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How Cells Feel: Stochastic Model for a Molecular Mechanosensor
Matteo Escudé, Michelle K. Rigozzi, and Eugene M. Terentjev*
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
ABSTRACT Understanding mechanosensitivity (i.e., how cells sense the stiffness of their environment) is very important,
yet there is a fundamental difficulty in understanding its mechanism: to measure an elastic modulus one requires two points
of application of force—a measuring and a reference point. The cell in contact with substrate has only one (adhesion) point
to work with, and thus a new method of measurement needs to be invented. The aim of this theoretical work is to develop
a self-consistent physical model for mechanosensitivity, a process by which a cell detects the mechanical stiffness of its
environment (e.g., a substrate it is attached to via adhesion points) and generates an appropriate chemical signaling to remodel
itself in response to this environment. The model uses the molecular mechanosensing complex of latent TGF-b attached to the
adhesion point as the biomarker. We show that the underlying Brownian motion in the substrate is the reference element in
the measuring process. The model produces a closed expression for the rate of release of active TGF-b, which depends on
the substrate stiffness and the pulling force coming from the cell in a subtle and nontrivial way. It is consistent with basic exper-
imental data showing an increase in signal for stiffer substrates and higher pulling forces. In addition, we find that for each cell
there is a range of stiffness where a homeostatic configuration of the cell can be achieved, outside of which the cell either relaxes
its cytoskeletal forces and detaches from the very weak substrate, or generates an increasingly strong pulling force through
stress fibers with a positive feedback loop on very stiff substrates. In this way, the theory offers the underlying mechanism
for the myofibroblast conversion in wound healing and smooth muscle cell dysfunction in cardiac disease.
INTRODUCTION
Complex living organisms are made of trillions of cells that
constantly grow, interact, and reproduce, each one of
them performing specific and fundamental tasks for life.
Scientists have always been fascinated by how each one
of them appears to be aware of its role and able to interact
with its surroundings as if they possessed true sensory
organs. The general question we seek to answer in this
work is: how do cells feel the mechanical stiffness of their
environment? Through the application of a classical phys-
ical model of coupled stochastic processes, we expand our
understanding of the sensory activity of cells.

A large amount of research has been devoted to studying
the mechanisms behind chemical signal detection at the
cellular level, a sensory activity that could be compared to
the olfactory ability of animals and humans. However, in
the last two decades there has been growing evidence that
cells are not only receptive to the concentration of chemicals
in their environment, but also to mechanical properties
of objects they are in contact with. These mechanical
properties include viscosity, hydrostatic pressure, and de-
formability, as well as topographic profiles: features of
materials that animals perceive through complex tactile or-
gans. To provide concrete examples: cellular cytoskeletal
changes (1–3), adhesions (4), contractile forces (5), stiffness
(2), and migration (4) have all been shown to be affected
by the mechanical properties of the substrate the cell is
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attached to. Cellular differentiation, based on changes in
substrate stiffness, is another emblematic area where
mechanosensitivity is observed. Notable evidence for this
includes the work by Engler et al. (6) on how stem cell line-
age is specified by matrix elasticity. A similar example,
which is a more specific focus of this article, is the process
of differentiation of fibroblasts into myofibroblasts as a
response to a stiffer substrate. A most remarkable biological
investigation of this system has been carried out by Wipff
et al. (7).

Mechanosensing is defined as when at least one chemical
reaction in the cell changes characteristics in response to a
change in its mechanical environment. We specifically
wish to distinguish from a very different case when external
forces are applied to the cell. There is a lot of research on
that problem, but ultimately it has no mystery: there are
many molecular processes that respond to an applied force
and probably several different ones are employed by cells
in different situations. It is much more challenging to
understand how cells could detect the stiffness of a passive
matrix they are in contact with. Such a sensor requires a
mechanical structure with the ability to produce changes
in a chemical signal, which are in turn detectable by recep-
tors in the cell. The sensor specifically investigated in this
work is the latent complex of the transforming growth
factor-b (latent TGF-b): a large biomolecular complex
that has been shown to be associated with smooth-muscle
actin expression (8) and, in particular, to have the stretch-
sensing features that cause the embryonic-stem-cell-to-
smooth-muscle-cell (9) or the fibroblast-to-myofibroblast
differentiation (7).
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We defer the biological details to the next section. What is
specifically relevant to the basic physical picture is the fact
that a passive biomolecular complex is able to perform a
measurement of stiffness on its environment. When humans
wish to detect the stiffness of an object, with machinery or
with their tactile organs, they usually perform two separate
measurements: force (or stress); and displacement (or
strain). The measure of stiffness is obtained by a ratio
relating these two physical parameters. What is crucial to
this kind of measurement is that the apparatus requires
two points of application: to measure displacement a fixed
reference point is always needed; to measure force one
has to ensure a reference point as well. We need two fingers
to squeeze a test object from two sides—or use just one
finger for measurement of an object against a reliably fixed
wall. In the same way, all engineered devices ultimately
have two points of application on the test sample. A simple
sensor like the latent TGF-b complex, which is effectively a
molecular protuberance outside the cell surface, does not
possess these features: it only has one finger (or point of
application) through which a pulling force is transmitted
from the cell interior and no a priori information about the
reference point in the substrate, so how can it perform this
measurement? This is the question driving our work.

As a result of this work, we conclude that the measuring
process is carried out thanks to the microscopic thermal
fluctuations (Brownian motion) of the sensor and of the
substrate, which result in a different statistical behavior in
environments with different stiffness. The biomolecular
measuring complex has evolved so that its characteristic
energy scale is comparable to that of thermal fluctuation
in the typical cell environment, allowing the small cellular
forces to affect the statistics of latent complex rupture.

Other physical models have been developed in this field,
notably that of Schwarz et al. (10). They have proposed a
model that is meant to describe the mechanosensing activity
of focal adhesions. Specifically, they introduce a two-spring
model where the extracellular and intracellular mechanical
environments are described as two springs in series con-
nected by a breakable bond: a construction very similar to
what we shall be employing below. However, in keeping
with the established methods, they assume that the cell im-
poses a force-dependent velocity v(F) on the first spring,
while the far end of the second spring remains fixed. This
makes the whole problem dynamic and the fundamental
difficulty of a mechanical measurement with just one point
of application is no longer present: there is never a state of
mechanical equilibrium along the series of springs. The
force-dependent rate of rupture is then written by using
the phenomenological expression of Bell,

kðFÞ ¼ k0e
Fx0=kBT ;

where k0 is the rate of rupture without force applied and x0

is the characteristic length scale describing the free energy
of the bond (11). Of course, the Bell formula has been
originally derived by Kramers (12), in extending his clas-
sical solution for the equilibrium rate of escape over an
energy barrier to when an external force modifies the poten-
tial energy: V(x) � Fx. These ideas were extensively used
by Dudko et al. (13) in the context of single-molecule pull-
ing experiments.

There are a number of elegant experiments that demon-
strate the constant nature of the force exerted by the cell
(14–16). Compared to Schwarz et al. (10), we offer a
more fundamental explanation of the physical phenomenon
because it draws on the principles of statistical mechanics
rather than on a phenomenological observation, and also
observes the mechanical balance laws. Our work also pro-
vides an improvement to the model of Dudko et al. (13)
because approaching the critical breakdown force, our
expression for the rate of escape shows the correct diverging
behavior. The final result we obtain has the Bell formula in
the high barrier limit embedded in it; however, other factors
critically involving the stiffness of the substrate dominate
the behavior.
THE BIOLOGICAL SYSTEM

The specific stretch-sensor, based on the latent complex of
TGF-b, has been selected because it is expected to be repre-
sentative of a broader family of mechanosensors and also
because of the abundance of biophysical research providing
reliable evidence of its behavior. In this account of the bio-
logical system, we primarily follow the works of Sinha et al.
(1), Wipff et al. (7), and Tomasek et al. (17).

Fibroblasts are the most common type of cell in connec-
tive tissue, and among other functions, are crucial to the
process of physiological tissue repair. Specifically, when
a wound is formed, fibroblasts differentiate into myofibro-
blast, a highly contractile form that helps to pull the wound
together and facilitates the healing process. The highly
contractile state of the myofibroblasts is generated by
a-smooth muscle actin (a-SMA) in stress fibers, appear-
ance of which marks the transition between the two states.
In a very similar way, smooth muscle cells of arterial wall
stiffen by overexpression of a-SMA when a rigid crystal-
line plaque forms underneath them in the arterial cavity.
In both cases, the release of TGF-b has been unambigu-
ously registered (7,8).

The differentiation of fibroblasts into myofibroblasts has
been shown to be reproducible in vitro by plating fibroblasts
on substrates with different stiffness. For substrates stiffer
than a specific Young modulus, E T 11 kPa (7), fibroblasts
differentiate into myofibroblasts. If plated on a softer sub-
strate (E << 11 kPa), however, fibroblasts do not transform
and remain in the fibroblast state—and myofibroblasts turn
back into fibroblasts. The value of ~10 kPa is particularly
interesting because it is similar to the difference in stiffness
between wound tissue and typical connective tissue (18).
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FIGURE 2 The lock, representing the latent TGF-b complex, is pulled by

the cell with a constant force F and is coupled to a viscoelastic substrate

with the equilibrium stiffness k. Both elements have a dissipative (friction)

component to their response, described by the constants g1 and g2, respec-

tively. The positions of the substrate and lock deviation of equilibrium are

x1 and x2. To see this figure in color, go online.
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Strong evidence suggests that this phenotype change is
caused by the mechanical activation of latent TGF-b as a
biomarker (19). When active TGF-b is released into the
cell surroundings, it can bind to specific receptors on the
cell surface, and the cell is induced to synthesize three types
of protein crucial to the signaling loop, namely more of the
latent TGF-b complex, a-SMA, and matrix proteins (7,20).
The latent complex is produced to add to the body of sen-
sors, some of which have been broken, and the a-SMA
forms more contractile fibers in the cell, increasing the force
applied to the latent complex molecules. Hinz et al. (20)
specifically confirm that an increased a-SMA expression
is sufficient to enhance fibroblast contractile activity. The
latent complex adheres to integrins on the cell surface
which, intracellularly, are bound to the contractile cytoskel-
eton. Outside the cell, the latent complex is attached to the
extracellular matrix via proteins such as fibronectin (21)
(Fig. 1). When the cell contracts, the latent complex is put
under tension. However, we have to question the beautiful
and intuitively clear picture proposed by Wipff et al. (7)
and Wells and Discher (22): since the cell exerts a (constant)
force, it does not matter whether the substrate deforms (in
the soft case) or stays rigid—basic mechanics tells that in
all cases the tension remains constant along the chain of
elements in Fig. 1. If one wants to relate the rate of active
TGF-b release to the force applied to the latent complex,
e.g., by Bell’s formula, as in Schwarz et al. (10)—this
cannot be different between the soft and stiff cases.
Resolving this problem is our aim here.
THE MODEL

No analytical theory for the mechanosensing role of TGF-b
exists in the literature. Our model is inspired by the two-
spring construction of Schwarz et al. (10) and is illustrated
in Fig. 2. We treat the substrate (which could be either the
extracellular matrix or an artificial material) as a one-dimen-
TGF-β1
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FIGURE 1 Illustration of the biological system: the cell attachment to a

deformable substrate, the application of pulling force F, and the release of

active TGF-b. On binding to a receptor on the cell surface, TGF-b initiates

two processes: production of the new latent complexes (to replenish the

broken ones) and of the smooth-muscle actin (to stiffen the stress fibers

and increase the pulling). Although this image is frequently found in the

literature, it is not often appreciated that the force acting on the latent

complex is always F irrespective of how much the substrate is deformed.

To see this figure in color, go online.
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sional viscoelastic Voigt system: the effective spring
attached to a distant fixed point is characterized by two
parameters, an effective spring constant k, representing its
elastic modulus; and a damping coefficient, g1. It is impor-
tant to distinguish this from a commonly used Maxwell
model for viscoelasticity of polymer melts and complex
fluids: although the relaxation time is the same, only with
an elastic and a dissipative element in parallel can one
model a gel with an equilibrium elastic modulus.

This viscoelastic spring is connected in series with the
latent complex of TGF-b, which in turn is connected to
the rigid integrin complex in the cell that applies a constant
pulling force F to the system. An assumption of constant
local force F exerted by the cell is adopted because for
the timescales relevant to thermally driven escape, the force
may be assumed time-independent. Any change in pulling
force by the cell is caused by the chemical signaling loop,
which is dependent on diffusion distances much larger
than the ones characterizing the model.

The latent TGF-b is modeled by a lock, which could
break if it gains enough thermal energy to escape a barrier
given by a potential U(x), meaning the subsequent rupture
of the complex and release of the small molecule respon-
sible for the signal: the active TGF-b. The sketch in Fig. 2
shows that it is the relative displacement of the two ends
(x2 – x1) that is the correct argument of the potential. The
damping properties of the lock are described by a coefficient
g2, in the same way as with the viscoelastic spring for the
substrate. Both the lock and the substrate are subject to
distinct stochastic forces, satisfying their separate fluctua-
tion-dissipation relations, which (the thermal motion) is
the key element to the whole process. We write and solve
a set of coupled stochastic differential equations that
describe the system to find the rate of escape over such a
barrier. This is the rate at which active TGF-b is released,
initiating the signaling loop that will ultimately cause,
e.g., the overexpression of a-actin resulting in the fibroblast
conversion to myofibroblast, or the stiffening of smooth
muscle cells.

To write the master kinetic equation for the system we
shall follow a route similar to the one taken by Graham
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(23), because it provides a concise and rigorous method to
derive the Fokker-Planck equation from a set of coupled
overdamped Langevin equations:

g1 _x1 ¼ �kx1 þ dU

dðx2 � x1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT g1

p
, z1ðtÞ; (1)

dU ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

g2 _x2 ¼ �

dðx2 � x1Þ þ Fþ 2kBT g2 , z2ðtÞ: (2)

Here the base stochastic process zi(t) is assumed to be

Gaussian and normalized to unity. Note that it is the differ-
ence in independent position coordinates x2 – x1 that affects
the lock. The steps of derivation are standard, and as a result
we obtain the Cartesian components of diffusion current in
the space of {x2 – x1},

Ji ¼ �kBT

gi

e�Veff=kBT
v

vxi

�
eVeff=kBTP

�
i ¼ 1; 2 ; (3)

where
Veffðx1; x2Þ ¼ 1

2
kx21 � Fx2 þ Uðx2 � x1Þ

represents the effective potential landscape over which the

substrate and the latex complex move, subject to thermal
excitation. The components J1 and J2 naturally have
different diffusion constants: kBT/g1 and kBT/g2, respec-
tively. This issue is addressed by changing variables,

x1/
ffiffiffiffiffiffiffiffiffiffiffiffi
g2=g1

p
~x1; x2/

ffiffiffiffiffiffiffiffiffiffiffiffi
g1=g2

p
~x2;

giving the unique diffusion coefficient
~D ¼ kBT=
ffiffiffiffiffiffiffiffiffiffi
g1g2

p

in the transformed Eq. 3. We now have an expression for

the vector current in two dimensions and can apply the
Kramers theory of escape over a potential barrier, following
the original work (12) and the analysis by Chandrasekhar
(24). Interested readers may obtain additional technical de-
tails in the Supporting Material.
a b
THE POTENTIAL LANDSCAPE

To study the effective potential landscape it is most conve-
nient to transform the coordinates, replacing the second var-
iable x2 with the net separation u ¼ x2 – x1, which is the
natural variable of the lock potential U(u). To be specific,
it is useful to express U(u) in an explicit functional form.
Following Dudko et al. (13), we use a cubic function, which
gives a realistic profile to the barrier and naturally excludes
the possibility of rebinding by falling to negative infinity for
large u. It is tuned so that the minimum is at u ¼ 0 and the
maximum of height D is at u ¼ u0:

UðuÞ ¼ 3

2
D

�
u

u0
� 1

2

�
� 2D

�
u

u0
� 1

2

�3

þ D

2
: (4)

Substituting this into Veff(x1,u), the potential landscape may
be readily plotted, for instance at constant x1 ¼ 0 (i.e., non-
deformed substrate), to study how the landscape evolves for
different values of force F and elastic constant k (Fig. 3 a).
Contour plots of the effective potential as a map on (x1,u)
plane provide a useful tool for finding the optimal path of
the system evolution (Fig. 3 b).

We now proceed to analyze the potential surface more
rigorously by finding the position of the extrema and the
values of Veff(x1,u) at those points. By calculating the deriv-
atives of the function, one finds the potential has two
extrema (points A and C in Fig. 3):

x1ðAÞ ¼ F

k
; uðA;CÞ ¼ 1

2
u0

 
1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3

Fu0
D

r !
;

VeffðAÞz� F2

2k
� F2u20

12D
; DV ¼ Dð3� 2Fu0=DÞ3=2

3
ffiffiffi
3

p :

(5)

The bottom of the well (A) and the saddle point (C) have the
same x1 coordinate. For FC ¼ 3D/2u0, the two extrema coin-
cide and the path from the origin to the bottom of the poten-
tial landscape has no energy barrier: the system shown in
Fig. 2 breaks down. This effective barrier has to be
overcome by the substrate-and-lock system as it evolves
FIGURE 3 (a) Plot of the cubic function

describing Veff at x1 ¼ 0, the bottom of the well at

u ¼ 0, and the top of the energy barrier of height

D at u ¼ u0. (Dashed lines) Increasing applied force

F, labeled on plot. (b) Contour plot of Veff(x1,u).

(Darker areas) Lower energy values. In this plot

we have chosen the values of ~k ¼ ku20=D ¼ 0:4

and ~f ¼ Fu0=D ¼ 0:3. The latter value corresponds

to the 0.2 of the critical force FC. (Solid arrows)

Approximation used to the preferred path O/
A/C /B along the potential surface; (dashed

line) example of another path, with lower potential

barrier but an effectively much lower rate. To see

this figure in color, go online.
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under thermal fluctuations. The important point in this
potential landscape analysis is that the barrier height
DV ¼ Veff(C) – Veff(A) does not depend on the substrate
stiffness, while the depth of the potential well (A) does
include the constant factor �bF2/2k.
THE RATE EXPRESSION

Applying the Kramers theory to generalized problems of
thermally activated diffusion over a potential barrier is a
relatively standard operation (25) and we are not going to
go into details. There have been more recent articles on
the calculation of escape rate in two dimensions (26,27),
which often are variations the original treatment by Langer
(28). However, there are two important new, to our knowl-
edge, steps that we make, which will be discussed here
(see the Supporting Material for technical details).

To begin, we want to be able to have solutions for
any value of external applied force F, including near the crit-
ical breakdown point FC. The standard approach, e.g., that
of Dudko et al. (13) and Yohichi and Dudko (26), is to
remain in the limit of weak forces (F << D/u0 in our nota-
tion) where the required integration over the potential
barrier, Z B

A

exp
�
VeffðuÞ=kBT

�
du;

can be accurately approximated by the saddle-point expres-

sion at point (C). However, this approximation fails as the
barrier height DV diminishes to zero and the predicted reac-
tion rate no longer describes the correct physical process of
free escape. We use a different method, essentially approx-
imating the whole exponential (as opposed to the exponent)
by a parabola pinned to the correct values of Veff at (A) and
(C) and integrate only from A to C, doubling the value of the
integral afterwards. This method accurately describes the
result near the critical breakdown point (A/C), and retains
the correct activation exponential factor at smaller forces. In
effect, this method makes the same-magnitude error in eval-
uating the integral, but retains the accuracy near the critical
force point. As a result, the steady-state flux of escape over
the barrier (C) takes the form

Jz
3

2

~D

ðuC � uAÞð1þ 2eDV=kBTÞ ,PðAÞ; (6)

where uC, uA, and DV (all functions of F) are given in the

expressions in Eq. 5 and P(A) is the probability for the sys-
tem to reach the bottom of the potential well (A).

The next point of novelty is related to the evaluation of
the number of particles available at (A), NA, that is, before
the barrier—so that the rate of the escape over the barrier
is given by the ratio k ¼ J/NA (as is standard in the Kramers
problem). This number is given by the integral around this
potential minimum:
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NA ¼
Z

PðAÞ exp�� Veff=kBT
�
dl:

Because we are on a two-dimensional plane, the path of this
integration is not straight on the (x1,u) plane. The path is
marked on the landscape map in Fig. 3 b and the curvature
of energy surface is not the same in the x1- and u-directions
around the minimum at (A). On the first leg, when the sys-
tem is sinking down the potential well (O/A), the curva-
ture is k, the elastic modulus of the substrate, whereas on
the second leg, when the system is approaching the saddle
(A/C), the curvature is

6
�
D=u20

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Fu0=3D

p
:

Therefore the overall result for the number of particles is

determined by the weighted mean of the two curvatures
(due to the Gaussian nature of the integral), giving

NAz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT

p Fþ ku0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Fu0=3D

p
3kð2D=u0 � FÞ eF

2=2kkBTPðAÞ: (7)

Note that the dependence on external pulling force F is
prominent in the expression for the flux over the barrier,
Eq. 6, entering via (uC – uA) and DV—both shown in the
expressions in Eq. 5. In contrast, it is the statistical weight
of the system at the bottom of the deformed potential
well, Eq. 7, where a strong dependence on the substrate
elasticity k appears. The resulting expression for the rate
of escape (the rupture of the latent TGF-b complex, in our
context) is given by the ratio of the two expressions (Eqs.
6 and 7), k¼ J/NA; it is quite a complicated and cumbersome
formula. Here, for simplicity and clarity, we only plot the
rate dependence on the substrate stiffness and also examine
two relevant limiting cases.

To be able to plot functions in nondimensional form, we
need to establish the relevant scales. Let us compare the
applied force to the strength of the original lock potential
U(u), and assume that in most cases the force is weaker
than the native latent complex (i.e., does not break it
outright): this means small ~f ¼ Fu0=D. Let us also compare
the stiffness of the substrate to the stiffness of the original
lock, that is, measure ~k ¼ ku20=D. We must always assume
that the original latent complex is stable at the typical tem-
perature, that is, D/kBT is large.

We begin by studying how the rate varies with different
substrate stiffness, which was indeed the reason that
stimulated this research in the first instance. Plotting the
rate as a function of k (Fig. 4), we observe that for any
pulling force on stiffer substrates, the latent complex is
more likely to rupture, confirming the phenomenological
interpretation discussed in the literature reviewed above.
The functional form for the rate also appears to flatten
considerably when k is greater than a certain threshold
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value, given by k* z F2/kBT, that is, both the crossover
stiffness and the plateau value of the release rate are strong
functions of the pulling force the cell exerts at this
instance. When k < k*, small changes in stiffness will
cause large changes in the TGF-b release rate providing
a positive feedback loop to further increase the a-SMA,
and ultimately, the strength of the pulling force. Above
this value of stiffness, the sensors are telling the cell:
‘‘the substrate is as stiff as I can measure at the level of
force I can offer.’’ When the force is very small, most sub-
strates will appear as stiff: the cell is working in the satu-
rated part of the curve k(k) with a weak feedback loop. On
the other hand, if the pulling force is high to begin with,
then very soft substrates offer no resistance and no TGF-
b is released to remodel the cell.

So one could trace gradual evolution of a cell after its first
deposition onto a substrate from solution. Initially the cell
applies a small pulling force F and, unless the substrate is
extremely soft (i.e., even at this initial force, k < k*,
when no response would follow), the rate of latent complex
breaking takes an almost constant value ~kz0:4 (see the
lowest curve in Fig. 4). As the released TGF-b gets absorbed
on the cell surface, more a-SMA is produced, stress fibers
start to form, and the pulling force F increases. This further
increases the rate of TGF-b release, which is what experi-
ments report.

The same process is presented from a different perspec-
tive in Fig. 5, where the rate of latent complex breaking is
plotted for a given substrate (fixed k) against the increasing
force F. Apart from the case of very weak substrate, the rate
grows as the cell remodels itself to increase the pulling
force, until a maximum is reached. A further increase of
force results in the negative feedback, which settles the
cell evolution at homeostasis (a position labeled by an
asterisk in Figs. 5 and 6). The stiffer the substrate, the higher
the level of free TGF-b and, accordingly, the amount of a-
SMA stress fibers one would find in this adjusted cell.
Fig. 6 focuses on the region of higher stiffness, where we
find that the homeostatic point eventually disappears, re-
placed by the monotonic increase of the rupture rate with
the applied force, all the way until the critical point FC ¼
3D/2u0.
THE WEAK FORCE APPROXIMATION

It is important to estimate the actual values of forces and
energies involved. Although such an estimate is inevitably
Biophysical Journal 106(1) 124–133
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very inaccurate, depending on many individual factors of
particular cells and conditions, the order-of-magnitude
predictions have to be meaningful. Taking the characteristic
energy scale of the latent complex D ¼ 10 kcal/mol, the
binding energy of a few hydrogen bonds, 10–16 kcal/mol
quoted by Hummer and Szabo (29), and the distance needed
to distort it to achieve rupture u0 ¼ 0.3 nm (the size of a
typical amino-acid monomer), we find the critical force
FC ¼ 350 pN. This is a high force unlikely to be generated
by a single stress fiber of a cell. For comparison, the force to
unfold integrin is quoted as 165 pN (21). Buscemi et al. (21)
also quoted 40 pN as the force specifically required to un-
fold the latent complex of TGF-b1, although this is not
purely a dynamic issue and at different times the unfolding
would occur at different forces. Other reports investigate the
force required to disrupt the fibronectin-integrin-cytoskel-
eton linkage, finding the value of 1–2 pN (30,31). Various
reports (14–16) have measured the actual pulling force F
exerted by different cells and in various circumstances,
and on very different substrates, nevertheless all converging
on values between a few to a few tens of pN (for which see
a summary review (32)); note that a single myosin motor
exerts ~3 pN of force (33).

Note as well that an increasing body of experimental
work finds (by using several ingenious techniques) that cells
actually exert much greater overall forces on the substrate
features. For instance, individual vascular smooth muscle
cells, endothelial cells, and fibroblasts exerted as much as
75 nN of force (34), and forces at the edge of a sheet of
epithelial cells were ~12 nN, and ~5 nN underneath the
sheet (35). Lecuit et al. (31) specifically report that focal
adhesions a few micrometers long can bear forces up to
100 nN. This suggests to us that these high values of force
refer to the large assembled (collective) constructions,
whereas our interest here is a single molecular adhesion
complex, with pN-level forces. We can expect a weak force
at first, evolving to perhaps a much greater force on a
stiff substrate when larger focal adhesions assemble, but
this would serve as a reference point. For F ¼ 10 pN,
the scaled nondimensional parameter used in plotting is
~f ¼ Fu0=D � 0:04.

If a half-space occupied by an elastic medium (e.g., gel
substrate) of the Young modulus E is pulled along the free
surface by a point force, another classical problem of
Lord Kelvin (36), the response coefficient (spring constant)
that we called the stiffness k is given by k¼ (4/3)pEx, where
x is a short-distance cutoff: essentially the size of a micro-
scopic object in the gel that the force is applied to. This
sort of relation has been quoted by many authors; e.g.,
see the review (37) on surface forces in soft polymers.
The only relevant length scale in our case (see Fig. 1) is
the size of the attachment protein segment, which happens
to be the same as a characteristic mesh size of a gel network,
with an order-of-magnitude estimate of x ~ 10 nm. For a
very weak gel with E¼ 10 kPa this gives the effective spring
Biophysical Journal 106(1) 124–133
constant k ¼ 4.2 � 10�4 N/m and the nondimensional
parameter ~k ¼ ku20=D � 5� 10�4. On stiff glass with E ¼
10 GPa, producing ~k � 500, so the whole spectrum of
values is explored in a typical experiment.

From the estimates made above, however crude and
generic they might be, it is clear that we can safely explore
the limit of weak pulling force, F/FC << 1. This allows
writing down much simplified analytical expressions and
exposes the relevant factors contributing to the rate of
breaking of latent TGF-b complex on soft thermally fluctu-
ating substrates. This rate, expressed as k ¼ J/NA with the
parts separately given in Eqs. 6 and 7 (see the Supporting
Material for more detail), takes the approximate form of

kz
9~DD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT

p
u30

	
1þ ~f

�
bD� 1

~k

�

e�bDe

�bD
~f
2

2~k; (8)

where bD is a shorthand for the ratio (D/kBT), and the nondi-
~
mensional combinations f and ~k, measuring the force and

the stiffness, respectively, have been defined above. At
vanishing pulling force, F/0, this expression reduces to
a classical thermal activation rate, k(0)f e�bD, and the ratio
bD has to be large for the latent complex not to fall apart
spontaneously. Indeed the estimates above suggest that bD
~ 16. The factor in square brackets in Eq. 8 is the remainder
of the Bell formula in the weak force approximation: if
we ignore the soft substrate and take k/N, then this factor
reduces to exp[Fu0/kBT]. However, we now see that on a soft
substrate the pulling force has a very different effect. By
carefully analyzing the behavior of the function k(F,k) in
different regimes of its parameters, we finally arrive at an
interpolating expression that is very accurate in the weak
force limit, and is almost exact in the limit of low stiff-
ness—yet remains practical and easy to manipulate. Here
we present it in proper dimensional form, instead of using
scaled ~f and ~k:

kz
9~DD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT

p
u30

exp

	
� D� Fu0

kBT
� F

ku0
� F2

2kkBT



: (9)

Equation 9 is the main analytical result of this article. We
remind that the effective stiffness parameter k is linearly
proportional to the Young modulus of the substrate gel.
From here we can quickly estimate the substrate stiffness,
below which the mechanosensing feedback is always nega-
tive (the low curve in Fig. 5) and thus we must assume the
cell rejects the substrate of excessive softness and detaches
from it: this negative slope of k(F) at F/0 begins at
~kmin%kBT=D, or in proper dimensional units: kmin % kBT/
u20. This critical stiffness value is purely determined by the
level of thermal noise in the substrate. The other important
threshold is the stiffness of a substrate, above which there is
no longer a homeostatic point, i.e., the increase of the rate of
escape k(F) becomes monotonic (see Fig. 6). The point of
~kz3 corresponds to k ¼ 0.02 N/m, and that occurs at the
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Young modulus of E z 0.6 MPa. This is a modulus of a
typical tough rubber, so one can see that the cell mechano-
sensing response on a solid substrate (including the bone,
where the modulus measures in GPa range) should be
completely different from the response on soft gels
(including muscle or even brain tissue).

Equations 8 and 9, although a strong approximation,
allow us to analytically describe homeostasis on soft sub-
strates. This is a very important point, because here the
cell remodeling in response to the TGF-b mechanosensing
signaling should stop: any further increase of free TGF-b,
the resulting production of a-SMA, and the increase
of the pulling force will cause negative feedback and return
the cell to this homeostasis position. The pulling force at
this point is easily obtained by finding the maximum of
k(F) in Eq. 9, although we must be aware that this is only
a qualitative estimate—the full solution for a maximum of
k(F) ¼ J/NA is cumbersome and best studied numerically;
in proper dimensional units we have

F� ¼ kBT

u0

�
ku20
kBT

� 1

�
; (10)

where we could employ k/kmin as a shorthand for the ratio
ku20=kBT, which essentially compares the elastic and the
thermal energy scales in the substrate (instead of the earlier
used ~k ¼ ku20=D that compares the elasticity of substrate and
the latent complex). Again we see that thermal fluctuations,
represented by the energy factor kBT, are at the core of
mechanosensing homeostasis. Therefore, with our chosen
parameters (for TGF-b mechanism in (myo)fibroplasts and
smooth muscle cells) the homeostasis exists between kmin

and kmax z 28 kmin, at which point F* R FC. That is, for
stiff substrates with a Young modulus E > 30 MPa, the
cell will no longer be able to achieve homeostasis and will
continue to produce stress fibers to increase its pulling force.
We might speculate that this is a point of coronary disease
onset when the smooth muscle cells in the arterial wall
detect a stiff cholesterol plaque underneath. The much lower
range of homeostatic substrate stiffness for the neurons and
the higher homeostatic range for osteoblasts arise because of
a different value of lock stiffness D (using a different variant
of TGF-b or even a different latent complex altogether) and
a different value of lock deformation threshold u0.

One must be conscious that the theoretical model
developed here simplifies many complicated factors and
overlooks many details, only focusing on the essential
mechanism. Our aim was not to achieve quantitative accu-
racy, which requires a much more careful input from the
biological model, in particular, into the form of the lock
potential U(x) and the way the protein binds to the gel sub-
strate (which determines k)—but to offer an internally self-
consistent and mathematically noncontroversial model of
mechanosensitivity to replace the earlier more vague ideas.
CONCLUSIONS

This work was inspired by a critical question about one of
the most fundamental interactions within living organisms.
When trying to explain the mechanical interactions of cells
with their environments, an apparent paradox is encountered
in the impossibility of measuring stiffness by a probe
without a reference point. An extensive literature on this
subject carefully sidestepped this issue. Our work shows
that even a simple model for a biomolecular mechanosensor
can overcome this paradox by using the Brownian motion in
the substrate as the reference reservoir: the answer lies in
stochastic forces prominent in biomolecular systems. The
sensor has evolved in such a way that it is extremely sensi-
tive to the thermally fluctuating behavior of its environment
and is able to extract useful information from it. Different
substrate stiffness changes not only the equilibrium config-
uration of the mechanosensor, but also various features in its
characteristic potential landscape.

The proposed model for a biomolecular mechanosensor
is a likely candidate for several similar sensors. We have
described the system as a sensor under constant tension
force in series with a viscoelastic substrate, where signaling
occurs via a change in the sensor’s configuration. We
derived an analytical expression for the expected rate of
rupture of the latent complex as a function of applied force
and substrate elasticity. The final expression for k(F,k)
provides convincing behavior in all regimes. It gives the
experimentally observed dependence on the substrate stiff-
ness k: a higher rate of signaling with increasing k, with a
highly nonlinear dependence with clear biological advan-
tages. It also shows that the k-dependence may be broken
down in two distinct regimes, of an extreme sensitivity to
stiffness and of saturation and weak k dependence, with
the crossover point dependent on the magnitude of pulling
force F: another aspect that matches experimental observa-
tion and physical intuition. The expression for the rate also
shows a qualitatively satisfactory dependence on F. The rate
of signaling increases with F, as the potential barrier to be
overcome is lowered—finds a point of homeostasis that
the cell attempts to return to from both directions—and
then steeply rises to infinity as the external force increases
much further toward the critical point, for which the barrier
is destroyed and both the model and the latent complex
break down. The expression finally obtained reduces to
the Bell solution in the high barrier limit—a sanity-check
result which matches many simple experiments.

The model developed here builds on and improves related
work in the literature, yet it is the first one, to our
knowledge, to use analytical stochastic methods of solution
applied to the problem of mechanosensitivity. It extends the
model proposed by Dudko et al. (13) in a different context
to incorporate a substrate with separate mechanical and
stochastic characteristics, and shows the correct behavior
in the vicinity of the critical force.
Biophysical Journal 106(1) 124–133
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In recent years, among the large literature on this subject
of mechanical forces felt and exerted by cells, there has been
a suggestion that perhaps it is not the constant force, but a
fixed deformation of the substrate that cells feel (38,39).
We find this concept difficult to reconcile with what we un-
derstand about the action of myosin motors on cytoskeleton
and the mechanical force balance in quasi-equilibrium the
adhesion point must be in. There are other experiments
that specifically state that the contractile force generated
by the fibroblasts was independent of the stiffness of the
resistance (40), and we wish to side with this view.

One can see the analogy of the proposed stochastic mech-
anism for the change in breaking rate of the TGF-b latent
complex on soft substrates with the principle of the enzy-
matic action (41). The accelerated rate of reaction is
achieved by an enzyme localizing the reacting particle
near the site (via positional and rotational constraints). In
our case, for any given force F from the cell, the localization
in the potential well (A) is more pronounced—and so the
rate of escape over the barrier increased (even though the
height of the barrier itself, DV, is not actually changed). In
contrast, on a soft substrate, a shallower potential well re-
sults in a lower confinement, and correspondingly—a lower
rate of the latent complex breaking. One may say that the
thermal motion is more readily transferred into a random
motion of the attachment point in a soft substrate, and so
makes a lesser contribution to the dissociation process.

Further work on this system could include a generaliza-
tion of the rate expression to a more complex and realistic
form for the latent complex potential. It would also be
interesting to explore how numerical values obtained by
substituting typical cellular pulling forces and distances
compare with experiment: we used a very generic set of
values although there are no doubt many variations in
specific cases.
SUPPORTING MATERIAL

Three figures and 19 equations are available at http://www.biophysj.org/
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Figure 1 reminds the reader about the construction of the model. The pictorial of the sequence

of elements in the adhesion center illustrates the idea of how the TGF-β signal might be sent to the

cell, but it also highlights the ‘paradox’. On the short timescales of Brownian motion, at which the

‘decision’ about breaking or preserving the latent complex is made, there is no coherent motion in

the overdamped macromolecular system – and therefore the force F is transmitted along the whole

series of elements. This means that, whether the soft substrate deforms by this pulling force (as

shown in the picture) or a stiffer substrate stays in its original position, the force acting on the latent

complex is always F – and there could be no sensitivity to the degree of the above deformation

(which is indeed measured by the stiffness κ).

The scheme in the right panel of Figure 1 illustrates the mechanical elements. Again, on a much

longer time scales both the cell and the substrate may experience creep (irreversible deformation).

However, on the time scales relevant to our problem, that is, when the Kramers-like ‘escape’

over the potential barrier U(x) signifies the spontaneous breaking of the latent complex and the

release of signalling TGF-β , both elements are elastic – in the sense that they each have a fixed

equilibrium value of deformation induced by an external force. Of course, both elements must

also have the energy dissipation (friction) mechanism to balance the energy input from the thermal

motion (fluctuation-dissipation theorem), which is expressed by the friction constants γ1 and γ2.

∗To whom correspondence should be addressed
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Figure 1: The reminder of the key points of the model: [left] the qualitative explanation for the
release of active TGF-β signalling to the cell about the properties of the substrate; [right] the series
of Voigt-like models describing the substrate (stiffness κ , friction constant γ1 displacement of the
binding point x1) and the latent complex with the friction γ2 and displacement x2 controlled by the
“lock” potential U(x2− x1).

Equations (1) and (2) of the main paper express the Langevin dynamics of these two elements in

series, as measured at the points measured by x1 and x2.

There are several ways of converting the microscopic stochastic problem described by Langevin

dynamics into the kinetic equation(s) for the probability distributions. We follow the method sum-

marized by Graham, which starts by expressing the Langevin equations for independent variables

qν(t) in the ‘standard’ form:

q̇ν = fν(q)+gi
ν(q)ζi(t), (1)

where fν(q) are the corresponding dynamic forces and ζi(t) the stochastic force normalized to

unity: 〈ζi(t)ζ j(t ′)〉 = δi jδ (t − t ′) so that the actual intensity of the relevant stochastic force is

expressed by a coefficient gi
ν(q). In our case, for the two fluctuating variables x1(t) and x2(t) these

parameters are quite simple:

f1(x1,x2) =
1
γ1

[
−κx1 +

dU
d(x2− x1)

]
, f2(x1,x2) =

1
γ2

[
− dU

d(x2− x1)
+F

]
; (2)

g1 =
√

2kBT/γ1, g2 =
√

2kBT/γ2. (3)

Remaining in the overdamped limit (i.e. at timescales much greater than the characteristic relax-

ation time m/γ) allows us to dispense with the dependence on the corresponding velocity space in

2



the full Fokker-Planck formalism, and obtain directly:

∂P(x1,x2, t)
∂ t

=− ∂

∂x1
[ f1(x1,x2) ·P]−

∂

∂x2
[ f2(x1,x2) ·P]+ kBT

[
1
γ1

∂ 2

∂x2
1
+

1
γ2

∂ 2

∂x2
2

]
P.

The corresponding expressions for the diffusion currents take the explicit form:

J1 =
1
γ1

[
−κx1 +

dU
d(x2− x1)

− kBT
∂

∂x1

]
P, J2 =

1
γ2

[
− dU

d(x2− x1)
+F− kBT

∂

∂x2

]
P. (4)

In their current form it is not possible to write the components J1 and J2 as a single two-dimensional

vector, because they are written with nominally different diffusion constants: kBT/γ1 and kBT/γ2.

This issue can be overcome by scaling the variables: x1 =
√

γ2/γ1x̃1, x2 =
√

γ1/γ2x̃2. This allows

us to write the current in general vector form:

J̃i =−
kBT
√

γ1γ2
e−ṼE/kBT ∂

∂ x̃i

(
eṼE/kBT P

)
i = 1,2 , (5)

with a unique diffusion coefficient D̃ = kBT/
√

γ1γ2 and an effective potential acting in the plane

(x1,x2): VE(x1,x2) =
1
2κx2

1− Fx2 +U(x2− x1). This effective potential surface represents the

landscape over which the substrate and complex particles move, subject to collisions caused by

thermal motion in the medium.

To apply the analysis to a real physical system, it is necessary to express U(u), with the relative

stretching of the ‘lock’ u = x2− x1, in a particular functional form. In the 60 years past Kramers

original work, many such forms were tried, with a great variety of barrier shapes. It is, however,

clear that only two key features of such a potential are relevant: the distance u0 of the barrier

from the position of metastable minimum – and the barrier height ∆; in contrast, the shape of the

potential around the minimum and around the barrier only contribute in a minor way to the pre-

exponential factors. In recent years it becomes more and more common to use a cubic function

that has a simple and explicit representation of the two mentioned key features, and also naturally

excludes the possibility of rebinding by falling to negative infinity for large u. The form is adjusted
3



so that the minimum (point A) is at u = 0 and the maximum (point C) at u = u0:

U(u) =
3
2

∆

(
u
u0
− 1

2

)
−2∆

(
u
u0
− 1

2

)3

+
∆

2
. (6)

When the external force F and the spring potential of the elastic substrate are added in the effective

potential VE(x1,u), we find that it has two extrema at:

x∗1 =
F
κ
, u∗± =

1
2

u0

(
1±
√

1− 2
3

Fu0

∆

)
. (7)

The solution u∗+ corresponds to the saddle point (i.e. the barrier the systems needs to overcome) and

the solution u∗− marks the minimum of the two-dimensional well; the two extrema have the same

x1 coordinate; for FC = 3∆/2u0 the two extrema coincide so there is no longer any energy barrier

to hold the latent complex together. The effective barrier height, ∆E , is defined as the difference

in potential between the minimum of the well and the saddle point: ∆E = ∆(1−2Fu0/3∆)
3
2 .

This expression, alongside the probability currents, are the starting point for the application of the

Kramers theory.

Applying the Kramers theory to generalized multidimensional problems causes several com-

putational problems; for this reason it is usually more convenient to reduce the system to a one-

dimensional barrier escape. In our context this means we identify the path taken by the system in

the effective potential landscape. We stay close to the original approach of Kramers, but differ in

the technique used to evaluate the integrals for the path. Let us make the path dependent on a new

single variable, u for convenience, which coincides with the previously defined u = x2− x1 when

F = 0. Starting with the assumption of steady current, we may write for the path A→ C→ B:

J
∫ B

A

γ

kBT
eVE/kBT du =

(
PeVE/kBT

)∣∣∣A
B
. (8)

Taking the potential at the point to which the particles ‘escape’ (B) to be such that V (uB) ∼ −∞,

which is consistent with the rapidly decreasing cubic describing U(u), the expression for the con-
4



stant probability current can be simplified:

J =
P(uA)eVE(uA)/kBT∫ B

A
γ

kBT eVE/kBT du
. (9)

Moving eVE(uA)/kBT from the numerator to the denominator, the integrand of this expression be-

comes I(u) = e(VE(u)−VE(uA))/kBT . To approximate the value of this integral the original solution by

Kramers uses the method of saddle-point integration, approximating the exponent of the integrand

with a second order polynomial. This has been generally followed in the literature since. However,

this classical method has a problem in the region of F→FC, that is, near the point where the barrier

disappears and the system has no restriction escaping from its originally metastable state (A). This

problem has been known since Kramers himself, and is usually avoided merely by assuming low

forces: in the saddle-point method one has to extend the integration region to infinity (which is

normally safe, since the Gaussian exponential cuts the integrand to zero far away from the barrier

crest). So, although the ‘curvature’ V ′′E (uC) goes to zero, actually as
√

FC−F , the error of this

saddle-point approximation increases. If one follows the classical recipe literally, it leads to the

completely wrong result that J → 0 as F → FC. Over the years, there were several much more

accurate treatments of this problem, but we choose our own (as it seems all these methods are all

worth each other: all converging to the classical Kramers result at F → 0, while leading to the

diverging flux at F → FC, in slightly different ways).

Our method is to fit a second order polynomial to the integrand I(u) itself, integrating it from

A to C, and then doubling this to approximate the value of the integral from A to B. The chosen

polynomial shares its maximum with the maximum I(uC) and also passes through the minimum

I(uA). The fitting parabola is given by I(u) ≈ −(I(uC)− I(uA))(u− uC)
2/(uC − uA)

2 + I(uC),

which may be substituted in the expression for the integrand:

∫ B

A
e(V (u)−V (uA))/kBT du≈ 2

∫ C

A
−e(V (uC)−V (uA))/kBT −1

(uC−uA)2 (u−uC)
2 + e(V (uC)−V (uA))/kBT du

=
2
3
(uC−uA)

(
1+2e(V (uC)−V (uA))/kBT

)
. (10)
5



Figure 2: Comparison between the classical saddle-point integration (a) and the method of inte-
gration via model parabola used here (b): The exponent of the integrand (a)(i) is approximated by
a second-order polynomial (shown in pink). In contrast, the integrand itself (b)(ii) is approximated
in the method used here; the chosen second-order function shares the maxima of the integrand
at uC, passes though the functionŠs minima at uA (shown in green), and the integral is taken over
twice the area from uA to uC, indicated by the shaded region. (c) The limit of F→ FC illustrates the
difference more explicitly, showing how the integral of the saddle-point approximation diverges,
while the approximating by parabola with a fixed integration width gives a plausible result.

Here the distance between the extrema is (uC−uA) = u0
√

1−2Fu0/3∆ and the remaining energy

barrier is expressed by V (uC)−V (uA) = ∆(1−2Fu0/3∆)3/2 for our chosen potential energy. This

expression for the integral in denominator may now be put back to obtain the probability flux:

J =
kBT

γ
P(uA)

3
2

[
(uC−uA)

(
1+2e(V (uC)−V (uA))/kBT

)]
. (11)

The escape rate k is given by the flux J normalized by the numbers of particles in the well at A,

νA. Quasi-stationary conditions are assumed, requiring the barrier to be large compared to thermal

fluctuations (∆� kBT ). We are therefore justified to assume the Maxwell-Boltzmann distribution

is valid in the neighborhood of (A), again following the classical Kramers analysis:

dνA = P(uA)e−VE/kBT du, (12)

which may be integrated to find the number of particles. Approximating the potential about the

potential minimum at uA by a Taylor series to second order, the number of particles may be ap-

6



proximated to

νA =
P(uA)

ωA

√
2πkBT eF2/2κkBT , (13)

where ωA is the curvature of the potential well at the minimum (A), while the exponential factor

is a reminder that the depth of this minimum is no longer at VE = 0 – which merely expresses

the fact that the system states would accumulate more densely in a deeper energy minimum of the

stretched substrate. We are now in the position to write down an expression for the ratio of the rate

with a force a applied, k(F), to the initial rate with no force, k0, which frees the expression from

constant factors:
k(F)

k0
=

ωA(F)

ωA(0)
e−F2/2κkBT uC0−uA0

uCF −uAF

1+2e(V (uC0)−V (uA0))/kBT

1+2e(V (uCF )−V (uAF ))/kBT
. (14)
Figure 3: The illustration of a two-sided minimum of the effective potential VE(x1,u), with the
descent towards the minimum (nearly) along the x1 direction has the curvature ωA1 =

√
κ , while

the climb towards the barrier along the u-direction has the curvature ωA2 given earlier in the text.

Whilst the positions and values of the potential at the different points are readily calculated

from the previously obtained expressions, the curvature term ωA requires further attention. The

curvature we seek to find is composed by a first segment O→ A and a second segment A→ C, see

Fig.3(b) in the main paper. To first order the curvature of the first segment will be simply ω2
A1 = κ ,

which may be visualized intuitively since, when working with forces safely below the critical, the

path follows closely the x1 axis. The curvature of the path A→ C, when evaluated at the bottom

of the well, may be taken to be equivalent to the modulus of the value of the second derivative of
7



the potential U(u) at that point:

ω
2
A2 =

6∆

u2
0

√
1− 2

3
Fu0

∆
. (15)

It is therefore possible to approximate the total curvature ω2
A (which controls the result of the

integration around uA) as an average of these two values weighted by distance. That is, the weight

of the first curvature will be the distance from O to A (F/κ to first order), while the weight of the

second will be the distance from A to C, given above. As a result we obtain:

ω
2
A =

6κ∆

(
1− 1

2
Fu0

∆

)
u0

(
F +κu0

√
1− 2

3
Fu0

∆

) . (16)

With this last piece in place we may proceed to substituting all the components into k(F) = J
νA

to obtain:

k(F) =
9D̃∆

2
√

2πkBT u3
0

e−F2/2κkBT
√

1−2Fu0/3∆(
1+2exp

[
(1−2Fu0/3∆)3/2

∆/kBT
])(

F/κu0 +
√

1−Fu0/3∆

) (17)

As mentioned earlier, it is often considered useful to present the ratio of the breaking rate k(F) and

its ‘bare’ value at zero force. In doing so several constant factors cancel (in particular, the effective

diffusion coefficient) and the expression allows the quick examination of the effects of the pulling

force:
k(F)

k0
=

e−F2/2κkBT
√

1−2Fu0/3∆(1+2exp [∆/kBT ])(
1+2exp

[
(1−2Fu0/3∆)3/2

∆/kBT
]) . (18)

Examining both expressions we see the natural dimensional parameters measuring the external

pulling force relative to the characteristic returning force of the lock (the latent complex): f̃ =

Fu0/∆, and similarly – the substrate stiffness: κ̃ = κu2
0/∆. Similarly, the escape rate of the latent

complex has its own natural units, making the non-dimensional measure k̃ = k ·2
√

2πkBT u3
0/9D̃∆.

Of course, the non-dimensional ratio ∆/kBT is the measure how strongly confined the latent com-

plex is, and since there is no (or very little) spontaneous ‘leakage’ of TGF-β from it, we expect

∆/kBT � 1.

8



Two simplified expressions are presented and explored in the main text. One is simply the

expansion of k(F) in the limit of weak force ( f̃ � 1), however, retaining the key exponential factor

exp[−F2/2κkBT ]. The other expression is ‘reconstructed’ to interpolate a simple formula into

the weak substrate limit (κ̃ � 1) by lifting the linear expressions of the nature (1− a) into the

exponential form e−a:

k ≈ 9D̃∆

2
√

2πkBT u3
0

e−(∆−Fu0)/kBT e−F/κu0 e−F2/2κkBT . (19)
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