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Figure 1 reminds the reader about the construction of the model. The pictorial of the sequence

of elements in the adhesion center illustrates the idea of how the TGF-β signal might be sent to the

cell, but it also highlights the ‘paradox’. On the short timescales of Brownian motion, at which the

‘decision’ about breaking or preserving the latent complex is made, there is no coherent motion in

the overdamped macromolecular system – and therefore the force F is transmitted along the whole

series of elements. This means that, whether the soft substrate deforms by this pulling force (as

shown in the picture) or a stiffer substrate stays in its original position, the force acting on the latent

complex is always F – and there could be no sensitivity to the degree of the above deformation

(which is indeed measured by the stiffness κ).

The scheme in the right panel of Figure 1 illustrates the mechanical elements. Again, on a much

longer time scales both the cell and the substrate may experience creep (irreversible deformation).

However, on the time scales relevant to our problem, that is, when the Kramers-like ‘escape’

over the potential barrier U(x) signifies the spontaneous breaking of the latent complex and the

release of signalling TGF-β , both elements are elastic – in the sense that they each have a fixed

equilibrium value of deformation induced by an external force. Of course, both elements must

also have the energy dissipation (friction) mechanism to balance the energy input from the thermal

motion (fluctuation-dissipation theorem), which is expressed by the friction constants γ1 and γ2.
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Figure 1: The reminder of the key points of the model: [left] the qualitative explanation for the
release of active TGF-β signalling to the cell about the properties of the substrate; [right] the series
of Voigt-like models describing the substrate (stiffness κ , friction constant γ1 displacement of the
binding point x1) and the latent complex with the friction γ2 and displacement x2 controlled by the
“lock” potential U(x2− x1).

Equations (1) and (2) of the main paper express the Langevin dynamics of these two elements in

series, as measured at the points measured by x1 and x2.

There are several ways of converting the microscopic stochastic problem described by Langevin

dynamics into the kinetic equation(s) for the probability distributions. We follow the method sum-

marized by Graham, which starts by expressing the Langevin equations for independent variables

qν(t) in the ‘standard’ form:

q̇ν = fν(q)+gi
ν(q)ζi(t), (1)

where fν(q) are the corresponding dynamic forces and ζi(t) the stochastic force normalized to

unity: 〈ζi(t)ζ j(t ′)〉 = δi jδ (t − t ′) so that the actual intensity of the relevant stochastic force is

expressed by a coefficient gi
ν(q). In our case, for the two fluctuating variables x1(t) and x2(t) these

parameters are quite simple:

f1(x1,x2) =
1
γ1

[
−κx1 +

dU
d(x2− x1)

]
, f2(x1,x2) =

1
γ2

[
− dU

d(x2− x1)
+F

]
; (2)

g1 =
√

2kBT/γ1, g2 =
√

2kBT/γ2. (3)

Remaining in the overdamped limit (i.e. at timescales much greater than the characteristic relax-

ation time m/γ) allows us to dispense with the dependence on the corresponding velocity space in
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the full Fokker-Planck formalism, and obtain directly:

∂P(x1,x2, t)
∂ t

=− ∂

∂x1
[ f1(x1,x2) ·P]−

∂

∂x2
[ f2(x1,x2) ·P]+ kBT

[
1
γ1

∂ 2

∂x2
1
+

1
γ2

∂ 2

∂x2
2

]
P.

The corresponding expressions for the diffusion currents take the explicit form:

J1 =
1
γ1

[
−κx1 +

dU
d(x2− x1)

− kBT
∂

∂x1

]
P, J2 =

1
γ2

[
− dU

d(x2− x1)
+F− kBT

∂

∂x2

]
P. (4)

In their current form it is not possible to write the components J1 and J2 as a single two-dimensional

vector, because they are written with nominally different diffusion constants: kBT/γ1 and kBT/γ2.

This issue can be overcome by scaling the variables: x1 =
√

γ2/γ1x̃1, x2 =
√

γ1/γ2x̃2. This allows

us to write the current in general vector form:

J̃i =−
kBT
√

γ1γ2
e−ṼE/kBT ∂

∂ x̃i

(
eṼE/kBT P

)
i = 1,2 , (5)

with a unique diffusion coefficient D̃ = kBT/
√

γ1γ2 and an effective potential acting in the plane

(x1,x2): VE(x1,x2) =
1
2κx2

1− Fx2 +U(x2− x1). This effective potential surface represents the

landscape over which the substrate and complex particles move, subject to collisions caused by

thermal motion in the medium.

To apply the analysis to a real physical system, it is necessary to express U(u), with the relative

stretching of the ‘lock’ u = x2− x1, in a particular functional form. In the 60 years past Kramers

original work, many such forms were tried, with a great variety of barrier shapes. It is, however,

clear that only two key features of such a potential are relevant: the distance u0 of the barrier

from the position of metastable minimum – and the barrier height ∆; in contrast, the shape of the

potential around the minimum and around the barrier only contribute in a minor way to the pre-

exponential factors. In recent years it becomes more and more common to use a cubic function

that has a simple and explicit representation of the two mentioned key features, and also naturally

excludes the possibility of rebinding by falling to negative infinity for large u. The form is adjusted
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so that the minimum (point A) is at u = 0 and the maximum (point C) at u = u0:

U(u) =
3
2

∆

(
u
u0
− 1

2

)
−2∆

(
u
u0
− 1

2

)3

+
∆

2
. (6)

When the external force F and the spring potential of the elastic substrate are added in the effective

potential VE(x1,u), we find that it has two extrema at:

x∗1 =
F
κ
, u∗± =

1
2

u0

(
1±
√

1− 2
3

Fu0

∆

)
. (7)

The solution u∗+ corresponds to the saddle point (i.e. the barrier the systems needs to overcome) and

the solution u∗− marks the minimum of the two-dimensional well; the two extrema have the same

x1 coordinate; for FC = 3∆/2u0 the two extrema coincide so there is no longer any energy barrier

to hold the latent complex together. The effective barrier height, ∆E , is defined as the difference

in potential between the minimum of the well and the saddle point: ∆E = ∆(1−2Fu0/3∆)
3
2 .

This expression, alongside the probability currents, are the starting point for the application of the

Kramers theory.

Applying the Kramers theory to generalized multidimensional problems causes several com-

putational problems; for this reason it is usually more convenient to reduce the system to a one-

dimensional barrier escape. In our context this means we identify the path taken by the system in

the effective potential landscape. We stay close to the original approach of Kramers, but differ in

the technique used to evaluate the integrals for the path. Let us make the path dependent on a new

single variable, u for convenience, which coincides with the previously defined u = x2− x1 when

F = 0. Starting with the assumption of steady current, we may write for the path A→ C→ B:

J
∫ B

A

γ

kBT
eVE/kBT du =

(
PeVE/kBT

)∣∣∣A
B
. (8)

Taking the potential at the point to which the particles ‘escape’ (B) to be such that V (uB) ∼ −∞,

which is consistent with the rapidly decreasing cubic describing U(u), the expression for the con-
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stant probability current can be simplified:

J =
P(uA)eVE(uA)/kBT∫ B

A
γ

kBT eVE/kBT du
. (9)

Moving eVE(uA)/kBT from the numerator to the denominator, the integrand of this expression be-

comes I(u) = e(VE(u)−VE(uA))/kBT . To approximate the value of this integral the original solution by

Kramers uses the method of saddle-point integration, approximating the exponent of the integrand

with a second order polynomial. This has been generally followed in the literature since. However,

this classical method has a problem in the region of F→FC, that is, near the point where the barrier

disappears and the system has no restriction escaping from its originally metastable state (A). This

problem has been known since Kramers himself, and is usually avoided merely by assuming low

forces: in the saddle-point method one has to extend the integration region to infinity (which is

normally safe, since the Gaussian exponential cuts the integrand to zero far away from the barrier

crest). So, although the ‘curvature’ V ′′E (uC) goes to zero, actually as
√

FC−F , the error of this

saddle-point approximation increases. If one follows the classical recipe literally, it leads to the

completely wrong result that J → 0 as F → FC. Over the years, there were several much more

accurate treatments of this problem, but we choose our own (as it seems all these methods are all

worth each other: all converging to the classical Kramers result at F → 0, while leading to the

diverging flux at F → FC, in slightly different ways).

Our method is to fit a second order polynomial to the integrand I(u) itself, integrating it from

A to C, and then doubling this to approximate the value of the integral from A to B. The chosen

polynomial shares its maximum with the maximum I(uC) and also passes through the minimum

I(uA). The fitting parabola is given by I(u) ≈ −(I(uC)− I(uA))(u− uC)
2/(uC − uA)

2 + I(uC),

which may be substituted in the expression for the integrand:

∫ B

A
e(V (u)−V (uA))/kBT du≈ 2

∫ C

A
−e(V (uC)−V (uA))/kBT −1

(uC−uA)2 (u−uC)
2 + e(V (uC)−V (uA))/kBT du

=
2
3
(uC−uA)

(
1+2e(V (uC)−V (uA))/kBT

)
. (10)
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Figure 2: Comparison between the classical saddle-point integration (a) and the method of inte-
gration via model parabola used here (b): The exponent of the integrand (a)(i) is approximated by
a second-order polynomial (shown in pink). In contrast, the integrand itself (b)(ii) is approximated
in the method used here; the chosen second-order function shares the maxima of the integrand
at uC, passes though the functionŠs minima at uA (shown in green), and the integral is taken over
twice the area from uA to uC, indicated by the shaded region. (c) The limit of F→ FC illustrates the
difference more explicitly, showing how the integral of the saddle-point approximation diverges,
while the approximating by parabola with a fixed integration width gives a plausible result.

Here the distance between the extrema is (uC−uA) = u0
√

1−2Fu0/3∆ and the remaining energy

barrier is expressed by V (uC)−V (uA) = ∆(1−2Fu0/3∆)3/2 for our chosen potential energy. This

expression for the integral in denominator may now be put back to obtain the probability flux:

J =
kBT

γ
P(uA)

3
2

[
(uC−uA)

(
1+2e(V (uC)−V (uA))/kBT

)]
. (11)

The escape rate k is given by the flux J normalized by the numbers of particles in the well at A,

νA. Quasi-stationary conditions are assumed, requiring the barrier to be large compared to thermal

fluctuations (∆� kBT ). We are therefore justified to assume the Maxwell-Boltzmann distribution

is valid in the neighborhood of (A), again following the classical Kramers analysis:

dνA = P(uA)e−VE/kBT du, (12)

which may be integrated to find the number of particles. Approximating the potential about the

potential minimum at uA by a Taylor series to second order, the number of particles may be ap-
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proximated to

νA =
P(uA)

ωA

√
2πkBT eF2/2κkBT , (13)

where ωA is the curvature of the potential well at the minimum (A), while the exponential factor

is a reminder that the depth of this minimum is no longer at VE = 0 – which merely expresses

the fact that the system states would accumulate more densely in a deeper energy minimum of the

stretched substrate. We are now in the position to write down an expression for the ratio of the rate

with a force a applied, k(F), to the initial rate with no force, k0, which frees the expression from

constant factors:

k(F)

k0
=

ωA(F)

ωA(0)
e−F2/2κkBT uC0−uA0

uCF −uAF

1+2e(V (uC0)−V (uA0))/kBT

1+2e(V (uCF )−V (uAF ))/kBT
. (14)

Figure 3: The illustration of a two-sided minimum of the effective potential VE(x1,u), with the
descent towards the minimum (nearly) along the x1 direction has the curvature ωA1 =

√
κ , while

the climb towards the barrier along the u-direction has the curvature ωA2 given earlier in the text.

Whilst the positions and values of the potential at the different points are readily calculated

from the previously obtained expressions, the curvature term ωA requires further attention. The

curvature we seek to find is composed by a first segment O→ A and a second segment A→ C, see

Fig.3(b) in the main paper. To first order the curvature of the first segment will be simply ω2
A1 = κ ,

which may be visualized intuitively since, when working with forces safely below the critical, the

path follows closely the x1 axis. The curvature of the path A→ C, when evaluated at the bottom

of the well, may be taken to be equivalent to the modulus of the value of the second derivative of
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the potential U(u) at that point:

ω
2
A2 =

6∆

u2
0

√
1− 2

3
Fu0

∆
. (15)

It is therefore possible to approximate the total curvature ω2
A (which controls the result of the

integration around uA) as an average of these two values weighted by distance. That is, the weight

of the first curvature will be the distance from O to A (F/κ to first order), while the weight of the

second will be the distance from A to C, given above. As a result we obtain:

ω
2
A =

6κ∆

(
1− 1

2
Fu0

∆

)
u0

(
F +κu0

√
1− 2

3
Fu0

∆

) . (16)

With this last piece in place we may proceed to substituting all the components into k(F) = J
νA

to obtain:

k(F) =
9D̃∆

2
√

2πkBT u3
0

e−F2/2κkBT
√

1−2Fu0/3∆(
1+2exp

[
(1−2Fu0/3∆)3/2

∆/kBT
])(

F/κu0 +
√

1−Fu0/3∆

) (17)

As mentioned earlier, it is often considered useful to present the ratio of the breaking rate k(F) and

its ‘bare’ value at zero force. In doing so several constant factors cancel (in particular, the effective

diffusion coefficient) and the expression allows the quick examination of the effects of the pulling

force:
k(F)

k0
=

e−F2/2κkBT
√

1−2Fu0/3∆(1+2exp [∆/kBT ])(
1+2exp

[
(1−2Fu0/3∆)3/2

∆/kBT
]) . (18)

Examining both expressions we see the natural dimensional parameters measuring the external

pulling force relative to the characteristic returning force of the lock (the latent complex): f̃ =

Fu0/∆, and similarly – the substrate stiffness: κ̃ = κu2
0/∆. Similarly, the escape rate of the latent

complex has its own natural units, making the non-dimensional measure k̃ = k ·2
√

2πkBT u3
0/9D̃∆.

Of course, the non-dimensional ratio ∆/kBT is the measure how strongly confined the latent com-

plex is, and since there is no (or very little) spontaneous ‘leakage’ of TGF-β from it, we expect

∆/kBT � 1.
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Two simplified expressions are presented and explored in the main text. One is simply the

expansion of k(F) in the limit of weak force ( f̃ � 1), however, retaining the key exponential factor

exp[−F2/2κkBT ]. The other expression is ‘reconstructed’ to interpolate a simple formula into

the weak substrate limit (κ̃ � 1) by lifting the linear expressions of the nature (1− a) into the

exponential form e−a:

k ≈ 9D̃∆

2
√

2πkBT u3
0

e−(∆−Fu0)/kBT e−F/κu0 e−F2/2κkBT . (19)
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