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Remove pillars and image.

FIG. 1. Experimental protocol and initial conditions.

A: Picture of the flow chamber (Warner Instruments, model RC-20h).

B: Schematics of the PDMS template.

C: Schematics of the protocol. Cells are allowed to reach confluence before the template is removed.

D: MDCK wounds (Rw = 25µm) were fixed while constrained under the template and labeled for

F-actin (green) and nuclei (blue). Scale bar: 100µm.
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FIG. 2. Circularity dynamics.

A: Plot of the normalized circularity c(t)/c(0) vs. time t of the large wound in Supplementary

Movie 1 (Rw = 250µm, red curve). The measurement stops when the fingers merge at t = 6h.

B: Plot of the normalized circularity c(t)/c(0) vs. normalized time t/tc, for the smallest (Rw =

25µm, N = 18, black curve) and the largest initial radii (Rw = 100µm, N = 21, red curve) of the

small wounds. Error bars indicate the s.e.m.
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FIG. 3. Actin staining on HEK cells.

HEK-HT (left) and HEK-RasV12 (right) wounds (Rw = 50µm) were allowed to close for 30 min

and were then fixed and stained for F-actin with phalloidin. Numerous lamellipodia of different

numbers and sizes are observed in both cases. Scale bar: 50µm.
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FIG. 4. Local ablation of the acto-myosin cable.

A-E: Timelapse of the retraction of an acto-myosin cable after laser ablation (MDCK-LifeAct-GFP

wound, Rw = 25µm), imaged through confocal microscopy at t = −1 s, 0 s, 5 s, 15 s and 30 s.

Here t = 0 s corresponds to the first image acquired immediately after ablation. Scale bar: 5µm.

F: Retraction dynamics of one of the severed ends of the cable (black circles) with a double

exponential fit (red curve) ∆l(t) = l1
(
1− e−t/τ2

)
+ l2

(
1− e−t/τ2

)
. The fit yields two characteristic

times, τ1 = 59.9 ± 26.0 s and τ1 = 2.0 ± 0.4 s and two retraction lengths, l1 = 4.3 ± 1.2µm and

l2 = 0.9± 0.1µm.
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FIG. 5. Ablation of the entire cable.

A-E: Timelapse of the retraction of the wound edge after laser ablation of the circumferential cable

(MDCK-LifeAct-GFP wound, Rw = 25µm), imaged through confocal microscopy at t = −30 s,

0 s, 2 min, 5 min and 15 min. Here t = 0 s corresponds to the first image acquired immediately

after ablation. Scale bar: 50µm. The actin cable was clearly apparent before ablation.

F: Plot of the retracted wound radius as a function of time (black circles), fitted by an exponentially

decaying function of time ∆R(t) = l
(
1− e−t/τ

)
(red curve). We obtain a retracted length of

l = 1.36± 0.15µm and a retraction time of τ = 90.7± 27.9 s.
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FIG. 6. Velocity correlation length.

Plot of the velocity correlation length vs. the cut-off radius Rmax for all cell types and conditions.

The red line is the first bissectrix, drawn to guide the eye. The cut-off radii and their error bars

are obtained by fits of closure time data (see Fig. 5 and its caption). The correlation length is

obtained from an exponential fit of the averaged velocity correlation function (see Methods), whose

95% confidence interval gives the error bars.

7



I. MODEL

We formulate a simple continuum mechanics description of wound closure, where we take

advantage of our experimental observations that (i) cell division and death are negligible

during the time of wound closure, (ii) there is no apparent orientational order of the cells,

(iii) the wound shape remains approximately circular over the course of the experiment,

and (iv) the flow is incompressible. We first detail our theoretical description (section I A),

before we study three different epithelial rheologies, based on constitutive equations for

either a simple inviscid or viscous liquid (sections I B and I C, respectively) or an elastic

solid (section I D). Each rheology allows to obtain an analytical expression for the closure

dynamics of the circular model wounds created by the experimental protocol.

A. Continuum mechanics epithelization

In order to understand wound closure dynamics on the scale of the epithelium, we aim

at describing stresses and strains on large length scales, as compared to the cell size. Using

continuum mechanics, we formulate an effective two-dimensional description of epithelization

that takes into account the macroscopic tissue material properties.

Conservation of cell number in the epithelium is expressed by

∂tn+ ∂α(nvα) = n(kd − ka) , (1)

where n is the cell number density, vα the tissue velocity field, and kd and ka are the rates

of cell division and cell death, respectively. By convention, greek indices denote vector

components, and are summed when repeated. We assume kd = ka = 0 in the following,

consistent with our experimental observations that both cell division and cell death are

negligible during the time course of wound closure. Furthermore, the cell number density

n = n0 is approximately constant (Fig. 3E-F). The cell number balance equation then

becomes a constraint on the tissue flow field, ∂αvα = 0: the flow is incompressible (Fig. 3B).

In a continuous material, mechanical forces are balanced locally if inertial terms can be

neglected, as is the case here. Force balance is then expressed as

∂βσαβ = −f ext
α , (2)
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where internal forces are described by the stress tensor σαβ, and f ext
α denotes external forces.

Here, the external force is due to friction with the substrate, and with ξ being a friction

coefficient we write f ext
α = −ξvα. Together with a constitutive equation for the stress tensor

and appropriate boundary conditions, Eq. (2) allows to solve for the deformation and cell

flow field in the epithelium. The constitutive equation for the stress tensor accounts for the

tissue material properties. In general, the stress tensor can be decomposed into an isotropic

part σ and a deviatoric (traceless) part σ̃αβ according to

σαβ = σδαβ + σ̃αβ , (3)

where δαβ denotes Kronecker’s symbol, and σ̃αα = 0 by definition.

In the following, we consider an epithelium where a model wound with initial radius

R0 is created at t0 = 0, centered about the origin O. We assume that the circular shape is

preserved during the closure process and denote by R(t) the wound radius at time t (Fig. 4A).

The wound closes because of forces exerted at the margin, either by actively pulling cells or

by an acto-myosin cable that spans over the whole perimeter. Using polar coordinates, the

stress boundary condition at the margin reads

σrr|R(t) = σp +
γ

R
, (4)

where σp is a protrusive stress that accounts for forces exerted by the cells at the wound

margin, and γ is a tension that describes purse-string forces due to an acto-myosin cable

around the wound. Introducing the length scale Rγ = γ/σp, we expect that the purse-

string mechanism (resp. the protrusive forces) will dominate the dynamics at scales smaller

(resp. larger) than Rγ.

Assuming rotational invariance of the flow allows to express the velocity field as ~v =

vr(r, t)~er , where the non-vanishing radial component depends only on the distance r relative

to the center O of the initial wound. Using the incompressibility constraint ∇ · ~v = 0,

we obtain vr(r, t) = A(t)/r, where A(t) can be determined from the kinematic boundary

condition at the margin. Since vr(r = R(t), t) = Ṙ(t), we can express vr(r, t) in terms of r

and the wound radius R(t) only

vr(r, t) =
R(t)Ṙ(t)

r
. (5)

Using this expression with Eqs. (2) and (4) allows to find a dynamical equation for the

wound radius R(t). In the following sections, we derive and solve this dynamical equation—
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or rather the inverse problem t = t(R)—for three different constitutive equations, each

highlighting a different epithelial rheology.

B. Inviscid fluid

For simplicity, we first assume that the epithelium behaves as an incompressible, inviscid

fluid on the relevant time and length scales. In this case, the stresses are purely isotropic

and do not depend on tissue viscosity or elasticity. In the incompressible limit, the isotropic

part of the stress becomes a Lagrange multiplier which is determined from the mechanical

boundary conditions, and we simply write σ = −P . The stress tensor thus reads

σαβ = −P δαβ , (6)

where P is the pressure field at the scale of the epithelium. Using rotational invariance (P =

P (r, t)) and Eq. (5) for the velocity field, the force balance (2) becomes ∂rP = −ξRṘ/r .

The pressure follows as P = −ξRṘ ln r + C, where C = C(t) is a function of time. Note

that in principle, C(t) is determined by the boundary condition at r → ∞, which is an

ill-defined limit in two dimensions. We therefore introduce a constant, long-range cut-off

Rmax at which the pressure vanishes and write

P (r, t) = −ξR(t)Ṙ(t) ln
r

Rmax

. (7)

Since Ṙ(t) ≤ 0 and r ≤ Rmax, the pressure is negative: the epithelium is under tension.

A dynamical equation for the wound radius R(t) follows from the stress boundary con-

dition at the margin, Eq. (4), and with the above expression for P we find

ξR ln

(
R

Rmax

)
Ṙ = σp +

γ

R
. (8)

Using the characteristic length Rγ = γ/σp, we rewrite the evolution equation as

dt =
ξ

σp

R2

R +Rγ

ln

(
R

Rmax

)
dR . (9)

Integration yields the function t(R) = t̃(R)− t̃(R0), with

4D t̃(R) = −R2

(
1 + 2 ln

Rmax

R

)
+ 4RγR

(
1 + ln

Rmax

R

)
+ 4R2

γ

(
Li2(−

R

Rγ

)− ln
Rmax

R
ln
R +Rγ

Rγ

)
. (10)
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Here, we introduce the epithelization coefficient D = σp/ξ, which has the dimension of

a diffusion coefficient, and Li2 stands for the dilogarithm function defined as Li2(x) =∑∞
k=1 x

k/k2. The integration constant is determined by the initial condition t(R0) = 0.

Since Li2(0) = 0, the closure time is finite: tc ≡ t(R = 0) = t̃(0)− t̃(R0) = −t̃(R0).

When the contribution of the acto-myosin cable is negligible, Rγ → 0, the expression for

t(R) simplifies to

t(R) ' R2
0

4D

(
1 + 2 ln

Rmax

R0

)
− R2

4D

(
1 + 2 ln

Rmax

R

)
, (11)

and the closure time follows as

tc(R0) '
R2

0

4D

(
1 + 2 ln

Rmax

R0

)
(12)

in the same limit. This result implies that under the above assumptions, i.e., for an inviscid

epithelium, the closure of a circular model wound completes in a finite time, independently

of whether a contractile cable contributes to force production or not.

C. Viscous fluid

Taking into account viscous stresses, the deviatoric stress tensor is given by

σ̃αβ = 2ηṽαβ , (13)

where η is an effective tissue shear viscosity and ṽαβ is the traceless part of the velocity

gradient tensor vαβ = 1
2
(∂αvβ + ∂βvα). The isotropic part of the stress becomes again a

Lagrange multiplier, and we write σ = −P as before. Incompressibility also implies that

vγγ = 0, and thus ṽαβ = vαβ.

Taking into account rotational invariance, the radial component of the force balance (2)

reads

∂rσ + ∂rσ̃rr + 2
σ̃rr
r

= ξvr . (14)

Inserting the constitutive equations, we obtain as before ∂rP = −ξRṘ/r. Expression (7)

for the pressure field is therefore unchanged. With σrr = −P + 2η ∂rvr, the boundary

condition (4) now leads to

Ṙ =
γ + σpR

ξR2 lnR/Rmax − 2η
. (15)
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Introducing the length scale Rη =
√
η/ξ, integration yields

t(R) = t̃(R)− t̃(R0) , (16)

with

4D t̃(R) = −R2

(
1 + 2 ln

Rmax

R

)
+ 8R2

η ln
Rmax

R +Rγ

+ 4RγR

(
1 + ln

Rmax

R

)
+ 4R2

γ

(
Li2(−

R

Rγ

)− ln
Rmax

R
ln
R +Rγ

Rγ

)
. (17)

In the limit of vanishing viscosity, Rη → 0, the above expression reduces to Eq. (10),

consistent with the assumption of vanishing deviatoric stresses in the inviscid case.

The closure time is again finite, tc ≡ t(R = 0) = t̃(0) − t̃(R0) = 2(η/σp) ln(Rmax/Rγ) −

t̃(R0), and tends to expression (12) in the limit where both Rη and Rγ are negligible.

However, if Rη remains finite, the closure time diverges in the limit Rγ → 0. The model

predicts that, in the absence of a contractile cable, circular model wounds do not complete

closure in finite time when viscous stresses in the epithelium cannot be neglected. This

somewhat surprising result is an artifact of the continuous description: in fact closure will

complete, thanks to cell-scale mechanisms not taken into account by the model, as soon the

wound radius is smaller than a microscopic cut-off length a, with a finite closure time of the

order of t̃(a)− t̃(R0).

D. Elastic solid

When deformations are small, the constitutive equation for an incompressible elastic

material reads

σ̃αβ = 2µũαβ , (18)

where µ is the shear elastic modulus and ũαβ is the traceless part of the strain tensor. The

latter is defined as uαβ = 1
2
(∂αuβ + ∂βuα) for a displacement field uα. Incompressibility

implies that uγγ = 0, and thus ũαβ = uαβ. In this limit, the isotropic stress becomes again

a Lagrange multiplier and we write σ = −P .

In the case of rotational invariance, we can express the elastic displacement field as

~u = ur(r, t)~er. Using the incompressibility condition ∇ · ~u = 0 together with the boundary

condition ur(R, t) = R(t)−R0, we obtain ur as a function of r and R(t),

ur(r, t) =
R(t)(R(t)−R0)

r
. (19)
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One can check that this expression verifies Ṙ(t) ≡ (∂t + vr∂r)ur(r = R(t), t) = vr(r =

R(t), t) at all times t ≥ 0. The differential equation for P resulting from force balance is

again unchanged, P is given by Eq. (7). Since the radial stress in the epithelium is given by

σrr = −P + 2µ∂rur , (20)

the stress boundary condition (4) yields the following dynamical equation for the wound

radius R(t)

Ṙ =
γ + σpR + 2µ(R−R0)

ξR2 lnR/Rmax

. (21)

Formally, elastic restoring forces and forces driving epithelization balance at the equilibrium

radius Re with

Re =
2µR0 − γ
σp + 2µ

. (22)

Taking into account the initial condition t(R0) = 0, integration of Eq. (21) yields

t(R) = t̃(R)− t̃(R0) , (23)

where t̃(R) is given by

4DS t̃(R) = −R2 − 4RRe + 2R (R + 2Re) ln
R

Rmax

+ 4R2
e

(
ln

R

Rmax

ln (1− R

Re

) + Li2(
R

Re

)

)
. (24)

Here, DS = σp+2µ

ξ
has the dimension of a diffusion coefficient, and differs from the epitheliza-

tion coefficient D by a factor of (1 + 2µ
σp

). In the limit of vanishing elastic modulus (2µ� σp

and 2µ � γ/R0), expression (24) for t(R) reduces to the one obtained for an inviscid fluid

as given by Eq. (10). Of course only positive values of the radius are physical and closure

stops when R(tc) = 0.

The above result for t(R) implies that the wound closure eventually completes whenever

Re ≤ 0. This is the case for large enough values of the line tension γ, i.e., γ ≥ 2µR0. The

closure time is then given by tc = t(R = 0) = t̃(0) − t̃(R0) = −t̃(R0). In the particular

case where line tension and elasticity balance exactly, γ = 2µR0 and thus Re = 0, Eq. (24)

reduces to Eq. (11), and the closure time follows as given by Eq. (12) with the substitution

D → DS.

When the equilibrium radius is positive but small, 0 < Re ' a, where a is of the order

of the size of a cell, epithelization may proceed to a scale small enough that microscopic
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mechanisms, not accounted for within the continuous description, terminate the epitheliza-

tion process. This might be the case even for small values of the line tension 0 ≤ γ ≤ 2µR0

provided that the protrusive stress dominates the elastic modulus, σp � 2µ (see Eq. (22)).

When the epithelial elastic modulus is large enough (2µ ∼ σp and 2µ > γ/R0), the equi-

librium radius is strictly positive: wound closure halts due to elastic forces. Expression (24)

takes complex values when Re > 0. However, the identity

Li2(x) + Li2(1− x) + ln (1− x) lnx =
π2

6
(25)

allows to rewrite t(R) as

t(R) =
ξ

4 (σp + 2µ)

[
(R2

0 −R2) + 4(R0 −R)Re + 2R (R + 2Re) ln
R

Rmax

− 2R0 (R0 + 2Re) ln
R0

Rmax

+ 4R2
e

(
Li2(1−

R0

Re

)− Li2(1−
R

Re

) + ln
R−Re

R0 −Re

ln
Re

Rmax

)]
,

(26)

where all terms are real-valued for R > Re > 0. In this case the closure time is infinite.

II. DATA ANALYSIS

In section I, we obtained analytical expressions of tc(R0) and t(R), corresponding to

different epithelial rheologies. In order to estimate the physical parameters of the epithe-

lia, we now fit experimental data by these expressions, using the Levenberg-Marquardt

algorithm for nonlinear least-squares fitting, implemented in Python (lmfit package,

http://pypi.python.org/pypi/lmfit/, Least-Squares Minimization with Bounds and

Constraints). We successively examine fits of closure times vs. initial effective radii in

section II A and fits of individual trajectories R(t) in section II B.

A. Closure time data

The closure time is a robust quantity that depends only weakly on the image analysis

method: at a given time t, the wound is either open or closed. The experimental uncertainty

on tc is of the order of the time resolution of data acquisition, between 3 and 15 minutes

depending on the size of the wound. Fig. 7 gives the empirical cumulative distribution

functions of closure times for MDCK wounds, including the effect of inhibitors. Fig. 8
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FIG. 7. Cumulative distributions of closure times for MDCK wounds.

A: comparison between wild-type (blue curves, N = 24, 41 and 16 respectively) and Rho− assays

(red curves, N = 10, 16 and 7 respectively), Rw = 25µm, 50µm and 100µm from left to right.

B: comparison between wild-type (blue curves, same data as in A) and Rac− assays (red curves,

N = 8, 39 and 16 respectively), same sizes from left to right. A fraction of the Rac− wounds do

not complete closure within the observation time t = 18 h.

shows that closure time data pertaining to all cell types and conditions is well fitted by

Equation (12), obtained for an inviscid epithelium without cable.

We now ask whether this simple description is robust, and consider this question in

the case of MDCK wild-type wounds, for which the number of wounds is largest (N =

130). As shown in section I, different assumptions made on the epithelial rheology lead to

different expressions of the closure time tc as a function of the initial radius R0. Although an
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FIG. 8. Inviscid fluid: Closure time tc as a function of the initial effective radius R0 (circles),

fitted by Equation (27) (solid curves) with the constraints D,Rmax ≥ 0. One dot corresponds to

one wound.

A: MDCK wounds. Wild Type, Rho− and Rac− assays. The physical parameters of epithelization

(D,Rmax) are given within a 95 % confidence interval. MDCK WT (N = 130): σp/ξ = 353 ±

38µm2 h−1, Rmax = 117 ± 11µm; MDCK Rho− (N = 30): σp/ξ = 278 ± 40µm2 h−1, Rmax =

114± 14µm; MDCK Rac− (N = 34): σp/ξ = 198± 22µm2 h−1, Rmax = 105± 9µm;

B: HEK-HT and HEK-RasV12 wounds. HEK-HT (N = 63): σp/ξ = 572 ± 57µm2 h−1, Rmax =

132± 12µm; HEK-RasV12 (N = 65): σp/ξ = 1531± 363µm2 h−1, Rmax = 223± 77µm.

Insets: for all cell types and conditions, the ratio of initial effective area over closure time R2
0/tc

increases with initial radius R0.

inviscid epithelium may close without cable, strictly speaking, both a viscous and an elastic

epithelium require a finite line tension (γ 6= 0) for closure to reach completion.

For convenience, we summarize below the analytical expressions obtained for tc(R0):

- inviscid liquid, without cable (γ = 0, D = σp/ξ):

4D tc(R0) = R2
0

(
1 + 2 ln

Rmax

R0

)
(27)

- inviscid liquid, with cable (γ 6= 0, Rγ = γ/σp):

4D tc(R0) = R2
0

(
1 + 2 ln

Rmax

R0

)
− 4R0Rγ

(
1 + ln

Rmax

R0

)
− 4R2

γ

(
Li2(−

R0

Rγ

) + ln
Rmax

R0

ln
Rγ

R0 +Rγ

)
(28)
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- viscous liquid, with cable (Rη =
√
η/ξ):

4D tc(R0) = R2
0

(
1 + 2 ln

Rmax

R0

)
− 4R0Rγ

(
1 + ln

Rmax

R0

)
+ 8R2

η ln
R +Rγ

Rγ

− 4R2
γ

(
Li2(−

R0

Rγ

) + ln
Rmax

R0

ln
Rγ

R0 +Rγ

)
(29)

- elastic solid, with cable (Re = 2µR0−γ
σp+2µ

≤ 0, DS = σp+2µ

ξ
):

4DS tc(R0) = R2
0

(
1 + 2 ln

Rmax

R0

)
+ 4R0Re

(
1 + ln

Rmax

R0

)
− 4R2

e

(
Li2(

R0

Re

)− ln
Rmax

R0

ln (1− R0

Re

)

)
(30)

First, we investigate whether cable tension may significantly contribute to force produc-

tion at the margin (Fig. 9A). Fitting closure time data with expression (28), obtained for

an inviscid epithelium with a cable, we find that:

- values of D and Rmax are consistent within error bars with those obtained without a

cable;

- the length scale Rγ = 7± 11µm is small compared to R0 (Rγ � R0), as well as to the

wound radius (Rγ � R(t)) except in the late stages of closure.

When the epithelium is modeled as an inviscid fluid, we conclude that the contribution

of the actomyosin cable to the stress boundary condition is negligible. For the sake of

completeness, we investigate the case where protrusive forces are small compared to the

cable tension (Rγ � R0). In this case, the closure time is given by

9
γ

ξ
tc(R0) = R3

0

(
1 + 3 ln

Rmax

R0

)
, (31)

which follows from integration of Eq. (8) with σp = 0. This expression fits the closure time

data rather poorly (Fig. 9A): in particular the value obtained for Rmax is inconsistent with

the sizes considered. We conclude that protrusive forces at the margin cannot be neglected.

Second, we ask whether neglecting viscous stresses in the epithelium is legitimate, and

fit data with Eq. (29) (see Fig. 9B). We obtain:

- values of D and Rmax consistent within error bars with those found in the inviscid case

without a cable;
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FIG. 9. Model selection: MDCK wild type wounds.

A Border forces. The closure time tc is plotted as a function of the initial effective radius R0

(black circles), and fitted by analytical expressions obtained when the epithelium is modeled as an

inviscid fluid:

- Equation (27): black line, σp 6= 0, γ = 0, constraints D,Rmax ≥ 0, fitted parameter values

σp/ξ = 353± 38µm2 h−1, Rmax = 117± 11µm;

- Equation (28): red line, σp 6= 0, γ 6= 0, constraints D,Rmax, Rγ ≥ 0, fitted parameter values

σp/ξ = 247± 108µm2 h−1, Rmax = 104± 13µm, Rγ = 7± 11µm;

- Equation (31): blue line , σp = 0, γ 6= 0, constraints γ/ξ,Rmax ≥ 0, fitted parameter values

γ/ξ = 8592± 606µm3 h−1, Rmax = 89± 2µm.

B Tissue rheology. The closure time tc is plotted as a function of the initial effective radius R0

(black circles), and fitted by analytical expressions obtained when both lamellipodial protrusions

and an actomyosin cable are taken into account (σp 6= 0, γ 6= 0):

- Equation (27): black line, inviscid fluid as in A;

- Equation (29): blue line, viscous fluid, constraints D,Rmax, Rγ , Rη ≥ 0, the (blue) fitted curve

cannot be distinguished from the black curve, with identical parameter values of D and Rmax, and

Rγ = Rη = 0.

- Equation (30): green line, elastic solid, constraints D,Rmax, µ, γ ≥ 0, the fit yields σp/ξ ≈

247µm2 h−1, Rmax = 104µm, 2µ
σp

= 0, Rγ ≈ 7µm, from which we deduce Re = −Rγ < 0.

- a length scale Rγ = 7± 51µm, consistent with a zero value;

- a viscous length scale Rη = 0.01± 8000µm, consistent with a zero value.
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We conclude that the actomyosin cable can be neglected in this case as well (Rγ � R0), and

that dissipation is dominated by friction with the substrate (Rη � R0): epithelial viscosity

can be neglected.

Finally, we study closure time data taking into account elastic stresses, and fit data

with Equation (30), constraining the parameters Ds, Rmax, 2µ/σp, and Rγ to be positive.

The fitted value of 2µ/σp is consistent with zero: elastic forces are vanishingly small when

compared to protrusive forces. In addition, the fitted values of Ds = D, Rmax and Rγ are

consistent with those obtained for an inviscid fluid when the cable line tension is taken into

account. In this case, Equation (30) reduces to Equation (28).

Altogether, we find that the model of the monolayer as an inviscid fluid describes wild-

type MDCK data satisfactorily, and that viscous and elastic contributions to the stress are

negligibly small. Furthermore, the contribution of the cable to force production is small

compared to that of lamellipodia. We hypothesize that the main function of the contractile

circumferential cable is to stabilize the free epithelial boundary. Since Rγ � R0 in all cases

considered, we neglect cable tension in the following and set γ = 0 unless explicitly specified

otherwise.

B. Closure trajectories

In sections II B 1 and II B 2, we examine the individual trajectories of closing and non-

closing wounds.

1. Closing wounds

For brevity, we focus on MDCK-WT and HEK-HT wounds, and fit Equation (11) to

data, using for convenience time as a function of radius t(R). In Section II A, we showed

that the simplest model of the monolayer as an inviscid fluid driven by cell protrusions at

the margin suffices to describe closure time data. We therefore fit trajectories using the

same model (see Fig. 10A), obtain one set of physical parameters per wound, and check the

consistency of our results.

Since Rmax was previously found to vary little, we constrain Rmax to belong to the 95%

confidence interval obtained from closure time data (see the caption of Fig. 8 for numerical
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FIG. 10. Trajectories R(t) of closing wounds. A, C: MDCK wild type wounds; B, D:

HEK-HT wounds.

A, B: Fit of trajectories R(t) with Equation (11). For clarity, we show only two trajectories

(circles) and their fits (solid curves) per pillar size Rw, corresponding to the shortest and longest

closure time observed at a given Rw. The normalized effective radius R(t)/R0 is plotted as a

function of time t.

C, D: Histogram of estimates of the epithelization coefficient (see text for details).

values). The distributions of epithelization coefficients obtained by fitting Equation (11)

to data are shown in Fig. 10, for MDCK-WT and HEK-HT wounds, with mean values ±

standard deviations given by:

- MDCK wild type wounds: σp/ξ = 424± 170µm2 h−1;

- HEK-HT wounds: σp/ξ = 522± 165µm2 h−1.
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For both cell types, the confidence intervals obtained from fitting closure time data belong

to the above intervals: the two measurement methods are consistent. Trajectories are noisy,

due to intrinsic variabity, but also to possible pixelization errors when determining the area of

the cell-free domain. Fitting individual trajectories leads to a higher dispersion of estimated

parameter values. We therefore prefer to use closure time data for parameter estimation

whenever closure is complete.

2. Non-closing wounds

We finally turn to the non-closing wounds observed in MDCK Rac− assays. Among the

models presented in Section I, the only case where the final radius is strictly positive is that

of an elastic epithelium with Re > 0, or 2µ > γ/R0. In Fig. 11A, we show that individual

trajectories are fitted satisfactorily by Equation (26). The equilibrium radius Re increases

with the initial effective radius R0 (Fig. 11B), as predicted by Equation (22). A linear

regression of Re vs. R0 yields the estimates

2µ

2µ+ σp
= 0.5± 0.1 (32)

γ

2µ+ σp
= 6± 7 µm. (33)

From (32), we deduce that µ/σp ≈ 0.5. Assuming that the Rac pathway has a limited

influence on the epithelial elasticity, this suggests that Rac inhibition leads to lower values

of the protrusive stress (compared to wild type assays), of the order of the elastic modulus.

Since µ/σp ≈ 0.5, Equation (33) yields Rγ ≈ 10µm: the actomyosin cable contributes

significantly to force production in non-closing Rac− assays when, e.g., Rw = 50µm.

Fitting non-closing trajectories, we obtain estimates of the coefficient Ds = D
(

1 + 2µ
σp

)
.

Using µ/σp ≈ 0.5, we expect that D ≈ 0.5Ds. In Fig. 11C, we plot the histogram of

epithelization coefficients defined for simplicity as D = 0.5Ds. We find σp/ξ = 180 ±

45µm2 h−1 (mean value ± standard deviation, N = 29). Fitting Rac− closing trajectories

with Equation (11) for an inviscid epithelium, we obtain σp/ξ = 230±66µm2 h−1 (N = 30),

a value slightly higher than the previous estimate obtained for non-closing wounds. Note

that both estimates are consistent with that obtained from fitting time closure data.

A balance between driving forces at the margin and a bulk elastic restoring force explains

the positive value of the equilibrium radius observed in these assays. A word of caution
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FIG. 11. MDCK Rac− assay

A-C: Non-closing wounds

A: Trajectories. Normalized effective radius R(t)/R0 as a function of time t. For illustrative

purposes, we show only two trajectories t(R) per pillar size Rw (solid curves) and their fit by

Equation (26) (dashed curves), with the constraints DS ≥ 0, Rmax ∈ [96 114]µm (confidence

interval obtained from closure time data), Re = minR(t) (Equation (26) is defined only forR > Re).

B: Equilibrium Radius Re (estimated as Re = minR(t)) vs. initial radius R0. The linear

regression line (black solid line, Re = aR0 + b) has coefficients a = 0.5± 0.1, b = −6± 7µm.

C: Histogram of parameter estimates. The epithelization coefficient is estimated as D = Ds/2

(from 2µ/σp ≈ 1), where Ds is obtained by nonlinear curve fitting of the trajectory, as in (a).

D: Closing wounds. Histogram of the epithelization coefficient. Closing trajectories are fitted

as in Fig. 10A-B.

seems however in order. Although R(t) plateaus on a time scale of the order of 15 h, one

cannot exclude that a “non-closing wound” may in fact heal completely on a time scale much
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longer than the available observation time, over which cell divisions may become relevant

and need to be taken into account.
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MOVIE 1. Closure of a large MDCK circular wound.

A MDCK-actin-GFP wound (Rw = 250µm) is imaged in epifluorescence for 14 h. Scale

bar: 200µm. Three leader cells formed at the edge of the wound and then drove multicel-

lular fingers hence deforming the initial circle (Fig. 6). The fingers eventually met in the

center and the leader cells switched back to a classical epithelial phenotype. The remaining

secondary wounds then proceeded to heal in a much more regular fashion without showing

any formation of leader cells (Movie 2).

MOVIE 2. Closure of “secondary” wounds.

Close-up on the secondary wounds from the experiment seen in Movie 1, imaged for 8.3 h.

Scale bar: 100µm. Neither leader cells and nor margin roughening are seen.

MOVIES 3-5. Closure of small circular wounds.

Three examples of time lapse movies made in phase contrast microscopy showing the typical

closure of a wound for, respectively:

• wild type MDCK cells, Rw = 50µm for 6 h 30; scale bar: 100µm;

• HEK-HT cells, Rw = 50µm for 4 h; scale bar: 100µm;

• HEK-RasV12 cells, Rw = 75µm for 3 h 30; scale bar: 150µm.

Direct inspection shows that the protrusive activity is enhanced in the last case, with a

closure time shorter compared to a smaller wild type HEK wound.

MOVIE 6. Dynamics of lamellipodial activity.

A MDCK-LifeAct-GFP wound (Rw = 25µm) was imaged by confocal microscopy for 3 h.

Scale bar: 25µm. The optical slice was very close to the surface as this is the position

where lamellipodia develop. For this reason, stress fibers were apparent but the membranes

between cells were not. We observed a high number and a large activity of these lamellipodia

that could be recognized as waves of actin in the bulk of the tissue. Of note, high laser power

was needed to observe these lamellipodia and the dynamics of closure was drastically reduced

in those experiments probably due to phototoxicity.

MOVIE 7. Laser ablation of the entire cable.

A MDCK LifeAct-GFP wound (Rw = 25µm) is imaged by confocal microscopy from t = 30
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min after removal of the pillars. The actin cable is then fully ablated and the retraction of

the edge is imaged for 1 min. Note the dynamic retraction of the edge of the wound. Scale

bar : 10µm.

MOVIE 8. A non closing MDCK Rac− wound.

A MDCK wound (Rw = 50µm) under Rac inhibition was imaged in phase contrast. The

movie runs for 17.5 h. Scale bar: 100µm.
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