graph-based modularization
approach, called insulating modularization, aims at identi-
fying groups of outputs that should be measured simulta-
neously such that each output defines a module with
exactly one low-confidence reaction, and such that the
Biophysical Journal 106(1) 321–331
models of each module can be simulated and analyzed
separately, specifically without knowledge on the existence
of all other low-confidence reactions.

It is an intuitive idea to define modules such that (at least
parts of) the interactions in a given module can be analyzed
in isolation from the other modules. However, this idea is
rarely considered as part of the definition of a module. As
mentioned explicitly in Bowsher (12), the isolated identifi-
cation of most of the parameters in a module should be
feasible by measuring all (and probably also a subset of)
the species in that module. Different to Bowsher (12), we
do not consider parameter identification but model selec-
tion, based on a minimal numbers of species to be measured
for a specific model selection task. Thus, our proposed
method is conceptually different to other modularization
approaches in that we consider modularity of a specific
question on a (biological) network, rather than modularity
of the network as such (27,28). Consequently, the modulari-
zations proposed by our method can change completely with
the (biological) question; similarities between modulariza-
tions proposed by our method and by other methods would
be rather coincidental.

Our method has the main advantage of attenuating the
combinatorial explosion both in the number of competing
model structures and in the required number of parameter
samples (because of lower-dimensional parameter spaces
for each module). Other experimental design methods are
typically concerned with determining dynamic trajectories
of input signals, sampling times, suitable gene knockouts,
and similar (29–33) to improve model identification or
selection. Albeit some methods (33) can also identify
(optimal) sets of outputs, the majority of these approaches
are complementary to our method: for a given modulariza-
tion, they can further specify the experimental design, for
example, by determining (optimal) dynamic trajectories
for external inputs.
RESULTS

Overview

We analyze relatively well-known networks in which the
number of high-confidence reactions is (significantly)
higher than the number of hypothetical, low-confidence
reactions. Furthermore, albeit not strictly necessary, we as-
sume that at least a few reactions are irreversible. The goal
of an insulating modularization is to separate the network
into the same number of subnetworks (modules) as the num-
ber of low-confidence reactions. Each module contains
exactly one low-confidence reaction, and it is insulated
from the rest of the network by choosing an adequate set
of outputs such that the dynamics of all species in the inter-
face of a module to the rest of the network are experimen-
tally measured. Each output is furthermore defined such
that it can be used for the evaluation of models of exactly



Modularization for Experimental Design 323
one module, that is, for testing whether the associated low-
confidence reaction exists (Fig. 1).

We achieve the insulation between the modules by utiliz-
ing that the representation of applied input signals and
measured output signals is essentially identical for the
mathematical analysis; both are typically given as a set of
time-value pairs. Thus, when measuring the sets of outputs
proposed by our method, one can use the measurement data
of the output of one module (respectively a spline fitted to
the data) as a virtual input for the simulation of all others
(compare Fig. 1 D).

For strict modularizations, two alternative models of each
module (with and without the respective low-confidence
reaction) can be created. The strictness property guarantees
that both models only depend on measured outputs and
high-confidence reactions (see the Supporting Material),
such that their agreement with the experimental results
can be directly compared using, for instance, Bayesian
inference (5). Specifically, if the strict modules do not
overlap, the probability for the existence of one low-confi-
dence reaction becomes conditionally independent of the
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FIGURE 1 Workflow of our modularization approach. (A) Mass-action

kinetics model with four species (S1–S4), three high-confidence reactions

(R1–R3), and two low-confidence reactions Ra and Rb that should be exper-

imentally verified or discarded. (B) Species-reaction graph of the network,

where box-shaped vertices represent species, diamond-shaped ones reac-

tions, and low-confidence reaction vertices are marked by two borders. A

directed edge is drawn from a species to a reaction if the respective reaction

rate depends on the species’ concentration, and a directed edge from a

reaction to a species if turnover of the reaction changes the concentration

of the species. (C) By measuring S2 and S4, the network can be split into

two modules, with each module including exactly one low-confidence reac-

tion. The time series data y1 of species S2, the output of the first module,

serves as a virtual input for the second module. (D) Models of the two iden-

tified modules can be extracted, simulated separately given the experi-

mental time-series data y1(t) and y2(t), and used to assess the existence of

each low-confidence reaction independently.
existence of all other low-confidence reactions, given the
experimental measurements of the proposed outputs (see
the Supporting Material). Overlapping modules, as in
Fig. 1 C, may contain reactions assigned to more than one
module (here: R2). If the corresponding reaction rates
depend on parameters that are adjusted by a model discrim-
ination algorithm, independent adjustments in different
modules may lead to incompatibilities. Thus, for overlap-
ping modularizations, one should check at least a posteriori
if such a case appeared. Such cases should be taken seri-
ously, the more so as they may indicate certain flaws in
the structure of the original model. We will not discuss
details because corrections depend on the specific modeling
technique and the specific model discrimination method
(e.g., including fixing of parameter values or coupled
discrimination approaches), and because in our experience
these overlaps occur rarely in real-world modularizations
problems, might not occur in all possible modularizations,
and are commonly small in size (concerning only a few
reactions; see examples in sections Example Network and
JAK2/STAT5 signaling).

For simple modularizations, only models of the modules
representing the network without the respective low-confi-
dence reactions are guaranteed to be independent of all other
low-confidence reactions. Thus, models pertaining to one
module cannot necessarily be directly compared without
knowledge on the existence of other low-confidence reac-
tions. However, following the principle of parsimony, which
also underlies Bayesian inference (35), one should favor the
network without the hypothetical reaction if it is in sufficient
agreement with all data. If details on the interactions of the
species in the low-confidence reactions are unknown, one
might, for example, merge whole subnetworks into one
black-box, low-confidence reaction to represent the hypoth-
esis that some species might influence—by a yet unknown
mechanism—the concentrations of some other species.

It is important to note that our algorithm only guaran-
tees—given adequate measurement data with sufficient
temporal and quantitative resolution—that the modules
can be virtually insulated from each other. More specifically,
our method guarantees that there exists a directed path be-
tween the low-confidence reaction and the corresponding
output in a given module. This is necessary but not sufficient
for identification of the low-confidence reaction using its
corresponding output. Symmetries in the network might,
for example, lead to structural nonidentifiability of a low-
confidence reaction given the outputs of a modularization.
In addition, practical identifiability can be prevented, for
example, by a low sensitivity of the output of a module to
the respective low-confidence reaction, or by high model
uncertainties. We therefore recommend the application of
an adequate method (e.g., Sedoglavic (36) for deterministic
models consisting of ordinary differential equations) to
check identifiability of the low-confidence reactions for a
given modularization, and potentially to choose a different
Biophysical Journal 106(1) 321–331
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modularization. Measurements of additional species in the
modules corresponding to the nonidentifiable low-confi-
dence reactions may alleviate these problems.
Insulating modularizations

In this section, we provide the mathematic definitions and
theorems used by our modularization approach. We illus-
trate each definition by discussing the small example given
in Fig. 1. We recommend that readers not interested in all
details of our method focus on Definitions 1–4, given below,
and the respective examples. In the following, we assume
that standard graph-theoretical notations are known to the
reader (see, e.g., Cormen et al. (37)).

Definition 1 (binary-labeled species-reaction graph)

A species-reaction (SR) graph is a directed bipartite graph
GSR ¼ (VS, VR, E). The vertices in VS ¼ {S1,.,Sn} and in
VR ¼ {R1,.,Rr} represent the species and the reactions of
a biomolecular network, respectively. The directed edges of
the network are defined as (Si,Rj) ˛ E if the reaction rate
of Rj depends on the concentration of Si, and (Rj,Si) ˛ E
if turnover of reaction Rj changes the concentration of
species Si.

An SR graph is binary-labeled (BLSR graph) if each of its
vertices has a binary label (weight) of 0 or 1. These labels
are assigned in the following manner: (low-confidence reac-
tion label function) hR(Rj) is 1 (0), if Rj is in the low-confi-
dence (high-confidence) set of reactions, and (output label
function) hS(Si) is 1 (0), if the concentration of Si is
measured (not measured).

For notational convenience, let VR,h ¼ {Rj ˛ VR:hR(Rj) ¼
1} and VS,h ¼ {Si ˛ VS:hS(Si) ¼ 1} be the set of low-confi-
dence reactions and the set of measured outputs,
respectively.

Fig. 1 A shows a small example of a mass-action reaction
network with three high-confidence (R1–R3) and two
low-confidence reactions (Ra and Rb), and Fig. 1 B its
corresponding BLSR graph. In this example, none of the
species S1–S4 is measured yet, but measuring any combina-
tion of species would also correspond to a BLSR graph.
Note that the definition is not limited to mass-action models,
and that it is compatible with reactions that involve
more than two species and with reaction rates of (nearly)
arbitrary form.

Definition 2 (reachability cost of a BLSR graph)

The reachability cost (length) u(p) of a directed path p in a
given BLSR graph is the sum of labels of the vertices in the
path. The reachability cost umin(u,v) is the minimal reach-
ability cost of all directed paths from vertex u to another ver-
tex vs u, orþN if no path from u to v exists. For u¼ v, the
reachability cost equals the label of the vertex.

In our example network (Fig. 1 B), the reachability costs
from S1 to R1 and from S1 to S4 are zero because directed
Biophysical Journal 106(1) 321–331
paths exist that do not contain Ra or Rb. On the other
hand, the reachability cost from S2 to S1 is 1, because the
only simple directed path contains Ra. Without a directed
path between S4 and S1, the corresponding reachability
cost is þN. Finally, by definition the reachability cost
from S1 to itself is 0 (S1 is not measured), and from the
low-confidence reaction Ra to itself it is 1.

Definition 3 (insulating modularization)

A BLSR graph is a simple insulating modularization, if and
only if the number of low-confidence reactions is equal to
the number of measured species, and there exists a unique,
bijective function m mapping low-confidence reactions to
measured outputs, such that the reachability cost from a
low-confidence reaction Rh to a measured output Sh is 2 if
and only if m(Rh) ¼ Sh.

A BLSR graph is a strict insulating modularization, if and
only if it is a simple insulating modularization, and the
reachability cost between two distinct low-confidence reac-
tions is larger than 2.

Intuitively, in a simple insulating modularization, for
every low-confidence reaction there exists exactly one
measured species, such that the corresponding two vertices
are connected by a directed path that does not contain any
other measured species or low-confidence reactions. A strict
insulating modularization additionally requires that every
path between two different low-confidence reactions con-
tains at least one measured species.

In our example network (Fig. 1 B), we obtain an insu-
lating modularization if we decide to measure species S2
and S4 (that is, change the corresponding labels to 1). In
this case, the reachability costs from Ra to S2 and from Rb

to S4 are 2, whereas the reachability cost from Ra to S4 is
3 (the shortest path contains S2), and the reachability cost
from Rb to S2 is þN (no directed path exists). This insu-
lating modularization is strict: the shortest path from Ra to
Rb has reachability cost 3, and there exists no directed
path from Rb to Ra (reachability cost þN). Alternatively,
we could also decide to measure S2 and S3, which leads to
another strict insulating modularization. However, we
would not obtain an insulating modularization by measuring
S1 and S3 because the reachability costs from Rb to S3 and
from Ra to S3 would be 2, indicating that S1 fails to insulate
S3 from the influence of Ra.

Definition 4 (module)

AmoduleM(Sh) in a simple insulating modularization is the
set of all vertices that have a reachability cost of 1 to a given
measured output Sh:

MðShÞ ¼ fVi ˛VSWVR : uminðVi; ShÞ ¼ 1g: (1)

The interface I(Sh) of a module is the set of all vertices
for which a directed edge to a vertex in the corresponding
module exists:
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IðShÞ ¼ fVi ˛VSWVR : uminðVi; ShÞ
¼ 2^dVM ˛MðShÞ : ðVi;VMÞ˛ Eg: (2)

Fig. 1 C shows the two resulting modules when choosing to

measure S2 and S4 in our example network (Fig. 1 B). The
first module contains species S1 and S2 as well as reactions
R1 and R2; its interface consists only of the low-confidence
reaction Ra. The second module encompasses S3 and S4 as
well as R2 and R3; the interface is constituted by the low-
confidence reaction Rb and the measured output of S2
(y1(t)) of the first module. Note that in this example the
two modules overlap because reaction R2 pertains to both
modules.

Lemma 5

A module in a simple insulating modularization contains
exactly one measured species, and no low-confidence
reaction:

MðShÞXVS;h ¼ fShg; (3a)

MðShÞXVR;h ¼ [: (3b)
The interface of a module only contains vertices that
correspond to measured species, and exactly one vertex
corresponding to a low-confidence reaction:

IðShÞ4VS;hWVR;h; (4a)

IðShÞXVR;h ¼ fRhg; with mðRhÞ ¼ Sh: (4b)
Proof

A module M(Sh) is defined by the set of all vertices for
which a path to Sh with a reachability cost of one exists.
Sh is part of M(Sh) because umin(Sh, Sh) ¼ hS(Sh) ¼ 1. No
other vertex Vi ˛ VS,h W VR,h, Vi s Sh, being an output
species or low-confidence-reaction, can be in the module
M(Sh), because every path from it to Sh at least contains
itself and Sh (umin(Vi, Sh) R h(Vi) þ hS (Sh) ¼ 2), or else
no path exists between them at all (umin(Vi, Sh) ¼ N).

That Rh, m(Rh) ¼ Sh, is the only element of VR,h, which
is part of the interface I(Sh), follows directly from the defi-
nition of a simple insulating modularization.

The shortest path between any element in the interface and
Sh has, by definition, a reachability cost of 2 (cVi ˛ I(Sh)
dp ¼ (Vi,Vj,.,Sh):Vj ˛ M(Sh) ^ u(p) ¼ 2). Because, by
definition, Vj is part of the module, it is true that umin

(Vj, Sh) ¼ 1, and u(p) ¼ h(Vi) þ umin(Vj, Sh) 0 h(Vi) ¼ 1,
that is, Vi is a measured species or a low-confidence reaction.

Lemma 6 (branching)

The BLSR graph that results from removing a low-confi-
dence reaction vertex Rh (and all edges from and to this
vertex) from a simple insulating modularization and from
setting the label of the corresponding measured species
Sh ¼ m(Rh) to 0 is a simple insulating modularization.

In our example network (Fig. 1 B), we could, for example,
completely remove the low-confidence reaction vertex Rb

and obtain an insulating modularization by measuring S2
because measuring S2 and S4 would result in an insulating
modularization of the original network. In this case, the first
module remains unchanged, while the second module disap-
pears (S3, S4, and R3 would be part of no module). On the
other hand, if we would remove the low-confidence reaction
Ra and only measure S4, we would obtain a single module
with all vertices.

Proof

Assume m(Rh) ¼ Sh, Rh ˛ VRh, and Sh ˛ VSh. Further-
more, assume M(S0h) being a different module (S

0
h s Sh)

with Sh ˛ I(S
0
h). Then, removing the low-confidence re-

action Rh and the measured species label from Sh,
there will be a new module ~MðS0hÞ ¼ MðShÞWMðS0hÞ
with interface ~IðS0hÞ ¼ ðIðS0hÞyfShgÞWðIðShÞyfRhgÞ. If
Sh;IðS00hÞ, S00hsSh: ~MðS00hÞ ¼ MðS00hÞ, and ~IðS00hÞ ¼ IðS00hÞ.
Lemma 7 (strictness)

The BLSR graph resulting from simultaneously setting the
label of a low-confidence reaction vertex Rh and its corre-
sponding measured species vertex Sh ¼ m(Rh) of a strict
insulating modularization to 0 is a strict insulating
modularization.

Note that the difference between Lemmas 6 and 7 is that
for a strict insulating modularization the respective vertex of
a low-confidence reaction Rh is not removed from the
BLSR-graph together with the label of the corresponding
measured species, but only its low-confidence label. The
proof is according to Lemma 6.

Because measuring species S2 and S4 in our example
(Fig. 1 B) results in a strict insulating modularization, we
could—instead of removing a low-confidence reaction
vertex as before—simply change its label such that it
becomes a high-confidence reaction. Removing the label
of Ra and measuring only S4, or removing the label of Rb

and measuring only S2, would then also result in a strict
insulating modularization.

Definition 8

Let the bijective function lS:{1,.,n} / VS, and respec-
tively, lR:{1,.,r} / VR, induce an order on the elements
of VS, respectively VR, of a BLSR graph. Without loss of
generality, let cj˛ {1,.,jVR,hj}:lR(j) ˛ VR,h, and ci˛
{1,.,jVS,hj}:lS(i) ˛ VS,h.

Then there exists a unique (n þ r) � (n þ r) 0-1 biadja-
cency matrix

AE ¼
�

0 ARS

ASR 0

�
; (5)
Biophysical Journal 106(1) 321–331
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with the element aij ˛ {0,1} of the n � r 0-1 matrix
ARS¼ (ARS,h,ARS, ) equal to 1 if (Rj, Si)˛E, and 0 otherwise.
Likewise, the element bji ˛ {0,1} of the r � n 0-1 matrix
ASR ¼ (AT

SR;h;A
T
SR; )T is equal to 1 if (Sj, Ri) ˛ E, and 0

otherwise.

Theorem 9 (main result)

Let GBLSR be a binary-labeled species reaction graph, and C
be the set of all 0-1 matrices C ¼ ½cij�jVR;hj�jVSj, with

ci˛f1;.; jVR;hjg :
XjVSj

j¼ 1
cij ¼ 1:

For a given C ˛ C, let DS,0 be defined as

DS;0ðEÞ ¼ EeAFARS;h (6)

with F ¼ (I – CTC), and A ¼ ARS, ASR, .
Then, GBLSR is a simple insulating modularization, if

jVS,hj ¼ jVR,hj ^d!C ˛ C, cij ¼ 1 0Sj ˛VS,h, such that
DS,0(C)¼ diag(di), di> 0, with diag(di)¼ [dij] as a diagonal
matrix with dij ¼ di if i ¼ j and dij ¼ 0 otherwise.

The matrix C defines the mapping between the low-con-
fidence reactions and their associated measured output
species:

cij ¼ 15mðlRðiÞÞ ¼ lSðjÞ: (7)

Furthermore, GBLSR is a strict insulating modulariza-
tion, if GBLSR is a simple insulating modularization and
DS,0 (ASR,hF) ¼ diag(di), di R 0.

Note that for a strict insulating modularization,
DS,0(ASR,hF) has to be a diagonal matrix with diagonal
elements R0, whereas the diagonal elements of DS,0(C)
have to be strictly >0.

For the proof of this theorem and alternative formula-
tions, see the Supporting Material.

Lemma 10

Let GIM be a simple insulating modularization (IM)
with the matrices C, A, F, and ARS, as described above.
Then, species j belongs to module i if element ms,ij of
MS ¼ CeAF is unequal to 0, and reaction k belongs
to the module if element mr,ik of MR ¼ CeAF ARS, is
unequal to 0.

The proof for this lemma follows the proof for Theorem 9.
Finding insulating modularizations

An algorithm for computing all insulating modularizations
has to solve the modularization problem defined by the
following.

Problem 11 (modularization problem)

Input. An SR-graph GSR ¼ (VS, VR, E) and a low-confidence
reaction label function hR:VR / {0,1}.
Biophysical Journal 106(1) 321–331
Output. The unique set LS ¼ {hS,1$$$hS,k} of all output
label functions hS,i, such that c i ˛ 1,., k:GIM ¼
(VS, VR, E, hs,i, hR) is a simple insulating modularization.

In the example discussed in the previous section

(Fig. 1 B), there are, in principle,

�
4

2

�
¼ 6 possibilities

to choose two measured species out of a total of four spe-
cies. It is easy to check that an algorithm to solve this mod-
ularization problem should have as an output that only two
of these possibilities, namely either to measure S2 and S3, or
S2 and S4, correspond to a simple insulating modularization.
While in this small example it is feasible to check all possi-
bilities by hand, it is desirable to have an efficient algorithm
to solve larger modularization problems.

An exhaustive search to find all insulating modulariza-
tions for a given modularization problem with jhRj � jVSj
has computational cost that is exponential in jhRj (see
the Supporting Material for details). Thus, the problem
becomes computationally intractable for larger values of
jhRj. However, for a fixed jhRj, we have polynomial
complexity in jVSj. Hence, networks with many vertices
but few low-confidence reactions can be modularized by
exhaustive search.

In fact, the following theorem shows that it is unlikely that
a polynomial-time algorithm to solve Problem 11 exists:

Theorem 12 (NP-hardness)

The modularization problem is nondeterministic polyno-
mial-time (NP)-hard. The proof of this theorem, which is
based on showing that the problem of deciding if at least
one simple insulating modularization exists is NP-complete,
is given in the Supporting Material.

However, superpolynomial runtime in the number of
low-confidence reactions as indicated by Theorem 12 is a
worst-case scenario. The structure of many practically rele-
vant modularization problems allows one to determine all
possible simple insulating modularizations in reasonable
time using a recursive branch-and-bound algorithm (see the
Supporting Material for details) based on Lemma 6. It ex-
ploits that the first k, k < jhRj, measured outputs of a final
modularization also define an insulating modularization for
a reduced modularization problem with only the first k low-
confidence reactions. Thus, if the solution for the respective
modularization problem defined by the first jhRj�1 low-con-
fidence reactions is already known, finding the solution to the
original problem requires only testing all concatenations of
the subsolutions to the remaining, not yet-labeled, species.
The complexity of each of the jhRj recursion steps depends
on the number of solutions found in the previous step and
jVSj, but not on jhRj. In practice, we experienced significantly
higher efficiency compared to an exhaustive search, making
it possible to modularize networks with many species and
several low-confidence reactions in reasonable time (see
the Supporting Material for details).
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Example network

To demonstrate our modularization approach, we consid-
ered the small species-reaction network depicted in Fig. 2
consisting of nine species, ten high-confidence, and two
low-confidence reactions. Our branch-and-bound algorithm
identified the six distinct insulating modularizations shown
in the network representations in Fig. 3.

For more complex problems, one may obtain combinato-
rially many possible insulating modularizations, typically
when the measured-output labels for several modules can
be chosen (partly) independently. Albeit being able to
choose between different sets of outputs is an advantage
when it comes to (feasible) experimental designs, a more
compact and intuitive representation of the different possi-
bilities than an unsorted list seems favorable. Each element
of LS can be interpreted as jhRj subsequent (ordered)
choices of outputs leading to an insulating modularization,
and each sequence of choices not represented by an element
in LS as not leading to a modularization. Similar to binary
functions represented by a truth table, our multivariate func-
tion defining whether a given output-labeling function leads
to an insulating modularization can be compactly repre-
sented by a so-called reduced ordered multiple-valued deci-
sion diagram (ROMDD, see Srinivasan et al. (38) and Miller
(39)), a rooted directed acyclic graph with a minimal num-
ber of vertices for a given order of variables (see Fig. 2). The
diagram is traveled from the root to the leaves. In our case,
the outgoing edges represent all possible choices that a
given output label, represented by the current non-leaf ver-
tex, can be assigned to. Finally, the leaves of an ROMDD
depict whether a given labeling function, represented by
the directed path from the root to the respective leaf, leads
to a case of strict, simple, or no modularization. For our pur-
poses, we adjusted the algorithm for the construction and
modification of ROMDD presented in Miller and Drechsler
(40) to handle decisions with more than four-valued
variables.

The ROMD diagram of the example network (Fig. 2) and
the six corresponding modularizations (Fig. 3) illustrate
A B
several important properties of our modularization
approach:

1. The choice of an output for one module depends on the
choice of all others, e.g., measuring species S6 requires
measuring species S3, too.

2. Not all species and reactions belong to a module, such as
species S7 and reaction R11.

3. Modules might overlap; species S4 and reaction R6, for
example, can belong to more than one module.

4. The same species might be measured in different
modularizations to identify the existence of distinct
low-confidence reaction such as, for example, species S9.

5. Our modularization approach can work for highly con-
nected networks with a substantial number of bidirec-
tional interactions.
JAK2/STAT5 signaling

In a recent study, Bachmann et al. (7) analyzed the possibil-
ity for the existence of a dual feedback mechanism in JAK2/
STAT5 signaling, and its implications for the dynamic
response to external Epo stimulation. Based on their
results, they proposed an ordinary differential equation
model composed of 26 states and 36 reactions. With several
well-designed experiments, Bachmann et al. (7) could show
the existence of the feedbacks, and identify most of their
model’s parameters. Here, we put ourselves in the position
of a researcher having developed a hypothetical network
structure represented by the model (7), but who is unaware
of the experiments that were performed to validate this
structure. In this thought-experiment, we use our modulari-
zation approach to propose experimental designs to prove or
disprove the existence of the (assumed) low-confidence dual
feedback mechanism.

We imported the Systems Biology Markup Language
(SBML) description of the JAK2/STAT5 signaling model
(7) from the BioModels Database (41) and automatically
generated its respective species-reaction graph (Fig. 4).
Subsequently, we labeled the reactions corresponding to
FIGURE 2 Example of modularization problem.

(A) Network representation. (Box-shaped vertices)

Species; (diamond-shaped vertices) reactions.

Low-confidence reaction vertices are marked by

two borders. (B) Reduced ordered multiple-valued

decision diagram depicting the choices of species

to measure in the example network to obtain an

insulating modularization (IM). Conveniently,

only decisions leading either to a strict or a simple

modularization are shown. All graphs were drawn

with GRAPHVIZ (43).
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FIGURE 4 Example insulating modularization for the JAK2/STAT5

signaling network. The graphical notation corresponds to Fig. 3 (open for

no module). Graph drawn with GRAPHVIZ (43). To see this figure in color,

go online.

A B

C D

E F

FIGURE 3 Distinct insulating modularizations of the example network.

(Box-shaped vertices) Species; (diamond-shaped vertices) reactions.

(Yellow vertices) Part of Module 1; (brown vertices) part of Module 2;

(gray vertices) parts of both modules; and (white vertices) no module.

Vertices representing the measured species of a module and the correspond-

ing low-confidence reactions are filled differently (slightly darker color

than their corresponding modules) and they have two borders (note that,

by definition, low-confidence reactions do not belong to the respective

module, but to its interface). All graphs were drawn with GRAPHVIZ

(43). To see this figure in color, go online.

328 Lang et al.
the dual feedback loop as being of low confidence. Specif-
ically, this labeling includes the following interactions:

1. CIS and SOCS3 production rates are under transcrip-
tional control of activated and nuclear localized STAT5
(reactions R17 and R27);

2. SOCS3 and CIS inhibit STAT5 activation by the Epo
receptor complex (R14); and

3. Phosphatase activity of SHP-1 requires prior binding
to an Epo receptor with phosphorylated residue Tyr429

(R11).

The last hypothesis (see also Klingmüller et al. (42)) was
included although it is not essential for the dual feedback
mechanism. Reactions R11, R14, R17, and R27 also represent
other molecular interactions and dependencies than the
stated ones. Consequently, nonexistence of a described
interaction would only imply modification, but not a
complete removal of the respective low-confidence
reaction. A strict insulating modularization guarantees that
the measured outputs are insulated from all other low-
confidence reactions except their corresponding ones for
Biophysical Journal 106(1) 321–331
all models with arbitrarily reduced complexity of the low-
confidence reactions (see Lemma 7). However, to preserve
integrity, we also include simple modularizations in the
following analysis.

Using a nonoptimized MATLAB (The MathWorks,
Natick, MA) implementation of our branch-and-bound
algorithm (see the Supporting Material) to solve this modu-
larization problem (26 states and 36 reactions, of which 4
were marked to be low-confidence) resulted in a total of
147 possible insulating modularizations, of which 98 are
strict, in reasonable computational time (<4 s on an Intel
Core 2 Duo, 3.16 GHz, 4 GB RAM). In contrast to the
example network above, the ROMDD (Fig. 5) shows that
all measured outputs can be chosen independently. Only
measuring phosphorylated nuclear or cytosolic STAT5
concentrations leads to strict modularizations; measuring
nonphosphorylated STAT5 concentrations results in simple
modularizations. This is because conservation of the
total STAT5 concentration is only implicitly modeled (7)
and, thus, not considered by our algorithm. Further-
more, to simplify analysis, Bachmann et al. (7) used artifi-
cial intermediate mRNA species (SOCS3nRNA1–5 and
CISnRNA1–5) to emulate transcriptional delays. Again,
our algorithm is agnostic of the specific modeling approach
and it consequently proposes to measure the artificial spe-
cies. However, it is straightforward to exclude these artifacts
before or after applying our modularization algorithm, and
several other insulating modularizations remain.

Remarkably, the strict insulating modularization shown
in Fig. 4 requires us to measure SOCS3 and CIS mRNA



FIGURE 5 Reduced ordered multiple-valued decision diagram repre-

senting possible choices of tuples of suitable outputs to identify the

low-confidence reactions in the JAK2/STAT5 pathway example. Conve-

niently, decisions representing the intermediate artificial mRNA species

(SOCS3nRNA1–5 and CISnRNA1–5, respectively) were combined. Graph

drawn with GRAPHVIZ (43).
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concentrations, phosphorylated nuclear STAT5, and acti-
vated SHP-1. In Bachmann et al. (7), the authors measured
CIS and SOCS3 expression profiles as well as the phosphor-
ylation state of STAT5 over time, noting that several param-
eters in their model were not identifiable due to missing
quantifications of (relative) SHP-1 activation levels. Thus,
except for the SHP-1 module, their experiments were suffi-
cient to modularize the JAK2/STAT5 signaling network
using our approach, and to validate the different reactions
comprising the proposed dual feedback mechanism sepa-
rately. We believe that this shows that the freedom of choice
our modularization approach offers by not only returning
one, but several solutions in an easily comprehensible visual
way, is essential to make an otherwise purely theoretical
approach experimentally feasible.
DISCUSSION

Our modularization approach to split a biomolecular
network into several, smaller modules differs in four main
aspects from previous approaches:

1. Our modules have a practical meaning: a modularization
directly instructs on which species should be experimen-
tally measured to confirm or reject hypothetical reactions
in a cellular network. Our approach thus shows a close
relationship between modularization and experimental
design, whereas most other modularization methods
serve mainly to sort and visualize already available
information.

2. Our modules can overlap each other and the union of all
modules is not required to reconstitute the original
network. The opposite requirements of other approaches
seem intuitively reasonable, but they often lead to rather
complex interfaces and so-called leftover or ‘‘scraggy’’
modules. Reactions and species unassigned to modules
by our algorithm do not help in experimental design;
requiring modules to contain unnecessary vertices would
pose additional constraints on how the necessary vertices
can be distributed.

3. Our approach can fail (return an empty set of possible
modularizations) or give more than one solution. We
believe that being able to fail is advantageous. Other
methods returning modules for any given network struc-
ture leave the experimenter with the question of whether
to trust the result, and relative quality indicators do not
help in this regard. In contrast, representing all possible
modularizations in a condensed and intuitive way as by
the ROMDDs leaves the experimenter the freedom to
select a set of outputs to implement.

4. Our approach is compatible with any modeling technique
that describes which species influence each other (such
that an adjacency matrix can be defined for a species-
reaction graph). This applies to practically all contem-
porary modeling techniques that aim to represent
real-world biomolecular networks, such as ordinary dif-
ferential equations, stochastic representations, Boolean
networks, and graphical models.

Note that we assume that outputs can be measured with
sufficient precision and temporal resolution. In reality, all
measurement methods are noisy and have limited temporal
resolution. Thus, when using measured outputs as virtual
inputs for our modules, the respective models will neces-
sarily experience different input signals than the real-world
networks. We expect that methods that quantify the agree-
ment between a model and a real-world system, and which
are able to deal with reasonable amounts of input noise, will
also cope with measurement noise in our virtual inputs.

Future research might extend and adjust our approach, for
instance, by increasing the amount of information used dur-
ing the modularization—at the cost of restrictions to certain
modeling techniques. One could use stoichiometric informa-
tion, or tightly combine our approach with Bayesian analysis
to further specify the experimental design in terms of type
and the parameters of hypothetical reactions. We intention-
ally did not pursue these avenues here, to preserve the general
applicability of ourmethod. Furthermore, one could relax the
requirement that each low-confidence reaction should be
identifiable completely independently. In this case, Eq. 6
should result in lower triangular matrices (for a given order
of low-confidence reactions) instead of diagonal matrices
with nonzero diagonal elements. The existence of the first
low-confidence reaction could then still be identified inde-
pendently, and one could iterate over the remaining low-
confidence reactions using this information. However, this
modification would be prone to error propagation.
Biophysical Journal 106(1) 321–331
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Finally, measuring a higher number of outputs than the
number of low-confidence reactions in the network would
help to ensure identifiability, verify the conclusions obtained
by the outputs defining the modules, and—even more
importantly—insulate the modules from each other. Thus,
even when modularization as presented here fails, the prin-
cipal idea of the approach could still be employed.
Conversely, it would be possible to extend our approach to
allow for more than one low-confidence reactions in each
module. Thus, by accepting a certain small (exponential) in-
crease in the number of candidate models per module, the
number of outputs that are necessary to be implemented
experimentally could be significantly decreased.
SUPPORTING MATERIAL

Two figures, one algorithm, 12 equations, References (44,45) and supple-

mental information are available at http://www.biophysj.org/biophysj/
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Supporting Material

Proof of Theorem 9

For simple insulating modularizations, there (i) exists a path of length 2
from the low-confidence reaction Rj = lR(j) ∈ VR,η, j ∈ {1, . . . , |VR,η|}, to
species Si = lS(i) ∈ VS , i ∈ {1, . . . , n} if the element aij of ARS,η is equal
to one. There (ii) exists a path of length 3 from species Sj = lS(j) which
is not measured (Sj ∈ VS \ VS,η) to species Si = lS(i) ∈ VS including only
high-confidence reactions if element aij of ARS,�η

ASR,�η
F is unequal zero. (iii)

Species Sj = lS(j) ∈ VS is measured if ∃i : cij = 1, C = [cij ].
A path from a low-confidence reaction Rj ∈ VR,η to a measured output

Si ∈ VS,η that does not contain any other low-confidence reactions or outputs
is a combination of (i), an arbitrary amount of (ii), and (iii). Thus, such a
path exists if and only if at least one element of the jth column of

Mi =


cTi [AF ]0ARS,η
cTi [AF ]1ARS,η
...

cTi [AF ]n−1ARS,η

 (1)

is unequal zero, with cTi the ith row of C, and A = ARS,�η
ASR,�η

. Note that
the longest possible simple path in a network with n species vertices is of
length smaller or equal to 2n+1, thus allowing Mi to be finite. The graph is
a simple insulating modularization iff |VS,η| = |VR,η| =: |η|, and all matrices
Mi, i ∈ 1 . . . |η|, have at least one nonzero entry in the ith column, and only
zero entries in all other columns.

When discarding the explicit information about the length of the path,
the requirement for insulating modularizations (Eq. 1) can be written more
compactly as

DΣ(C) = C

(
m≥n−1∑
k=0

ak(AF )k

)
ARS,η, (2)

with ak > 0 arbitrary, positive constants. In this formulation, the graph is a
simple insulating modularization, iff |VS,η| = |VR,η| =: |η| and if the matrix
DΣ(C) is a diagonal matrix with nonzero diagonal elements.

By choosing ak = 1
k! and m→∞, we obtain

DΣ,0(C) = CeAFARS,η (3)

where e is the matrix exponential defined by eX =
∑∞

k=0
1
k!X

k.
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For strict insulating modularizations, there (i) exists a path of length
2 from the low-confidence reaction Rj = lR(j) ∈ VR,η, j ∈ {1, . . . , |VR,η|},
to species Si = lS(i) ∈ VS , i ∈ {1, . . . , n} if the element aij of ARS,η is
equal to one. There (ii) exists a path of length 3 from species Sj = lS(j)
which is not measured (Sj ∈ VS \ VS,η) to species Si = lS(i) ∈ VS including
only high-confidence reactions if element aij of ARS,�η

ASR,�η
F is unequal zero.

(iii) There exists a path of length 2 from species Sj = lS(j) which is not
measured (Sj ∈ VS \ VS,η) to the low-confidence reaction Ri = lR(i) ∈ VR,η,
i ∈ {1, . . . , |VR,η|}, iff element aij of ASR,ηF is unequal zero.

A path from a first low-confidence reaction Rj ∈ VR,η to a second low-
confidence reaction Ri ∈ VR,η that does not contain any other low-confidence
reactions or a measured output is a combination of (i), an arbitrary amount
of (ii), and (iii). According to simple insulating modularizations, one can
derive that such a path exists iff the element δij of

DΣ,0(ASR,ηF ) = ASR,ηFe
AFARS,η (4)

is greater than zero. Since for a strict insulating modularization such a path
must not exist for two distinct low confidence reactions (δij = 0 ∀i 6= j),
DΣ,0(ASR,ηF ) must be a diagonal matrix.

Alternative Representation of Theorem 9

Eq. 2 can be extended to

DΣ(C) = a0CARS,η + CAF

( ∞∑
k=0

ak+1(AF )k

)
ARS,η (5)

By using the identity that F = (I−CTC) = (I−CTC) · (I−CTC), one
obtains

DΣ(C) = a0CARS,η + CA

( ∞∑
k=0

ak+1 [FAF ]k
)
FARS,η. (6)

Finally, by choosing a0 = 1, ak = 1
(k−1)! ∀k = 1, 2, . . ., we obtain a more

“symmetric” (in terms of the exponent) version of the formula:

DΣ,1(C) = CARS,η︸ ︷︷ ︸
feed-through

+ CA︸︷︷︸
observed

inner
dynamics

eFAF︸ ︷︷ ︸
inner

dynamics

FARS,η︸ ︷︷ ︸
non-feed-
through
inputs

. (7)
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Note that–in general–DΣ,0 6= DΣ,1 due to the different choice for the
values of ak.

The symmetry of the exponent in Eq. 7 allows us to rewrite the formula
in a computationally more efficient way. We consider the (n− r × n) 0− 1
matrix C0 such that (C̃ = (CT , CT0 )T ) is orthonormal and has full rank,
with n = |VS | and r = |VR,η|. Additionally, we define Ir,n = (Ir,r, 0n−r,r)

T ,
with Ir,r the (r× r) identity matrix and 0n−r,r the (n− r, r) matrix of zeros.
With these two definitions, Eq. 7 can be rewritten into

DΣ,1(C) =CARS,η + CAe(I−CTC)A(I−CTC)(I − CTC)ARS,η (8a)

=CARS,η + CA
(
e(I−CTC)A(I−CTC) − CTC

)
ARS,η (8b)

=CARS,η+ (8c)

CA
(
C̃T C̃e(I−CTC)A(I−CTC)C̃T C̃ − C̃T In,rIr,nC̃

)
ARS,η

=CARS,η+ (8d)

CAC̃T
(
eC̃(I−C̃T In,rIr,nC̃)A(I−C̃T In,rIr,nC̃)C̃T − In,rIr,n

)
C̃ARS,η

Since C̃ is orthonormal (C0 · CT = 0), and the matrix in the exponential
may have only non-zero elements in its lower-right n− r×n− r sub-matrix,
this leads to:

DΣ,1(C) = CARS,η + CACT0 e
C0ACT

0 C0ARS,η (9)

Eq. 9 is computationally advantageous over Eq. 7 because the matrix
in the exponential is (n − r × n − r) instead of (n × n), thus reducing the
computational costs for taking the matrix exponential.

NP-Hardness of Modularization Problems

To show that the modularization problem (Problem 11 in the main text)
is NP-hard (see (1)), we define for the corresponding decision problem the
formal language

Definition S1 (Modularizable)

MODULARIZABLE = {〈GSR = (VS , VR, E), ηR〉 :

∃ηS, such that GIM = (VS , VR, E, ηS , ηR)

is a simple insulating modularization} .
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Definition S1 corresponds to deciding if at least one simple modulariza-
tion exist for the corresponding modularization problem (Problem 11 in the
main text). Clearly, a polynomial-time algorithm solving the modulariza-
tion problem could be used to solve the decision problem in polynomial time,
too, by simply checking if the set LΣ of possible simple modularizations is
empty or not:

MODULARIZABLE ≤P MODULARIZATION. (10)

However, the following theorem shows that a polynomial-time algorithm is
unlikely to exist.

Theorem S2 The modularizable problem is NP-complete.

Theorem 12 in the main text follows because the modularizable problem
is polynomial-time reducible to the modularization problem (Eq. 10).

Our proof for Theorem S2 is conceptually related to the proofs that the
clique problem (1, page 1003ff), respectively the Hamiltonian-cycle prob-
lem (1, page 1008ff), are NP-complete. Furthermore, we utilize that the
3-conjunctive normal form (3-CNF) satisfiability problem is NP-complete
(1, page 998ff). In the remainder of this section, we (i) shortly summa-
rize the definition of the 3-CNF satisfiability problem, and (ii) utilize this
satisfiability problem to proof Theorem S2.

3-CNF-SATISFIABILITY

The problem 3-CNF-SATISFIABILITY considers the decision problem if
a Boolean formula φ(x1, . . . , xn) in conjunctive normal form (CNF) with
exactly three distinct literals lr1, lr2, and lr3 in each of the k clauses Cr,
r ∈ 1, . . . , k, is satisfiable, that is, if at least one assignment (TRUE or
FALSE) for the variables x1, . . . , xn exists such that φ evaluates to TRUE
(1, page 998ff). In this definition, a literal is an occurrence of a variable xj ,
j ∈ 1 . . . n, or its negation ¬xj . A clause Cr, r ∈ 1, . . . , k, is the OR of one
or more literals, and a Boolean formula in CNF is the AND of one or more
clauses. For example,

φ = (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C3

(11)

is a 3-CNF Boolen formula with three clauses (C1, C2, and C3) and six
distinct literals (x1, ¬x1, x2, ¬x2, ¬x3, and x4).
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Proof of Theorem S2

To prove Theorem S2, we have to show that MODULARIZABLE belongs to
NP, and that deciding it is NP-hard. To show that MODULARIZABLE∈NP,
for a given species reaction graph GSR = (VS , VR, E) and a low-confidence
reaction label function ηR, we use the output label function ηS as a certifi-
cate. The verifying algorithm checks if |ηR| = |ηS |, and if the binary labeled
species reaction graph GBLSR = (VS , VR, E, ηS , ηR) is a simple insulating
modularization by utilizing the formulas given in Theorem 9 in the main
text.

To prove that the decision problem MODULARIZABLE is NP hard, we
show that 3-CNF-SATISFIABILITY≤PMODULARIZABLE. For this, we
construct a SR-graph GSR and a low-confidence reaction label function ηR
for a given Boolean formula φ = C1 ∧C2 ∧ . . .∧Ck in 3-CNF and show that
φ is satisfiable if and only if 〈GSR, ηR〉 is modularizable.

Similar to (1, page 1008ff), we create a widget (a sub-graph enforcing
certain properties; see Figure S1) for every clause Cr, r ∈ 1, . . . , k, in φ.
For each of the three literals lr1, lr2, and lr3 in Cr, we create a low-confidence
reaction node ROr,i, i ∈ {1, 2, 3} as well as two species vertices S+

r,i and S−r,i
that correspond to the literal lri , respectively its negation ¬lri . Furthermore,
we add a directed edge from ROr,i to each species vertex S+

r,i and S−r,i. For

each vertex S+
r,i (but not for S−r,i), we add a high-confidence reaction RCr,i,

a species SCr,i, and the directed edges (S+
r,i, R

C
r,i) and (RCr,i, S

C
r,i). Finally, we

create one additional low-confidence reaction RFr per widget, and the three
directed edges (RFr , S

C
r,i), i ∈ {1, 2, 3}.

It is easy to validate that in a simple modularization, ∀i ∈ {1, 2, 3} either
S+
r,i or S−r,i (but not both), as well as one of the nodes SCr,1, SCr,2, SCr,3 have to

be assigned as a measured species: a module defined by the measured species
S+
r,i or S−r,i will always have ROr,i in its interface, and a module defined by

the measured species SCr,1, SCr,2, or SCr,3 will always have RFr in its interface.
Note that such an assignment is only possible if at least one of the species
S+
r,i, i ∈ {1, 2, 3}, is measured: selecting S−r,i and SCr,i as measured species

does not lead to a simple modularization because the module defined by SCr,i
contains at least two low confidence reactions (ROr,i and RFr ) in its interface
(compare Lemma 5 in the main text).

Selecting species S+
r,i (S−r,i) as a measured output corresponds to the

assignment that the corresponding literal lri in the clause Cr evaluates to
TRUE (FALSE). One has to select one of the species SCr,i, i ∈ {1, 2, 3} as a
measured species because at least one literal in every clause has to evaluate
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Figure S1: Reduction of an instance of the 3-CNF-SATISFIABILITY prob-
lem (Eq. 11) to an instance of the MODULARIZABLE problem. Box shaped
vertices represent species, diamond shaped ones reactions. Low-confidence
reaction vertices are marked by two borders. The light-gray boxes demar-
cate the widgets corresponding to the three clauses C1, C2 and C3 in the
Boolean formula φ. For convenience, the species vertices S+

r,i and S−r,i,

r ∈ 1, . . . , k ∧ i ∈ {1, 2, 3} as well as the reaction vertices R+
x,j and R−x,j ,

j ∈ 1, . . . , n are labeled with their corresponding literals. For each widget,
a simple modularization enforces for each literal that either the species cor-
responding to the literal or the species corresponding to its negation are
measured, as well as that at least one species corresponding to one of the
literals is measured. In a simple modularization, the high-confidence reac-
tions connecting the widgets enforce that only sets of species are measured
that correspond to a consistent TRUE assignment of the Boolean variables
(respectively the literals) in and between the clauses.
to TRUE.
To enforce a consistent truth assignment of the Boolean variables (re-

spectively the literals) in and between the clauses/widgets, we add two high-
confidence reactions R+

x,j , respectively R−x,j , for each Boolean variable xj ,
j ∈ 1, . . . , n, to the graph (see Figure S1), corresponding to the assign-
ment xj = TRUE, respectively xj = FALSE. We add a bidirectional
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edge (or two unidirectional edges in opposing directions) between a vertex
in {S+

r,i, S
−
r,i : r ∈ 1, . . . , k ∧ i ∈ {1, 2, 3}} and a vertex in {R+

x,j , R
−
x,j : j ∈

1, . . . , n} if the corresponding literal lri is equivalent to the assignment of xj .
In a simple modularization, this enforces to either assign all species vertices
adjacent to a reaction vertex R+

x,j , respectively R−x,j , to be measured, or
none: a partial assignment would lead to multiple low-confidence reactions
in the interfaces of the corresponding modules (see Figure S1).

For a given 3-CNF-SATISFIABILITY problem with n Boolean variables
and k clauses, our reduction algorithm described above creates a SR-graph
with 2n + 7k reaction vertices (4k of which are labeled low-confident), 9k
species vertices, and 27k directed edges. Hence, the SR-graph GSR and the
low-confidence reaction label function ηR can be computed from a Boolean
function φ in 3-CNF in polynomial time.

To show that the transformation of φ into (GSR, ηR) is a reduction, we
have to show that a satisfying assignment to the variables in φ corresponds
to a simple modularization of (GSR, ηR), and, conversely, that a simple
modularization of (GSR, ηR) corresponds to a satisfying assignment of the
variables in φ. A satisfying assignment of φ directly corresponds to measur-
ing either species S+

r,i or S−r,i, r ∈ 1, . . . , k, i ∈ {1, 2, 3}, since for each literal
in each clause either the literal or its negation is TRUE. In each clause at
least one literal has to evaluate to TRUE, say lrj . Then, species SCr,j can
be assigned to be a measured. Finally, in each widget there is a consistent
choice of measuring either S+

r,i or S−r,i, implying that all or none of the species

adjacent to a reaction vertex R+
x,j , j ∈ 1, . . . , n, respectively R−x,j , are mea-

sured. Thus, the number of measured outputs is the same as the number
of low-confidence reactions, and each module defined by a measured species
has exactly one low-confidence reaction in its interface, corresponding to a
simple modularization.

Conversely, if (GSR, ηS , ηR) is a simple modularization, it is guaranteed
that the truth assignments of the literals between the clauses is consistent;
otherwise at least one module defined by a measured species S+

r,i or S−r,i that
has more than one low-confidence reaction in its interface would exist. Fur-
thermore, in each widget either SCr,1, SCr,2, or SCr,3 is a measured species, say

SCr,j , which implies that also S+
r,j is measured. Hence, in the respective clause

at least the literal lrj evaluates to TRUE. Because the literals in the clauses
are assigned consistently and at least one literal in each clause evaluates to
TRUE, φ evaluates to TRUE corresponding to a satisfying assignment of
the Boolean variables in φ.
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Branch-and-Bound Algorithm for Modularization Problems

An exhaustive search to find all insulating modularizations for a given mod-
ularization problem would require to iterate over |VS |!

(|VS |−|ηR|)! possible assign-

ments of |ηR| output labels to |VS | different species. However, |ηR|! of these
tests include the same set of outputs, albeit in different order. Computa-
tionally, the correct order of the measured outputs for an insulating modu-
larization can be efficiently determined a posteriori, if the set of measured
outputs is known. Thus, instead of directly searching tuples of outputs such
that DΣ,1(C) is a diagonal matrix with non-zero diagonal entries (Eq. 9),
we first search for sets of outputs such that DΣ,1(C) has exactly one non-
zero element in each row and column, and afterwards we sort the outputs to
fulfill the original condition. This reduces the number of necessary checks
to
(|VS |
|ηR|
)

= |VS |!
|ηR|!(|VS |−|ηR|)! .

Checking if one output labeling function is part of the solution to a mod-
ularization problem—solving Eq. 9 for a given C—requires calculating two
matrix multiplications and a matrix exponent (the costs for left or right
multiplying a matrix X with C or C0 are negligible). The two matrix mul-
tiplication require less than O(|ηR|(|VS | − |ηR|)2) (2). The exponential of a
matrix X can be precisely and efficiently calculated via Padé approximation

with τ = 6 + max
(⌈

log2
‖X‖∞

5.4

⌉
, 0
)

matrix multiplications (3). The value

of τ depends on the maximal amount of inward connections of a vertex
in the network, and, thus, scales with increasing connectivity of the net-
work (usually τ < 10). Each of these matrix multiplications has complexity
O((|VS | − |ηR|)3), such that an exhaustive search has complexity

O

((
|VS |
|ηR|

)
·
(
2|ηR|(|VS | − |ηR|)2 + τ(|VS | − |ηR|)3

))
. (12)

In the following, we present our recursive branch-and-bound algorithmic
solution for simple insulating modularizations (see main text for an intuitive
description); if a given simple insulating modularization is strict can be
easily checked with the formulas given in Theorem 9 in the main text, and
the species and reactions belonging to a given module or interface can be
obtained with the formulas given in Lemma 10 in the main text.

The complexity and, thus, the expected evaluation time of our recursive
branch-and-bound algorithm highly depends on the specific modularization
problem, and can only be upper bounded (see main text). However, to
validate that our branch-and-bound algorithm performs significantly better
than an exhaustive search for many modularization problems, we decided
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Data: SR graph GSR = (VS , VR, E) defining the network, and the
tuple VR,η of low-confidence reactions.

Result: Set LΣ of all tuples of outputs leading to a simple
modularization.

begin
Create matrices ASR,�η

, ARS,�η
, ASR,η, ARS,η

if length VR,η = 1 then
L0 := ()

else
L0 := InsuMod((VS , VR \ {VR,η(end)}, E), VR,η(1:end-1))

end
LΣ := {}
foreach VS,η ∈ L0 do

foreach S ∈ VS \ VS,η do

ṼS,η := VS,η concat (S)

Construct matrix C from ṼS,η
Calculate DΣ,0 (see Theorem 9)
if DΣ,0 = diag(σi), σi > 0 then

LΣ := LΣ ∪ {ṼS,η}
end

end

end

end
Function InsuMod(GSR, VR,η)
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to compare the runtime of the two algorithms for automatically generated
modularization problems of various complexity in |ηR|.

The structures of naturally evolved molecular signaling networks are
constrained by their functionality. However, since these constraints are only
poorly understood, it is not possible to automatically generate “typical”
signaling networks for speed assessments of our algorithm. Therefore, we
decided to take the network structure of the JAK2/STAT5 signaling model
(4), and to generate in total 700 artificial modularization problems by ran-
domly assigning low-confidence labels to the reactions in this model. We
implemented our branch-and-bound algorithm and an exhaustive search in
MATLAB (Release R2010a, The MathWorks, Natick, MA) and determined
their computational times on an Intel Core 2 Duo, 3.16GHz, with 4GB
RAM.

Fig. S2 shows that the computational time of the exhaustive search algo-
rithm scales–as theoretical predicted (Eq. 12)–approximately exponentially
with |ηR|. For less than two low-confidence reactions, the computation time
of the exhaustive search is slightly lower than for our recursive branch-and-
bound algorithm (both below 1 second). However, for more than two low-
confidence reactions, the computational time required by the branch-and-
bound algorithm seems to saturate, such that it significantly outperforms
an exhaustive search for more complex modularization problems.

We also assessed the maximal, minimal, and mean number of possi-
ble distinct insulating modularizations for different numbers |ηR| of low-
confidence reactions, as well as the percentage of modularization problems
for which at least one insulating modularization is possible (Fig. S2). As ex-
pected, for all modularization problems with |ηR| = 1 there exist 25 different
modularizations, equal to the number of dynamic states (the concentration
of Epo is not influenced by any reaction, and, thus, is constant in the model).
This shows that the dual feedback mechanism in the model has as a con-
sequence that the concentration of all species (except Epo) are–directly or
indirectly–influenced by the turn-over of any reaction. For increasing num-
bers of low-confidence reactions in the network, the maximal number of
possible modularizations increases due to combinatorial explosion, whereas
the percentage of modularization problems having a non-empty solutions
decreases. Note that for |ηR| = 7 already around a fifth of all reactions are
marked as being low-confident, and that in a valid insulating modularization
more than a quarter of all states have to be measured. As stated in the main
text, our modularization approach was designed for relatively well-known
networks. Thus, it is rather surprising that still more than 10% of all ran-
domly generated modularization problems with |ηR| = 7 have a non-empty
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Figure S2: Evaluation of the branch-and-bound algorithm. (A) Computa-
tional time of an exhaustive search (red; median, 25% and 75% quantiles)
and of our branch-and-bound algorithm (blue) to solve a modularization
problem with |ηR| low-confidence reactions generated as described in the
text, compared to the theoretically predicted complexity (black, dashed;
compare Eq. 12). Note the logarithmic scale of the y-axis. (B) Maximal,
minimal, and mean number of modularizations found by either algorithm
(blue), and percentage of modularization problems with a non-empty so-
lution (black, dashed), i.e., for which at least one possible modularization
exists. Both plots are based on 100 randomly generated modularization
problems for each value of |ηR|.
solution. In this assessment, the majority of modularization problems with
less than 10% of reactions marked as being low-confident has a non-empty
solution. In reality, when encountering modularization problems with very
high numbers of low-confidence reactions compared to the total number of
reactions and species, one should consider merging several low-confidence
reactions into one, especially if they are closely related, i.e. belong to a
single hypothetical network extension.

It is important to note that our evaluation of the required computational
time, as well as of the number of possible distinct insulating modularizations
for different numbers |ηR| of low-confidence reactions, highly depends on
the specific way to generate the modularization problems. In general, we
expect modularization problems in, for example, highly connected protein-
protein interaction networks to have fewer possible solutions, and problems
in networks including, for example, many non-reversible transcription and
translation reactions to have higher probability that at least one possible
modularization exists. The model of Bachmann et al. (4) can be seen as an
intermediate between these two extremes since it includes protein-protein
interactions at the Epo receptor complex as well as transcription and trans-
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lation of socs3 and cis. Note, however, that the evaluations of computa-
tional time and number of possible modularizations for this specific problem
is meant to provide intuition for our modularization approach, rather than
to represent an exhaustive analysis.

Construction of Models

In this section, we shortly describe how to create the models with and with-
out the low-confidence reaction of a module. These models can be used for
the assessment of the existence of the respective low-confidence reaction us-
ing, for instance, Bayesian inference (5). Here, we assume that a model of
the full network is given, as well as that an insulating modularization was
already identified using our branch-and-bound algorithm. Furthermore, we
assume that experimental time-series data {yit}t∈Ti of each measured output
Si ∈ VS,η is available.

For simple modularizations, to construct the model of the ith mod-
ule without the low-confidence reaction, we utilize the formulas given in
Lemma 10 in the main text to determine the species and reactions be-
longing to the module. All species (and their initial conditions) and the
reactions with rate equations only depending on the species in the module
are simply taken over from the model of the full network. For reactions
with rates depending on the concentrations of species not in the module,
the corresponding term in the rate equation is replaced by the respective
measurement data {yit}t∈Ti , or by an appropriate spline approximation of
the measurement data for continuous models. This is possible because all
species on which the rate of a reaction in the module might depend are, by
Definition 4 in the main text, either part of the module or of its interface,
and all species in the interface of a module are measured outputs (Lemma 5
in the main text).

For modules of strict modularizations, also models can be constructed
including the respective low-confidence reaction. To identify the species and
reactions belonging to this model, we remove the low-confidence label of the
respective reaction, that is, we append the column (row) of ARS,η (ASR,η)
corresponding to the low-confidence reaction to the matrix ARS,�η

(ASR,�η
),

and apply the formulas given in Lemma 10 in the main text (without recal-
culating the outputs). Given the species and reactions which belong to the
model, we proceed as described above. Note that, by Definition 3b in the
main text, the concentration of none of the species in this model is influenced
by any other low-confidence reaction.

The models constructed as described above do not depend on any species
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or reactions not in the module, but only on experimental measurement data
that is used for the virtual inputs. Thus, it is possible to simulate the models
and compare them to the experimental measurement data of the respective
output separately, and in any order: the models of the modules are insu-
lated from each other by using the concept of virtual inputs. For strict
modularizations, if the models of different modules do not share common
parameters, which is given if the modules do not overlap, the probability for
the existence of one low-confidence reaction becomes conditionally indepen-
dent of the existence of all other low-confidence reactions by applying our
modularization approach, as stated in the main text.
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