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Reconstruction and Identification of DNA Sequence Landscapes from
Unzipping Experiments at Equilibrium
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ABSTRACT Two methods for reconstructing the free-energy landscape of a DNA molecule from the knowledge of the
equilibrium unzipping force versus extension signal are introduced: a simple and fast procedure, based on a parametric
representation of the experimental force signal, and a maximum-likelihood inference of coarse-grained free-energy parameters.
In addition, we propose a force alignment procedure to correct for the drift in the experimental measure of the opening position, a
major source of error. For unzipping data obtained by Huguet et al., the reconstructed basepair (bp) free energies agree with the
running average of the true free energies on a 20–50 bp scale, depending on the region in the sequence. Features of the
landscape at a smaller scale (5–10 bp) could be recovered in favorable regions at the beginning of the molecule. Based on
the analysis of synthetic data corresponding to the 16S rDNA gene of bacteria, we show that our approach could be used to
identify specific DNA sequences among thousands of homologous sequences in a database.
INTRODUCTION
Single-molecule techniques make possible the unzipping of
a single DNA or RNAmolecule, that is, the separation of the
two nucleotidic strands under a mechanical action, e.g., at
fixed force (1–3), or at constant pulling rate (4–6). The
output signal, e.g., the distance between the two ends of
the open strands in a constant force experiment (1–3), or
the force versus trap displacement in a constant pulling
rate experiment (4–6), is known to reflect the basepairing
free energies, which depend on the sequence of the bio-
molecule. A natural question is whether this signal can, in
practice, be used to reconstruct the DNA or RNA sequence.

The development of second-generation, high-throughput
DNA sequencing methods (7–11) has revolutionized molec-
ular biology and medicine over the past decades. These
methods, e.g., sequencing by synthesis, commercialized
by Illumina (8,9) (San Diego, CA), sequencing by ligation,
called SOLID, commercialized by Life Technologies (12)
(Carlsbad, CA), or sequencing by hybridization of comple-
mentary DNA probes (13), achieve parallel sequencing of
many short DNA fragments, which are then reassembled
to obtain the whole genome. There is, however, still a
need for improvement to achieve massive, cheap, accurate,
fast and individual sequencing. In the third generation of
sequencing techniques single-molecule experiments, which
in principle avoid the amplification stage and the segmenta-
tion of the sequence in shorter subsequences (reads), hold
promise for limiting sequencing errors. Two promising
methods are sequencing in zero-mode waveguide developed
by Pacific Bioscience (Menlo Park, CA), in which the incor-
poration of nucleotides during the synthesis of a new DNA
is observed continuously in real time (14) and nanopore
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sequencing, based on the readout of the sequence-dependent
electrical signal resulting from the passage of a DNA mole-
cule through a nanopore (15). A recently developed method
based on a combination of constant-force unzipping and
hybridization of complementary probes allows for the
accurate readout of the positions of the probe sequences
on a single DNA molecule (16). Finally mechanical unzip-
ping of a single-molecule has been shown to be effective to
reconstruct small DNA sequences in constant-force experi-
ments (3). Even if unzipping experiments will not be, in the
immediate future, competitive with commercial sequencing
technologies they can provide complementary techniques,
which can be advantageous, as well as simpler and cheaper,
for particular applications. Among these applications are the
rapid classification of an individual sequence, e.g., to char-
acterize which bacterium has infected a patient, and the
detection of genetic variations responsible for diseases, such
as variations in the copy number of repeated sequences,
which are particularly difficult to quantify with current
sequencing methods.

Apart from direct application to the development
of sequencing technologies, unzipping experiments have
become a good experimental system to test equilibrium
and out-of-equilibrium theories in statistical mechanics.
This is due both to the very high control of the experimental
system and to the fact that unzipping is very well modeled
by a one-dimensional random walk of the opening fork
(the boundary between the open and closed portion of the
DNA double helix) in a disordered potential caused by the
DNA sequence (5,6,17–19). Theoretical works have, in
particular, focused on the possibilities of reconstructing
the features of the sequence-specific free-energy landscape
through equilibrium (2,3,20) and out-of-equilibrium mea-
surements (21–26).
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An important issue in extracting information on the
sequence from unzipping experiments is the limitations
due to the experimental setup (6,20,27). Thompson and
Siggia have stressed the difficulty of inferring the sequence
because the position of the opening fork cannot be read out
directly from the displacement of the optical trap (see
Fig. 1), as the thermal fluctuations in the single-stranded
(ss) DNA may exceed the average gain of ~1 nm consecu-
tive to the opening of one basepair (27). Other limitations
of the experimental system are the thermal drift of the opti-
cal trap, the precision over the measured force, and the
limited spatial resolution. Subnanometric spatial resolution,
and a precision of measured forces on the order of a fraction
of a piconewton, can nowadays be routinely achieved. How-
ever, the thermal drift of the optical trap remains a major
problem in unzipping data, limiting the ability to associate
local features of the force signal with an absolute position
in the sequence.

In this work, we explicitly take into account in the infer-
ence model thermal fluctuations coming from the single
strands of DNA, the linkers, and the bead in the optical
trap. We express the average force at a given position as
a convolution of the force signal over the possible positions
of the opening fork with these distance fluctuations (4,6).
Two techniques for inferring the sequence-specific free-
energy landscape from the force signal at equilibrium are
introduced. The first method, called saddle-point (SP)
approximation, is fast and simple, and requires very little
computational effort. The second method, called Box
approximation, relies on the maximum likelihood inference
of the free-energy parameters, coarse-grained over an
appropriate number of basepairs, and is more demanding
from a computational point of view. In addition, we
show how multiple force signals corresponding to the
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FIGURE 1 Sketch of the setup for the single DNA molecule unzipping

experiment. The DNA molecule is attached to the surface (left) and a

bead (right) held in an optical trap at distance L from the surface through

rigid linkers of total length ‘ds. When the unzipping force is equal to its

average value fav, the single strands corresponding to the n unzipped

basepairs of the molecule have extension 2n ‘ss, and the bead is displaced

by ‘av from the center of the trap. When the force deviates from fav the

extension of the ssDNA strands and the displacement vary according to

their stiffnesses, KssðnÞ and Ktrap.
same molecule can be aligned using an extension of align-
ment algorithms developed in bioinformatics. This align-
ment procedure can be used to reduce the drift effect in
the data.

First, we use our alignment and inference methods to
reanalyze experimental data from a study of unzipping at
constant and low velocity by Huguet et al. (4). We show
how the sequence free-energy landscape can be recon-
structed on the scale of several basepairs, and we discuss
how this characteristic scale depends on the setup features.
Based on those findings, we then show that our approach can
be used to identify specific DNA sequences among a large
database of homologous sequences. A proof of principle is
given from synthetic force data corresponding to the 16S
rDNA genes of 2076 bacteria. We show that our procedure
is capable of matching a 16S gene with the same gene in the
database, and to distinguish it from homologous genes with
a few mismatches.

The article is organized as follows. In the Materials and
Methods section, the model for DNA unzipping (6) is
exposed and a local harmonic approximation of ssDNA
elastic properties around the unzipping force is introduced.
We then describe the two inference methods, called SP
approximation and Box approximation, which allow us to
reconstruct the free-energy landscape from the measured
forces. We also explain how force data obtained from the
same DNA molecule can be aligned to remove the drift.
In the Results and Discussion section, we investigate the
inference performances of the SP and Box approximations
along the sequence for two repetitions of the unzipping
experiment on the same sequence (4). The inference proce-
dures are applied to synthetic force data generated from the
16S rDNA genes of a bacterial database, and we discuss
their ability to identify one gene across a family of thou-
sands of homologous sequences. Perspectives and open
problems are discussed in the Conclusion.
MATERIAL AND METHODS

Model for DNA unzipping

Let si ¼ A;C;G;T be the bases in the DNA sequence along the 50-to-30

strand, with i ¼ 1;.;N being the base index (Fig. 1). The free-energy

cost for unzipping the first n basepairs of the double-stranded (ds) DNA

molecule is given by

GdsðnÞ ¼
X
i<n

g0ðsi; siþ1Þ; (1)

where g0ðsi; siþ1Þ takes into account both pairing and stacking contributions
between neighbor bases on the strand. The 10 independent values of

g0ðsi; siþ1Þ are given as functions of the temperature and ionic condition

(28,4), and are reported for the data we have analyzed in the Section I in

the Supporting Material.

Each one of the two unzipped strands of the molecule are modeled as

harmonic springs, with stiffness constant KssðnÞ, rest length n ‘ss and rest

free energy n gss; KssðnÞ, ‘ss and gss are effective parameters obtained

from a local harmonic approximation of the freely-jointed chain model,
Biophysical Journal 106(2) 430–439
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known to be accurate for ssDNA elastic properties (29,30), around the

average unzipping force, fav. In addition, the setup includes two very short

dsDNA linkers with total length ‘ds, which we consider to be rigid, and the

optical trap, with stiffness constant Ktrap. We denote by L the position of the

trap (see Fig. 1).

After integrating out the degrees of freedom related to the unzipped

strand extensions and the displacement of the bead in the trap, we obtained

an effective free energy for the number of unzipped basepairs, n, as a

function of the trap position, L, given by

GðnjLÞ ¼ GdsðnÞ�2 n gssþ 1

2
KðnÞðL� ‘av�‘ds�2 n ‘ssÞ2;

(2)

where the effective spring constant is given by 1=KðnÞ ¼
ð2=KssðnÞÞ þ ð1=KtrapÞ and ‘av ¼ fav=Ktrap is the displacement of the bead

in the trap at the average unzipping force. It is important to stress that

the effective stiffness, KðnÞ, is dominated at the beginning of the opening

by the trap stiffness. When the number, n, of open bases is such that

KssðnÞ becomes small with respect to Ktrap, the stiffness is, conversely,

dominated by the single-strand thermal fluctuations, and decreases with

n. For the experimental setup in Huguet et al. (4), the crossover takes place

for a few hundreds of open basepairs (see Fig. S1 in the Supporting

Material). The effective stiffness does not vary significantly when, for fixed

L, the number of unzipped basepairs changes around its average

number. Hereafter we will therefore consider that it is a function of L

only, denoted by KðLÞ. Details about the harmonic approximation, the value

of KðLÞ, and the derivation of Eq. 2 can be found in Section II of the

Supporting Material.

The free energy of the system is a function of the trap position, L, given

by (in units of kBT)

GðLÞ ¼ �log ZðLÞ; with ZðLÞ ¼
XN
n¼ 0

e�GðnjLÞ: (3)

Knowing the free energy, we can easily compute the value of the force at

equilibrium for fixed L:

hf iðLÞ ¼ fav � dG

dL
ðLÞ: (4)

Hereafter, we refer toGdsðnÞ (1) as the cumulative basepair free energy, and

to the set of basepair free energies, g0ðsi; siþ1Þ, versus basepair index,

i, as basepair free energies. We now present two procedures to infer the

basepair free energies from the knowledge of the experimental unzipped

force, fexpðLÞ.
Inference of the basepair free-energy landscape:
SP approximation

Given the position, L, of the trap, the most likely value of the number of

unzipped basepairs is nSPðLÞ, minimizing GðnjLÞ. The SP approxima-

tion consists of approximating the sum over the values of n in Eq. 3

for ZðLÞ by its dominant contribution, coming from n ¼ nSPðLÞ.
Within the SP approximation, the free energy simply corresponds to

GðLÞ ¼ GðnSPðLÞjLÞ, and the equilibrium force is given by

hf iðLÞ � favx� vG

vL

�
nSPðLÞ; L�

xKðLÞ�L� ‘av � ‘ds � 2nSPðLÞ‘ss
�
:

(5)

As the unzipping proceeds, dsDNA pairing and stacking free energy is

converted into ssDNA elastic free energy, equal to
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gðLÞh2gss þ 2ðhf iðLÞ � favÞ‘ss (6)

per unzipped basepair within the harmonic model of ssDNA outlined above.

gðLÞ is, at equilibrium, equal to the mean value of the basepair free energy,

g0ðsn; snþ1Þ, averaged over the distribution of the number, n, of unzipped

basepairs at fixed L.

Upon replacement of the equilibrium force, hf iðLÞ, with the experimental

measure, fexpðLÞ, in Eqs. 5 and 6, we obtain the number of unzipped

basepairs,

nSPðLÞ ¼ 1

2‘ss

�
L� ‘av � ‘ds � fexpðLÞ � fav

KðLÞ
�
; (7)

and the corresponding equilibrium basepair free energy,

gSPðLÞ ¼ 2gss þ 2
�
fexpðLÞ � fav

�
‘ss; (8)

respectively, at trap position L. The basepair free-energy landscape of the

DNA molecule can then be parametrically plotted by representing

ðnSPðLÞ; gSPðLÞÞ for various values of L (see Results).
Inference of the basepair free-energy landscape:
Box approximation

The SP approximation is fast and easy to implement, but neglects all the

fluctuations of the number of unzipped basepairs around its most likely

value, nSP. To take into account those fluctuations, we resort to another

approximation scheme, where the average value of the force is computed

exactly through the sum over all possible values of n as in Eq. 4, but where

the cumulative basepair free energy, Gds in Eq. 1, depends on a limited

number of parameters, which can be optimized to reproduce the experi-

mental force signal. To do so, we write the cumulative free energy as a

sum of box functions of width b,

GBox
ds ðnÞ ¼ b

Xinteger part of n=b

k¼ 0

gk: (9)

Parameter gk represents the box average of the free energies over the

basepairs in the interval i ¼ kbþ 1;.; ðk þ 1Þb. The value of b can be

chosen at convenience; the order of magnitude coincides with the typical

fluctuations over the position of the bead in the optical trap at fixed position

L (in units of ‘ss),

bBðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT

4KðLÞ‘2ss

s
: (10)

We have chosen b ¼ bBðLÞ=2. In Section IVB of the Supporting Material,

we indeed show that it is optimal to adapt b to the characteristic fluctuations

of the apparatus or, equivalently, to choose the precision of the inference

in accordance with the stiffness of the setup. Note that b varies with L

due to the dependence of the effective stiffness, K, on the trap position

(see Fig. S1).

The aim of the inverse problem is to infer the parameters

g0; g1;.; gN=b�1 from the experimental unzipping curve, fexpðLÞ. As a

result of thermal fluctuations of the number of unzipped basepairs at

fixed L, we expect the force measures, fexpðLÞ and fexpðL0Þ, to be

correlated (influenced by the same part of the sequence) as long as

jL0 � Lj< ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=K

p � b ‘ss. To reduce redundancy in the data, we con-

sider the set of measured forces, fexpðLkÞ, at discrete positions

Lk ¼ L0 þ k � 2b ‘ss, with integer-valued k; the offset position L0 encom-

passes the linker length, ‘ds, and the average bead displacement, ‘av. We
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further assume that the experimental error in measuring the force is a

normal variable with zero mean and variance e2, with e ¼ 0:1 pN. The

logarithm of the probability of the set of measured forces at positions Lk is

logP
��

fexpðLÞ
�		fgkg� ¼� 1

2e2

XN=b�1

k¼ 0

�
fexpðLkÞ � hf iBoxðLkÞ

�2

� 1

2D2

XN=b�1

k¼ 0

ðgk � gÞ2

(11)

up to an additive constant independent of the gk parameters. hf iBoxðLkÞ is
the equilibrium force at trap position Lk , given by Eq. 4, with the true

cumulative basepair free energy, Gds, replaced with GBox
ds . The second

term in Eq. 11 represents the a priori contribution to the log probability;

it regularizes the inference problem by imposing that the inferred free-

energy parameters, gk , should be around the typical value, g ¼ 2:5. The

penalty parameter, Dx1 (in units of kBT), corresponds to the expected

deviation of gk around g.

In the spirit of maximum-likelihood inference, we maximize logP

over the gk coefficients using a gradient ascent procedure. The maximum

does not seem to depend on the initial values of gk . In addition we find

that the optimum over gk depends weakly on the parameter g ¼ ðe=DÞ2
in the expected range 10�4 � 10�2 (see Section IVA in the Supporting

Material).
Alignment of experimental unzipping forces

We have reanalyzed the data of Huguet and collaborators (4), in which a

part of a l-DNA molecule of 6800 base pairs, of known sequence, is

unzipped at low velocity (10 nm/s), at 1 M monovalent salt concentra-

tion. The two complementary strands of the DNA molecule are attached,

through two 29-nucleotide-long dsDNA handles, to a bead and to a

micropipette. The force on the bead is measured through the displace-

ment in the optical trap (see Fig. 1) and acquired at 1 kHz frequency.

We have filtered this signal at a frequency of 1 Hz to obtain the average

force at each position. We have analyzed two unzipping curves (see

Fig. 4) corresponding to two molecules with the same sequence, hereafter

called Molecules 1 and 2. Notice that the unzipping curves do not start at

the beginning of the sequence, as the first recorded forces correspond

to ~700 open basepairs for Molecule 1 and 950 open basepairs for

Molecule 2.

An important source of experimental error is a low-frequency drift of the

instrument, resulting from dilatations or contractions after local changes in

temperature. The drift adds extra noise in the measurement of position L of

the optical trap. Experimental data were preprocessed by Huguet et al. to

reduce experimental drift (see Huguet et al. (4) and their Supplementary

Information). Even after this preprocessing, however, the two experimental

force curves for Molecules 1 and 2 were not perfectly superimposed (see

Fig. 4, upper), and the two corresponding sets of 10 free-energy parameters,

g0, calculated in Huguet et al. (4), referred to as best sets, differed by 10%

(see Fig. S19).

To align two force curves, we propose the following procedure, based

on the celebrated Needleman-Wunsch alignment algorithm of bioinfor-

matics (31). First, we compute the average unzipping forces, f1 and f2,

for the two molecules, and apply a global shift, f2 � f1 ¼ 0:5 pN, on

the force curve of Molecule 2. This correction compensates a global error

(offset) on the absolute force measure (typically of the order of some

fractions of a piconewton). Second, we align the two force curves using

the Matlab routine nwalign, which implements the Needleman-Wunsch

algorithm. This routine aligns sequences of symbols (generally, bases

or amino acids) according to a matrix of scores, expressing the similar-

ities between pairs of symbols. Here, symbols are force values, and the
score is a measure of how close two values are. In practice, we discretize

trap positions L with a step of DL ¼ 1 nm and the force values, f ðLÞ, in
Nf ¼ 22 increments, Df � 0:2 pN. This choice allows us to cover the

4–5 pN total range of variations of the unzipping force along the

molecules. Each force curve is therefore turned into a discretized

sequence, iðLÞ, with i ¼ 1 for the minimal value of the force and

i ¼ Nf for the maximal value. The score for aligning two force incre-

ments i and j at the same position is given by

SijhSði� jÞ ¼ �ði� jÞ2
2s2

: (12)

Parameter s is related to the experimental resolution of the force (of the

order of 0.1–0.5 pN) divided by the discretization interval, Df ;

hereafter, we choose s2 ¼ 5. The minimal score, SðNf Þ, corresponding
to the � 4 pN maximal difference between two unzipping forces, is

SðNf Þx� 35. In addition, gaps can be inserted in the alignment, with a

fixed score of Sgap ¼ �20, about halfway between the scores Sð0Þ ¼ 0

and SðNf Þ. Gaps are necessary to compensate for the drift of the trap posi-

tion in one force signal relative to the other one. We have verified that the

force signal alignments are weakly affected by the choice of another set of

parameters or of another number of discretization intervals, Nf (Fig. S24).

In the Results section, we will compare the basepair free energies

inferred using the data of Molecule 1 to the values computed from its

best set and the l-DNA sequence; results for Molecule 2 are reported in

the Section V in the Supporting Material. Moreover, we will realign the

force curves with the procedure described above and compare the two

inferred basepair free-energy landscapes with the one obtained from the

free energies given by the Mfold server (see Section VI in the Supporting

Material). Finally, we will also generate synthetic force data by computing

the equilibrium unzipping force as a function of the displacement, given the

sequence and the Mfold free energies. These synthetic data allow us to infer

the beginning of the sequence, which was lost in the experimental data. In

addition, and of more importance, synthetic data are useful to estimate the

performance of the inference method in ideal conditions (no drift, strict

equilibrium).
Synthetic data on 16S bacterial genomes

A potential application of unzipping experiments is to identify an unknown

DNA sequence from a database of reference sequences. To illustrate how

DNA screening can be implemented, we focus on the 16S ribosomal

RNA gene, of about N ¼ 1540 bp. The 16S rDNA gene is widely used

for phylogenetic classification of bacteria, and is relatively long to have a

good statistics in sequence comparison (32). To better understand the reso-

lution that could be achieved with unzipping analysis, we have downloaded

from the NCBI RefSeq database (33) ~2500 well cured 16S bacterial

sequences. The 16S rDNA sequence of one bacterium, hereafter called

the test sequence, is chosen in the database. We then compute the theo-

retical unzipping force curves for all 16S bacterial sequences, infer the

corresponding basepair free-energy landscapes, and compare them with

the test landscape. We estimate their discrepancies, and whether they are

large enough compared to the experimental uncertainty computed from

the detailed analysis of the experimental data above.
RESULTS AND DISCUSSION

SP inference: reconstructed basepair free-energy
landscape

The inference of the basepair free energy is easily done
using the SP approximation, as Eqs. 7 and 8 provide a para-
metric representation of g versus the number of unzipped
Biophysical Journal 106(2) 430–439
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basepairs, n, as a function of the trap position, L. The
outcome for the data of Molecule 1 is shown in Fig. 2 and
compared with its counterpart obtained from the sequence
and the best free-energy parameters (Table S1), and aver-
aged on a sliding window of 30 bp. The results of the SP
inference for synthetic data generated from the model (4)
are also plotted in Fig. 2. The difference between the base-
pair free energy inferred from the experimental data and that
inferred from the synthetic data is small with respect to their
common discrepancy with the true basepair free energies.
This good agreement entails that our unzipping model based
on the local harmonic approximation is accurate, and that
out-of-equilibrium effects are weak: the unzipping velocity
is low enough for the system to be effectively at equilibrium
for each trap position L.

The performance of the SP procedure strongly depends
on the local features of the free-energy landscape. The
unzipping force signal is characterized by the so-called
stick-slip phenomenon (34). When strong basepairs are
followed by weaker base pairs the cumulative free energy,
GðnjLÞ, Eq. 2, may have two local minima in n1 and n2,
with n1<n2. The stick phase corresponds to the first mini-
mum ðn ¼ n1Þ: the single strands and the bead in the trap
are pulled and stretched without breaking strong bases. In
the slip phase (the second minimum, in n ¼ n2), not only
the strong basepairs but also the contiguous weak basepairs
have opened. The stick-slip phenomenon gives rise to the
characteristic sawtooth behavior of the unzipping force.
Conversely, in regions where weak basepairs are followed
by strong basepairs, the cumulative free energy, GðnjLÞ,
has generally a unique minimum.
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FIGURE 2 SP inference. The basepair free energies, gðnÞ, inferred from

Molecule 1 force data (red curve) are compared to the true free energies

(computed from Mfold, sliding average over w ¼ 30 bp; turquoise curve)

and to the free energies inferred from synthetic data generated from the

model (orange curve). (Upper) Complete sequence. (Lower) Magnifica-

tions of two regions, one at the beginning of the molecule (left) and one

at the end (right). To see this figure in color, go online.
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Fig. 2 shows that the SP approximation, which replaces
the sum of the contributions associated with different
n in Eq. 3 with a unique contribution from nSP is accurate
in the non-stick-slip regions (e.g., region 800<n<820 in
Fig. 2, lower), and less accurate in the stick-slip regions
(e.g., region 820<n<860 in Fig. 2, lower), where it cuts
the true free-energy landscape. Detailed calculations pre-
sented in the Section III of the Supporting Material show
how the error in reconstructing the landscape of stick-slip
regions done by the SP approximation depends on the total
stiffness of the apparatus, KðLÞ.
Box inference: reconstructed basepair free-
energy landscape

In Fig. 3, the basepair free energies, gðnÞ, inferred with the
Box approximation from the unzipping data of Molecule 1
and from the synthetic data are compared to their true
counterparts, computed from the best free-energy parame-
ters found in Huguet et al. (4), and averaged on a sliding
window of 30 bp. Fig. 3 (middle row) shows how the
Box inference allows us to better follow the variation of
the basepair free-energy landscape along the sequence,
whereas the SP inference tends to cut the free-energy
barriers. The results for Molecule 2 are very similar (see
Fig. S14). The strong similarity between the free-energy
landscapes corresponding to experimental and synthetic
data inferred with the Box approximation in the two
regions magnified in the middle row of Fig. 3 (at the begin-
ning and end of the data sets) provides further support for
the validity of the model and the equilibrium assumption.
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In Fig. 3, lower, we show the basepair free-energy
landscape inferred with the Box approximation and the
true basepair free-energy landscape with a box average
with the same window size, b. The value of b (see
Eq. 10) ranges from 5 bp at the beginning of the unzipping
curve to 10 bp at the end of the sequence.

A detailed description of the reconstruction error along
the sequence, i.e., of the difference between the true and
the inferred basepair free-energy landscapes within the SP
and Box approximations can be found in Section V of the
Supporting Material. The reconstruction error does not
show any systematic (monotonic) behavior with the number,
n, of unzipped basepairs along the sequence. However, the
error is larger in stick-slip regions (Fig. S10) and in regions
for which the thermal drift of the optical trap has not been
appropriately corrected, and the inferred basepair free-
energy landscape is shifted with respect to the true land-
scape. This statement is corroborated by the fact that the
inference error in the synthetic data set has much smaller
peaks. The inference error in the real data are dominated
by this drift problem, with the consequence that, apart
from the very beginning of the sequence (700–1500 bp), it
is not much lower with the Box approximation than with
the SP approximation.
Alignment of unzipping force signals and
experimental uncertainty in the inferred
free-energy landscapes

To compare the inferred basepair free-energy landscapes of
Molecules 1 and 2 with those obtained from the Mfold pair-
ing parameters (Table S3 and Section VI in the Supporting
Material), we aligned the two experimental force signals
using the procedure described in Methods (see Fig. 4,
middle). The agreement between the two force signals is
much better than in the absence of alignment (Fig. 4, upper),
though some differences are still visible, e.g., around
n ¼ 4400 bp. These differences allow us to quantify the
experimental resolution of the force signal for two unzipping
experiments with the same sequence in the setup used
by Huguet and collaborators. We estimate the resolution
of the SP landscape through the discrepancy between
the free energies inferred for the two molecules after
alignment by

DgSPav ¼ 1

N

X
n

		DgSPðnÞ		; with
DgSPðnÞ ¼ gSP1 ðnÞ � gSP2 ðnÞ;

(13)

where subscripts 1 and 2 refer to Molecules 1 and 2, respec-
tively. We find DgSPavx0:025 (in units of kBT). Hence, the
resolution per basepair is very small compared to the differ-
ences in free energy between different basepair types, which
proves the efficiency of the alignment procedure.
Fig. 4 (lower) shows that the discrepancy DgSPðnÞ is not
uniform along the sequence and can reach values about 10
times higher than DgSPav values in some regions.
Sequence identification of the bacterial gene from
synthetic force signal

We now compare the inferred free-energy landscapes
between one 16S rDNA gene (the test sequence) and three
other reference sequences based on the synthetic data. The
test sequence, which we have chosen at random from the
NCBI database (33), is a Brevibacterium of the frigorito-
lerans species (B-F); it is responsible for foot odor and is
used for cheese fabrication. The reference sequences are a
cyanobacterium, Nostoc azollae (N-A), another Brevibacte-
rium, B. halotolerans (B-H), and the bacterium Bacillus
simplex of the DSM 1321 strain (B-S). N-A and B-F have
quite different 16S genes (329 mismatches), whereas B-H
and B-F are more similar (102 mismatches); B-S, though
not classified in the same family, is very similar to B-F
(18 mismatches).

The first plot of Fig. 5 shows the theoretical unzipping
force curves corresponding to the B-F and N-A genes and
computed according to Eq. 4. As the two sequences differ
widely in composition and length (N ¼ 1478 and 1540 bp
for N-A and B-F, respectively), the force curves are not
well aligned, even if drift is not present in the synthetic
data. We therefore align the two force curves using the force
alignment procedure described in Methods (see Fig. 5,
second plot). The SP free-energy landscapes of the two
Biophysical Journal 106(2) 430–439
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sequences are then inferred (Fig. 5, third plot). Remarkably,
the SP inferred free-energy landscapes are well aligned, as
are the true free-energy landscapes obtained from the
directly aligned sequences (Fig. 5, bottom). Moreover, the
locations (basepair indices) of the discrepancies between
the two inferred landscapes coincide with those between
the true landscapes.

For the comparison of the test sequence (B-F) with the
more similar reference sequences (B-H and B-S), we show
in Fig. 6 the basepair free-energy differences, DgðnÞ,
between the landscapes inferred from the equilibrium force
curves of the test and reference sequences using the SP
(Fig. 6, upper) and Box (Fig. 6, lower) approximations;
the corresponding free-energy landscapes can be found in
Figs. S29–S34. Fig. 6 (upper) shows in addition the differ-
ences between the true landscapes, averaged over 30 bp.
B-F and B-H can clearly be distinguished on this scale based
on their SP free-energy landscapes. The difference between
the inferred SP landscapes is DgSP ¼ 59 kBT in total or,
equivalently,DgSPavx0:04 kBT/bp (see Eq. 13), which is larger
than the resolution ofx0:02 kBT estimated from the experi-
ments on the l-phage Molecules 1 and 2. We therefore
conjecture that B-F and B-H could be distinguished using
the SP procedure on unzipping data obtained with the setup
of Huguet et al. (4).

The 16S genes of B-F and B-S differ by 18 mismatches
only, 12 of which are located at the extremities of the mol-
ecules. Mutations can nevertheless be detected from the SP
landscapes (Fig. 6, upper right) inferred from the synthetic
Biophysical Journal 106(2) 430–439
data. Small peaks in the SP free-energy difference in muta-
tion-free regions come from local errors in the force align-
ment, presumably due to the finite increment (z0:2 pN) in
the discretization of the force signal. The total difference
between the inferred SP landscapes is DgSP ¼ 12 kBT,
that is, DgSPavx0:008 kBT/bp. This small value suggests
that B-F and B-S probably could not be distinguished
with unzipping data obtained with the setup of Huguet
et al. (4)

With the Box procedure (Fig. 6, lower) the differences,
DgðnÞ, between the inferred landscapes agree with the
differences between the true landscapes, averaged over
w ¼ 10 bp for B-F and B-H (Fig. 6, lower left) and
over w ¼ 1 bp for B-F and B-S (Fig. 6, lower right). In
the latter case, all six internal mismatches coincide with
peaks in the difference between the inferred basepair
free energies, and can be detected; an additional peak,
around basepair 250, is due to a local error in the force
alignment. However, the Box approximation method is
slower than the SP method (it takes several hours to fit
the parameters for the x1500 bp sequence on a com-
mercial Desktop computer with Mathematica). In addition,
the Box procedure is more sensitive than SP to small
errors in the force alignment procedure, e.g., errors around
n ¼ 500 in Fig. 6, lower right. The Box method should
therefore be used as a refinement procedure to better
quantify the differences in free-energy landscapes detected
by the SP method.
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Large-scale screening of bacterial database

We now carry out a large-scale screening of the bacterial
database, keeping the test sequence (B-F) unchanged; the
results of a similar large-scale screening where the test
sequence is N-A are presented in Fig. S35. For each of the
2076 sequences in the database (see Section VIIF in the
Supporting Material), we compute the synthetic equilibrium
force curve, align it with the test force signal, and infer the
SP free-energy landscape. The total free-energy difference
with the test SP landscape is shown in Fig. 7 as a function
of the number of mismatches in the pairwise sequence align-
ments (Fig. 7, left) and of the total difference between the
true free-energy landscapes computed with Mfold (Fig. 7,
right). The whole calculation for the 2076 sequences in
the database, including the computation of the unzipping
force curves, the alignments of the force signals, the SP
inference, and the computation of free-energy differences
is done with a Matlab code in ~15 min on a Macbook Pro
computer.

Fig. 7 shows that there is a good correlation between the
total SP free-energy difference and the number of mis-
matches. No simple linear relationship can be expected, as
the difference in basepair free energy depends on the type
of mismatch. In a similar way, the total differences between
the inferred landscaped are strongly correlated to the total
differences between the true landscapes (Fig. 7, right). As
barriers are generally underestimated by the SP approxima-
tion, the former are generally smaller than the latter. We
show in addition that the total SP free-energy differences
increase when the synthetic data are generated with a
fourfold-stiffer optical trap (Fig. 7, light green dots; see
also Figs. S31 and S32).

The whole-database analysis with synthetic data and SP
inference shows, as expected, that the only sequence with
zero SP free-energy difference is the test sequence itself
(B-F). The next most similar sequence is B-S. However,
as discussed in the previous paragraph, the total difference
in free energy is smaller than the experimental resolution
between two identical molecules estimated from the data
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of Huguet and collaborators (4) and indicated in Fig. 7 by
the red dashed line. It seems, however, that B-F can be
distinguished from any other sequence in the database,
including B-H, when experimental errors are taken into
account. In Section VII of the Supporting Material, the
16S rDNA gene of N-A is compared to the other 2076
sequences in the database. The results are similar to what
is shown in Fig. 7 for the B-F test sequence, with the differ-
ence that N-A could also be distinguished from its closest
sequence with the estimated experimental resolution.
CONCLUSION

In this article, we have shown how the basepair free-energy
landscape of a single DNA molecule with 6800 bases could
be inferred from the unzipping data published in Huguet
et al. (4) with a resolution of 30–40 basepairs. Sequencing
techniques with low resolution but used on very long
sequences could be interesting in practical applications,
and could complement current techniques, which are
limited to short reads.

The inference of the whole free-energy landscape is a
difficult problem, as it requires determination of a large
number of parameters, increasing in a linear fashion with
the length of the molecule. We have proposed and compared
two approximation approaches to solve this problem. The
first approach, the SP method, is in practice a reparameteri-
zation of the force-extension curve and requires very little
computational effort. The second procedure, called Box
approximation, consists of approximating the free-energy
landscape with a piecewise constant function on the scale
of b bases and fitting the corresponding coarse-grained en-
ergetic parameters to match the equilibrium force computed
from an unzipping model to the experimental signal. We
find that the best value for b is about half the ratio of the
length of thermal fluctuations of the bead in the optical
trap over the typical length of two open basepairs. This
choice allows us to adjust the procedure automatically to
the precision of the experimental setup, and to avoid overfit-
ting the data. As the size of ssDNA fluctuations increases
with the number, n, of unzipped basepairs, so does the nat-
ural resolution, b, ranging from ~5 bases at the beginning of
the molecule to 20 bases at the end of the molecule (see
Fig. S1) in the setup of Huguet et al. (4). It is important to
stress that the value of b at the beginning of the opening
depends on the stiffness of the optical trap and of the dsDNA
linkers (assumed to be rigid here, since they are very short)
and could easily be made smaller in other experimental
setups. Indeed, the optical trap stiffness in the setup of
Huguet and co-workers (4), Ktrap ¼ 0:08 pN/nm, is rela-
tively small. As a matter of comparison, consider the
unzipping experiments of Woodside et al. (3), for which
Ktrap ¼ 0:3� 0:4 pN/nm. With the Box inference method,
we expect to be able to resolve the free-energy landscape
over the first 200 bp of the sequence with a resolution of
Biophysical Journal 106(2) 430–439
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the order of bx0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=K4‘2ss

p
z2 bp (Fig. S26). As a

consequence, it seems possible to drastically improve the
reconstruction scale of the inference by changing the setup
for small n, until Kss becomes the smallest stiffness of the
setup and ssDNA fluctuations are the dominant contribution
to the bead fluctuations. Unfortunately, in the data sets
analyzed, the unzipping signal starts at n ¼ 700� 900

open basepairs (for Molecules 1 and 2, respectively), and
the part of the unzipping dominated by the trap stiffness is
missing. In this range, as shown with the synthetic data,
the resolution on the inferred free-energy landscape is ex-
pected to be of the order of 5–10 bases.

Comparison with the synthetic unzipping data obtained
from the known sequence show that the major source of
error is the drift of the apparatus. The presence of drift,
the intensity of which could be reduced by the use of
specific setups, e.g., double optical traps, considerably af-
fects the accuracy of inferred free-energy landscapes. We
have proposed an alignment procedure of force curves,
which makes use of the celebrated Needleman-Wunsch al-
gorithm for aligning nucleotidic or protein sequences. We
have shown that the procedure is efficient for aligning two
experimental force signals (Molecules 1 and 2) affected
by drift and corresponding to the same DNA sequence.
We expect that drift could be practically eliminated and
that the inferred free energy could be assigned to unam-
biguous basepair indices, even in the absence of any a
priori information on the sequence, by aligning a large
number of unzipping curves corresponding to the same
sequence. A systematic check of the efficiency of our
alignment procedure on other experimental data, with
several unzipping signals, would therefore be very useful.

In the second part of the article, we have given a proof of
principle, with synthetic force data, that unzipping experi-
ments combined with our inference approach could be
used as a method of identifying one among thousands of
16S rRNA bacterial sequences. The standard method for
detecting homologous sequences is DNA-DNA hybridiza-
tion. DNA-DNA association kinetics is informative about
the similarity between test and reference DNA sequences.
However, this hybridization method is quite involved, as
it is time-consuming, labor-intensive, and expensive to
perform (32). Moreover, it gives only a global measure of
the difference between the test and reference sequences.
Unzipping-based methods could, in principle, also give
local information on similarities or dissimilarities between
the sequences.

The gene screening procedure proposed here allows us to
find, within experimental limitations, the sequence corre-
sponding to the test gene in the database. If this sequence
is not present, the SP inference procedure identifies the
sequence most similar to that of the test gene, partially
reconstructs the sequence of the test gene in the matching
zones, and gives the coarse-grained differences between
the two free-energy landscapes in the nonmatching regions
Biophysical Journal 106(2) 430–439
on a 10–50 bp scale, which depends on the experimental
resolution and on the inference method. In particular, the
SP method is robust and fast, and can be carried out
with no extra computation cost with respect to the com-
parison of unzipping forces. Once the most similar sequence
has been found, a more precise resolution over the
differences of the free-energy landscapes can be obtained
by the Box approximation. Note that we used our force
alignment procedure to compare theoretical free-energy
landscapes of homologous (but distinct) sequences, which
are free of drift. When comparing an experimental force
curve to one or more theoretical force curves computed
from a sequence database, the force alignment procedure
will, in addition, be helpful in removing the drift from
the data.

We stress that differences between the inferred free-
energy landscapes are more meaningful than differences
between the true and inferred landscapes. Although there
may be important differences between the SP free-energy
landscape and the true one, e.g., due to the stick-slip
characteristics of the unzipping signal, we have shown
that homologous sequences, even a few mutations away
from one another, could be distinguished by comparing their
SP landscapes. SP comparison provides information not at
the basepair level, but on larger scales. To achieve basepair
accuracy, one could combine unzipping experiments with
the hybridization of oligonucleotide probes (16), which
could be engineered to bind to the part of the sequence
where a different landscape has been detected. It would be
interesting to test the hybridization of different probes
with nucleotide contents compatible with the average free-
energy difference inferred from the unzipping signal and
the SP or Box approximations.

The study described in this article could be extended in
several ways. We based our inference on the equilibrium
force signal by filtering the force data at a resolution of
1 Hz. However, the temporal resolution of the data acquisi-
tion is much higher (here, 1 kHz). The data therefore
contain in principle more information than the average
force at each position. Thus, one way to expand on this
study would be to exploit for the inference not only the
average force but the distribution of forces at each position.
A second, and very interesting way would be to incorporate
in the model elements of the unzipping dynamics by taking
into account the bead, single strand, and linker relaxation
dynamics (35). In addition, although we focused here on
the basepair free-energy landscape associated with the
sequence, we did not attempt to infer the sequence itself.
Thus, a third way to extend this study would be to look
for the most likely sequence capable of generating the
inferred Box-averaged free energy, gk . It would be useful
to introduce more complicated priors over the energetic
parameters used in this work, in particular to constrain
the basepair free energies to take values from a set of
only 10 possible known values.
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SUPPORTING MATERIAL

Four tables, 35 figures, and a detailed description of the model and theory

are available at http://www.biophysj.org/biophysj/supplemental/S0006-

3495(13)05761-5.
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Supporting Material

Reconstruction and identification of DNA sequence landscapes

from unzipping experiments at equilibrium

C. Barbieri, S. Cocco, T. Jorg, R. Monasson

I. PARAMETERS FOR TRAP STIFFNESS, SS-DNA AND DS-DNA ELASTICITY,

AND BASE PAIRING AND STACKING FREE ENERGIES

The condition of the unzipping experiment performed by Huguet and collaborators [1] are the

following: temperature = 25oC, ionic concentration of the solution= 1M , pH= 7.5. The stiffness of

the optical trap isKtrap = 0.080 pN/nm. As in [1] the ssDNA, released during unzipping, is modeled

by a Freely-Jointed-Chain with Kuhn length bo = 1.15 nm and interphosphate distance d = 0.59

nm between consecutive bases. The two dsDNA (handles) are modeled according to a Worm-Like-

Chain with persistence length lp = 50 nm and contour length L0 = 9.18 nm. The free-energy

parameters g0(s, s
′), which account for both pairing and stacking contributions, extracted from [1],

are given in Table S1 and Table S2. These values correspond to the best energetic parameters, i.e.

reproducing as close as possible the unzipping forces of Molecule 1 and of Molecule 2 respectively.

In Table S3 we give the pairing parameters extracted from the MFold server for the experimental

condition of [1] (T = 25oC, Na = 1M) [2]. In Table S4 we give the pairing parameters extracted

from the MFold server for the ionic concentration Na = 150mM and T = 25oC [2].

II. MODEL FOR UNZIPPING

A. Derivation of the free energy G(n|L) for n unzipped base pairs

The elastic free energy of the single strand (ss) of DNA at fixed force f is given by the modified

freely jointed chain expression [1, 3]:

Gss(n, f) = n gss(f) = n bo log

[
kBT

sinh(d f/kBT )

d f

]
(1)

The parameter values d = 0.59 Å, bo = 1.15 Å for 1M ionic conditions are extracted from [1].

The free energy of ssDNA at fixed distance xss between its two extremities is

Gss(n, xss) = f(xss) xss − n gss(f(xss)) , (2)
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g0 A T C G

A 2.05 1.67 2.37 2.15

T 1.34 2.05 2.38 2.79

C 2.79 2.15 3.06 3.8

G 2.38 2.37 3.89 3.06

TABLE S1: Best binding free energies g0(si, si+1) (units of kBT ) obtained for Molecule 1 in [1]. Base values

si and si+1 correspond to lines and columns respectively.

g0 A T C G

A 2.05 1.81 2.41 2.26

T 1.42 2.05 2.63 2.83

C 2.83 2.26 3.18 4.08

G 2.631 2.41 4.11 3.18

TABLE S2: Best binding free energies g0(si, si+1) (units of kBT ) for Molecule 2 as computed in [1].

g0 A T C G

A 2.13 1.88 2.87 2.57

T 1.41 2.13 2.64 2.89

C 2.89 2.57 3.49 4.2

G 2.64 2.87 4.25 3.49

TABLE S3: Binding free energies g0(si, si+1) (units of kBT ) obtained from the MFold server [2] for DNA

at room temperature, pH=7.5, and ionic concentration of 1 M.

g0 A T C G

A 1.78 1.54 2.52 2.21

T 1.05 1.78 2.28 2.53

C 2.53 2.22 3.14 3.84

G 2.28 2.52 3.89 3.14

TABLE S4: Binding free energies g0(si, si+1) (units of kBT ) obtained from the MFold server [2] for DNA

at room temperature, pH=7.5, and ionic concentration of 150m M.

where f(xss) is the force required for a single strand with n unzipped base pairs to have extension

xss at equilibrium, implicitly defined through

xss =
∂Gss

∂f
(n, f) = n

dgss
df

(f) . (3)

Hereafter we simplify the above expression for Gss through an expansion around the average

unzipping force fav. This expansion, referred to as local harmonic approximation, is expected to

be valid for small fluctuations of the force around fav.
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FIG. S1: Left: Stiffness of the experimental setup, K(n), in units of kBT/nm
2, as a function of the number

of unzipped base pairs. Right: fluctuation bB(n) of bead in units of the extension `ss of an open bp as a

function of the number of unzipped base pairs.

We start by choosing a reference value for the unzipping force fav, and define the ssDNA

extension per bp according to Eq. (3):

`ss =
dgss
df

(fav) . (4)

A small deviation of xss from the equilibrium value n `ss corresponding to force fav = f(n `ss)

will result in a small change of the force f applied on the ssDNA extremities. Linearizing Eq. (3)

around xss = n `ss and f = fav, we obtain

f − fav ' Kss(n) (xss − n `ss) , (5)

where the stiffness Kss of the ssDNA is defined through

1

Kss(n)
= n

d2gss
df2

(fav) . (6)

Notice that the effective stiffness for the ssDNA decreases with the number of unzipped base pairs.

The resulting expression for the free energy of the ssDNA at fixed extension is, within the local

harmonic approximation corresponding to Eq. (5),

Gss(n, xss) ' fav xss +
1

2
Kss (xss − n lss)2 − n gss (7)
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FIG. S2: Equilibrium force in the harmonic approximation compared to the experimental force. Top:

Unzipping force, as a function of the trap position L (in nm). Turquoise line: experimental results for

Molecule 1, Orange line: average force at equilibrium 〈f〉(L). Bottom: magnification of two regions, at the

beginning (left) and the end (right) of the sequence.

where gss ≡ gss(fav).

The experimental setup includes, in addition to the ssDNA, the optical trap with stiffness

constant Ktrap, the small double strand (ds) DNA linkers which can be considered to be rigid for

the force range ' fav considered here, and the dsDNA molecule which is unzipped (Fig. 1 of the

main paper). We model the free energy cost for breaking apart the first n base pairs (s1, s2, . . . , sn)

of the molecule through

Gds(n) =
∑
i≤n

g0(si, si+1) , (8)
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where the energetic parameters g0(si, si+1) are given in Tables S1, S2 & S3.

We may now write the total free energy G(x
(1)
ss , x

(2)
ss , n|L) of the system as a function of the

number n of unzipped base pairs, of the extensions x
(1)
ss and x

(2)
ss , of the position L of the trap,

and of the total extension `ds of the dsDNA linkers, see Fig. 1 of the main paper. Expressing the

displacement of the bead with respect to the center of the trap as L− x(1)ss − x(2)ss − `ds we obtain

G(x(1)ss , x
(2)
ss , n|L) = Gds(n) +Gss(n, x

(1)
ss ) +Gss(n, x

(2)
ss ) +

1

2
Ktrap (L− x(1)ss − x(2)ss − `ds)2

= Gds(n)− 2n gss + fav (x(1)ss + x(2)ss ) +
1

2
Kss (x(1)ss − n`ss)2 +

1

2
Kss (x(2)ss − n`ss)2 +

1

2
Ktrap (L− x(1)ss − x(2)ss − `ds)2. (9)

All energetic parameters are expressed in units of kBT .

The partition function for a fixed displacement L is

Z(L) =
N∑

n=0

∫ ∞
−∞

dx(1)ss dx(2)ss e−G(x
(1)
ss ,x

(2)
ss ,n|L) (10)

As a consequence of the local harmonic approximation the integration over the variables x
(1)
ss , x

(2)
ss

amounts to calculate two coupled Gaussian integrals, with the result

Z(L) =
N∑

n=0

e−G(n|L) (11)

where the effective free energy per unzipping n base pairs (at fixed L) is given by

G(n|L) = Gds(n)− 2n gss +
1

2
K(n) (L− `av − `ds − 2 n `ss)

2 . (12)

The effective spring constant is

K(n) =
Kss(n) Ktrap

Kss(n) + 2Ktrap
. (13)

We plot the effective stiffness K(n) of the experimental setup as a function of the number n of

unzipped bases in Fig. S1 (left); K(n) is dominated by Ktrap at small n and by Kss(n) at large n

and, therefore, decreases as 1/n at large n.

Let us fix the displacement of the trap to some value L. As the fluctuations of n around its

average value are small (see Section II D) compared to the inverse of the gradient of K(n) we can

in practice replace K(n) with its value when the argument is equal to the average number of open

base pairs,

〈n〉(L) =
1

Z(L)

N∑
n=0

n e−G(n|L) . (14)
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The effective stiffness becomes a function of L, denoted by K(L). Parameter `av = fav/K(L)

appearing in (12) is the displacement of the bead with respect to the trap center under the action

of the average force fav.

The standard deviation of the position of the bead at fixed L, bB(L) (see Fig. 1 in main text),

expressed in units of the ssDNA extension `ss resulting from the opening of one bp has a simple

expression in terms of the effective stiffness:

bB(n) =
1√

K(n) `2ss
. (15)

Figure S1 (right) shows the value of bB as a function of n. Knowledge of bB is useful to estimate

the value of the box size b in the Box inference procedure, see Section IV B.

B. Parameters for the local harmonic approximation

The ss-DNA stretching free energy is expanded, in the local harmonic approximation, around

the the force needed to unzip an uniform sequence with average base-pair free energy g0. For

Molecule 1 with the parameters given in [1] g0 = 2.5 kBT, giving fav = 16.6 pN from the condition

2 gss(fav) = 2.5 kBT; at this force the extension of a ss-DNA base is `ss = 0.465 nm, the extension

of the two ds-DNA linker is `ds = 19.7 nm and the displacement of the bead in the optical trap at

the average unzipping force is `av = 208 nm.

For Molecule 2 with the parameters given in [1] and Molecules 1 and 2 after simple alignment

(see Section VI), we have used fav = 18 pN, `ss = 0.946 nm, `ds = 19.7 nm, `av = 224.5 nm. This

unzipping force corresponds to the average free energy g0 = 2.8 kBT, obtained from the pairing

parameters of MFold at 1M. We have verified that the outcome of the inference procedures does

not depend much on the force fav around which the ssDNA elasticity is expanded in the range of

the unzipping force (14-18 pN).

C. Comparison of experimental and equilibrium forces with the local harmonic model

To validate the above model we show in Fig. S2 the unzipping force computed at equilibrium,

〈f〉(L) = fav + d logZ(L)/dL, compared to experimental data. The model fits quite well the data,

even if slip events are steeper in experimental data than in the model. Note that at the end of the

unzipping the theoretical curve and the experimental one are less well aligned, due to experimental

drift.

Experimental data and model predictions differ in (at least) two important aspects:
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• the force measured in experiments is averaged out over a 1 second time-window, and is not

really sampled at equilibrium;

• the corresponding displacements of the trap (values of L) are averaged over on time intervals

of 1 second, too.

On the contrary theory predicts the equilibrium value for the force for a fixed displacement, as

we sum over all possible values for n, x
(1)
ss , x

(2)
ss . It would be interesting to take into account non

equilibrium effects [4] in the theoretical calculations due to the changes in the displacement over

the sliding window, and see if the comparison with the data is improved.

D. Number of open base pairs: average value and fluctuations

The average number of open base pairs is related to the displacement L and the average force

〈f〉(L) at that displacement L by the equation, see Material and Methods Section,

〈n〉(L) =
L− `ds − `av − (〈f〉(L)− fav)/K(L)

2`ss
. (16)

Fluctuations around the average value are characterized by the standard deviation

σn(L) =

√
1

Z(L)

∑
n

(n− 〈n〉(L))2 e−G(n|L) . (17)

In Fig. S3 we show both the average number 〈n〉(L) of unzipped pairs (top) and the standard

deviation σn(L) (bottom) as a function of the trap displacement L. For the sake of clarity we use

the number of unzipped bases for the average force fav ' 16.65 pN corresponding to a homogeneous

sequence with uniform free energy g0 = 2 gss = 2.5 kBT ,

nav(L) =
L− `ds − `av

2`ss
, (18)

as a dimensionless proxy for the trap position L. We observe that 〈n〉(L) remains close to nav(L)

as L increases, with positive or negative differences depending on whether the bp free energies are

locally stronger or weaker than the average value g0. Fluctuations at equilibrium, measured by

σn(L), can be of a few tens of bp. The standard deviations show strong heterogeneities with n

but is, on the overall, larger at the end of the sequence than at the beginning, as expected from

the fact that the setup stiffness decreases with n. Let us stress again that the effective stiffness

K(n) remains essentially unchanged when the bp number varies by σn ∼ few 10s bp; hence we are

allowed to approximate K(n) with a function of the trap position L only.
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FIG. S3: Top and middle panels: Average number of open base pairs 〈n〉(L) in the harmonic model (black)

as a function of the its average sequence counterpart, nav(L), see Eq. (18). Dashed lines show the nav = 〈n〉

curves. Bottom: Standard deviation of the number of open bp at equilibrium in the harmonic model, σn(L),

as a function of nav(L).

III. THEORETICAL STUDY OF THE INFERENCE ERROR IN THE SADDLE POINT

APPROXIMATION

A. Deviations of the average number of open base pairs within the Saddle-Point

approximation

We can check the self-consistency of the SP approximation by computing the difference ∆〈n〉(L)

between the average value of n at fixed L with the inferred sequence landscape, gSP0 , and nSP (L).
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If the SP approximation were exact this difference would vanish for all L. To lighten notations let

us define ` = 2`ss and rescale L− 2`ds − Lav → L. We write

∆〈n〉(L) =
1

ZSP (L)

∫ N

0
dn n exp

(
−GSP (n)− K(L)

2
(L− n `)2

)
− nSP (L) (19)

with

ZSP (L) =

∫ N

0
dn exp

(
−GSP (n)− K(L)

2
(L− n `)2

)
, (20)

and

GSP (n) =

∫ n

0
dn′ (gSP0 (n′)− 2gss). (21)

The result of the calculation for Molecule 1 is shown in Fig. S4. We observe that the deviations

from the SP number of base pairs can reach substantial values, of a few tens of bases, comparable

with the order of magnitude of the standard deviation σn.
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FIG. S4: Parametric representation of the deviation ∆〈n〉(L) between the average number of open bp and

the SP value vs. nSP (L) for a portion of the sequence landscape inferred with the SP approximation.
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B. Theoretical curves for the SP inference for barriers

In this section we show that the SP approximation reproduces regions in in free energy landscape

in the DNA sequence where weak bp are followed by stronger bp more faithfully than regions where

strong bp are followed by weaker bp. The latter regions will be hereafter called Strong-Weak (S-W)

barriers, and the former Weak-Strong (W-S).

Consider a barrier in the cumulative free-energy landscape, of height ∆G (with respect to the

average free energy 2ngss) and of width ∆n. The barrier is of the Weak-Strong type if ∆G < 0,

and of the Strong-Weak type if ∆G > 0. S-W barriers are responsible for the so-called stick-slip

phenomenon [5]. The barrier can be locally approximated as a harmonic potential, whose stiffness

is of the order of −∆G/(∆n)2. This adds to the stiffness of the setup measured in terms of bp,

K(L)`2ss, see Eq. (12). Two cases can be distinguished. For W-S barriers, both stiffnesses are

positive, and the free energy has a unique minimum: we expect the SP approximation, which

replaces the average value of n with is typical value nSP , to be accurate. For S-W barriers, the

two stiffnesses have opposite signs. There is a unique minimum if ∆G is smaller than ∆Gc.o. =

K(L)(∆n `ss)
2, and two separated minima if ∆G > ∆Gc.o.. We therefore expect the SP inference

to be good at inferring W-S-barrier regions in the landscape, and to behave poorly for steep S-W

barriers, i.e. such that ∆G exceeds the free energy ∆Gc.o.. In this section we indeed show that the

second derivative of the inferred cumulative free energy landscape, d2Gsp

dn2 , is bounded from below

by −K(L)`2ss, whatever the value of the large and negative second derivative of the true free energy

G. To illustrate this statement we consider the following free-energy landscape:

δg0(n) = −∆G
n

∆n2
exp

(
− n2

2 ∆n2

)
. (22)

Parameter ∆n controls the width of the barrier. Here δg0 represents the difference between g0 and

the reference value 2gss. ∆G is equal to the extremal value of the cumulative free energy landscape

δG(n) at the center of the barrier n = 0 :

δG(n) =

∫ n

−∞
dn′ δg0(n

′) = ∆G exp

(
− n2

2 ∆n2

)
. (23)

The behaviors of the free energy per bp, g0(n), corresponding to, respectively, W-S (∆G < 0) and

S-W (∆G > 0) barriers are shown in, respectively, Fig. S5 and Fig. S6.

Given the landscape defined in Eq. (23), and the stiffness constant K (which may depend on

L) we calculate the average force f(L) and use the SP inference formula to obtain nSP (L) and

gSP0 (L). Results are shown in Figs. S5 and Fig. S6. We find two qualitatively different behaviors:
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parameter are ∆n = 1, Keff = K`2 = 1.

• For W-S barriers the inferred free energies are in good agreement in the central part of the

barrier whatever the value of (negative) ∆G.

• For S-W barriers the slope of the inferred free energies at the origin is in good agreement

with the true slope,

dgSP0

dnSP
(nSP = 0) ' dg0

dn
(n = 0) . (24)



12

800 900 1000 1100

bp index n

1

2

3

4

γ = 10
−3

800 900 1000 1100

1

2

3

4

γ = 10
−4

800 900 1000 1100

1

2

3

4

b
p
 f

re
e 

en
er

g
y
 (

B
o
x
)

γ=10
−2

FIG. S7: Base pair free energies at the beginning of Molecule 2 (turquoise: true values, black: outcome of

the Box inference procedure with b = 5). Left: penalty parameter γ = 10−2. Middle: penalty parameter

γ = 10−3. Right: penalty parameter γ = 10−4

for small ∆G only. Conversely the mean slope of the inferred barrier is much smaller (in

absolute value) than the true one for large positive ∆G, and saturates to the value∣∣∣∣∣dgSP0

dnSP

∣∣∣∣∣ ' K `2ss , (25)

which depends on the dimensionless effective stiffness only. The cross-over between the two

regime corresponds to a barrier height

∆Gco ' ∆n2K `2ss . (26)
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IV. CHOICE OF THE PARAMETERS IN THE BOX APPROXIMATION

A. Penalty parameter

The Box approximation consists in maximizing the log-likelihood of the experimentally mea-

sured forces fexp(Lk) fo a set of positions Lk, see Material and Methods Section,

logP ({fexp(L)}|{gk}) = − 1

2ε2

N/b−1∑
k=0

(fexp(Lk)− 〈f〉Box(Lk))2 − 1

2∆2

N/b−1∑
k=0

(gk − ḡ)2 , (27)

over the box free energies gk. Given the experimental forces the outcome depends only on the

dimensionless penalty parameter

γ =

(
ε `ss
∆

)2

, (28)

which is the squared ratio of the uncertainty over the work of the unzipping force and of the

possible deviations of the free energy parameters around their mean ḡ. The inference is the result

of a compromise between the reproduction of the force data (favored for small γ) and the pinning

of the gk around the average value ḡ due to the prior probability (favored by large γ). Given the

orders of magnitude of the uncertainty over the force, ε ∼ 0.1 pN, and of the fluctuations of gk

around ḡ, ∆ ∼ 1 kBT , we expect γ to be comprised in the range 10−4 − 10−3.

In Fig. S7 we show the inferred free energy landscape with a penalty parameter γ = 10−2,

compared to the one inferred with γ = 10−3 and γ = 10−4 . For most locations in the sequence the

precise value of the penalty parameter does not have a large impact. For some bp, however, e.g.

around n = 800, the regularization is helpful to prevent divergences in the inferred free energies,

which very weakly affect the equilibrium value of the force, and are underconstrained by the data

alone. In practice we find that γ = 10−2 gives good predictions for the sequence free energies, when

compared to the true values averaged over w = 30 bp. This value can be reduced to 10−3 − 10−4

when reconstructing the free energies at a better resolution (smaller scale) than 30 bp.

B. Width of the trial box

In Fig. S8 (right) we show the inference of the end of the sequence with a box-like trial function,

GBox
ds (n) = b

integer part of n/b∑
k=0

gk , (29)

with b = 5 bp; this value for b corresponds to roughly half the standard deviation of the nb of open

bp at equilibrium, resulting from the ssDNA fluctuations with ≈ 6000 open bp. The inference is
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compared to the one corresponding to b = 10 (Fig. S8, left panel). While the inference for b = 5 is

twice more costly in terms of the number of parameters to infer, the inferred free energies are very

similar to the ones obtained with a box trial functions over b = 10 bp. As expected it is useless to

choose values for b smaller than half the standard deviation bB(L) defined in (15), see Fig S1.
C. Description of the optimization procedure

To find the local free energy parameter we minimize the difference between the experimental

and theoretical forces with a regularization term as described in the Eq. (11) of the main text. We

have implemented this minimization procedure in Mathematica 7. As running the minimization

procedure on all 6800 base pairs is too slow we have defined unzipping zones of about 1200 base

pairs, which overlap two by two over 100 base long regions. The 50 predicted bases at the beginning

and at the end of each region are then discarded. This procedure is possible since the setup acts

as a confining potential over the number n of open bp, and a base does not affect the average force

to open a bp more than 100 base pairs away. In addition we introduce a cut-off in the sum over
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n in Eq. (10) to estimate the average force; this cut-off limits the summation over a few hundred

base pairs around the value (L/`ss − n), and is justified by the fact that the standard deviation of

the number of open bases around this average value is of a few ten of bases at most. The small

inference error on the synthetic data sets shows that this cut–and–paste procedure does not affect

much the inference error along the sequence; However it could probably be improved by choosing

carefully where to cut the data from the unzipping signal. The computation over 1200 base takes

about 1 hour (for the values of b reported here) on an Intel Core 2 processor.

D. Theoretical unzippping forces from the inferred free-energy landscapes with the SP and

Box approximation
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FIG. S9: Average force vs. trap position: Experimental values fexp(L) for Molecule 1 are shown in turquoise,

while the equilibrium force 〈f〉(L) computed the bp free energies inferred with the SP and Box approxima-

tions are shown in, respectively, red and black.
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In Fig. S9 we show the equilibrium unzipping force obtained from Eq. (4) in the main text

from the free-energy landscapes G inferred with the Box and SP inference. We observe that the

unzipping force obtained from the Box approximation reproduces very closely the experimental

force data, especially in stick-slip regions where the SP force show strong deviations.

V. RECONSTRUCTION ERRORS WITH RESPECT TO THE TRUE FREE-ENERGY

LANDSCAPE

A. Definitions of the reconstruction errors

We denote by

g
(w)
0 (n) =

1

w

n+w/2∑
i=n−w/2

g0(si, si+1) (30)

the sliding average of the true bp free energy over a window of w bp. We want to estimate the

error between the bp free energy g(n) inferred with the SP or the Box approximations and g
(w)
0 (n).

Of particular interest is the scale w which minimizes this difference, that is, on which the sequence

free energies are better inferred.

The error

εw(n1, n2) =

√√√√ 1

n2 − n1

∑
n1≤n<n2

(
g(n)− g(w)

0 (n)
)2

(31)

estimates the absolute discrepancy between g and g
(w)
0 in the portion of the sequence comprised

between bp n1 and n2. To obtain a relative measure of this discrepancy we introduce the relative

error

ρw(n1, n2) =
εw(n1, n2)

δg0(w)
, (32)

where the denominator

δg0(w) =

√√√√ 1

N

N∑
i=1

(ḡ0 − g(w)
0 (i))2 with ḡ0 =

1

N

N∑
i=1

g0(si, si+1) (33)

represents the characteristic fluctuations of the true free energy landscape (averaged on a window

of w bp) with respect to its mean value. When w increases these fluctuations decrease because the

sliding average includes more and more bases.
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B. Dependence of the reconstruction error on the local landscape

In Fig. S10 we plot the position-dependent inference error, εw(n−50, n+50) defined in Eq. (31),

averaged over one hundred bp and with a sliding average of the true sequence over w = 30 and

w = 50 base pairs. We observe that the error fluctuates along the sequence, with no monotonic

dependence on the number n of unzipped base pairs as would be expected from the increase of

ssDNA fluctuations with n. The error mainly depends on the local free energy landscape and on

the heights and the widths of barriers therein. The DNA molecule which has been unzipped is

characterized by large variations in the free energy landscape especially at the beginning of the

sequence, which make the error generally larger at the beginning than at the end of the sequence.
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FIG. S10: Position-dependent errors in the inference. Error εw(n−50, n+50) on the inferred bp free energy

with respect to the true value, averaged on a window w = 30 (top) and w = 50 (bottom), vs. bp index n.

As discussed in Section III the performance of the SP procedure strongly depends on the types
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of the barriers in the free energy landscape, and on the stiffness of the experimental apparatus. In

particular, as seen in Fig. 2 of the main text (bottom), the agreement between the true and inferred

sequence free energies is worse on descending flanks (corresponding to S-W regions in the landscape)

than on negative flanks (corresponding to W-S regions). We have checked that, in agreement with

theoretical prediction, the SP inference is not capable of reproducing steep positive barriers in the

free energy landscape. The asymmetry between W-S and S-W regions of the sequence landscape

is visible from the analysis of the experimental force signal. Figure S11 shows the sliding average

of dgSP

dnSP over a 10-bp window as a function of nSP . We see that this quantity, which coincides with

the second derivative of GSP , is bounded from below by minus the effective stiffness of the setup

(lower blue curve), but is not bounded from above. Since the effective stiffness decreases with the

number of open base pairs the limitation becomes stronger at large n.

As visible in Fig. 3 of the main text (bottom) the box approximation overcomes this limitation

and is better able to reproduce S-W barriers (stick-slip regions) in the free energy landscape. We

see in Fig. S11 that the second derivative of GBox is not bounded from below by the stiffness of

the setup, and that the agreement with the second derivative of the true free energy G is much

better than in the case of SP inference. The Box approximation is therefore less sensitive to the

curvature of the free energy landscape than the SP approximation. This statement is corroborated

by the inference of synthetic data (Fig. S10): the error with the Box approximation shows less

pronounced variations along the sequence than with the SP approximation.

To better understand how the reconstruction scale is affected by the drift of the apparatus we

consider the inference error in the case of synthetic data, which are free of any drift effect. We

find that the sequence free energies are in better agreement with their true counterparts than the

free energies inferred from Molecule 1. In particular the bumps in the error in the region between

base pairs 1300 and 1600 and around bp 2300 in Fig. S10 are not seen with the synthetic data,

and seem to be due to a residual drift in the Molecule 1 data.

C. Characteristic reconstruction scale

To determine the scale on which the free energy landscape is better reproduced we plot in

Fig. S12 the error εw over the whole sequence and over two portions of length 300 bp, located at

the beginning and the end of the unzipping data. The SP inference error reaches a minimum at a

scale of 30-40 bp at the beginning and at about 70 bp at the end of the sequence. The Box error

is minimal when the sliding average of the true free energy landscape is compared to the sliding
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FIG. S11: Second derivative of the inferred cumulative free-energy landscape G(n) (convoluted over 10 bp)

plotted as a function of the bp index n for the SP (red curve) and Box (black curve) approximations, and

for the experimental data (turquoise line, w = 40). Blue lines show the effective stiffness K`2ss (upper curve)

and its opposite (lower curve) in units kBT . Inset: magnification of the 5400 < n < 6000 region.

average of the inferred free energy landscape on the same window size, w′ = w. The minimal error

on the sliding-averaged free energies is of the order of 0.05 kBT to 0.1 kBT, depending on the

approximation and on the location along the sequence. The relative error ρw ranges from 0.25 to

0.5 for scales ranging from 30 to 50 bp, meaning that the inference error ranges between one quarter

and one half the standard deviation of the free energy g0 around its mean along the sequence.

The reconstruction scale depends on the effective stiffness of the setup, which is larger at the

beginning of the opening. As we do not have the force signal at the beginning of the unzipping

in Molecules 1 and 2 we have resorted to the synthetic data to characterize this dependence. Fig-

ure S10 shows that the inference error in the region n < 1000 is smaller with the Box approximation

than with the SP approximation; this effect is also visible on the few hundreds of bases in this
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FIG. S12: Average errors in the inference: Average error over the inferred free energy εw (Top) and averaged

relative error ρw (Bottom) as a function of the window size w of the running average on the true free energy

landscape, and for different window size w′ of the running average on the inferred landscape for Molecule 1

and synthetic data. Left: whole sequence, Middle: 300 bases at the beginning, Right: 300 bases at the end

of the sequence.

region in the Molecule 1 data.

We show in Fig. S13 the inference of the free energies for the first 500 bases. The fluctuations of

the displacement at the beginning of the sequence are b = bB/2 ' 4 bp (see Fig. S1). As is shown

in the figure, the free energies accurately inferred over a scale of about 20 base pairs. The inference

error depends on the local features of the free energy landscape. It is very small in a favorable

region 150 < n < 500, and is larger at the beginning n < 150, where the free energy landscape has

steeper variations.
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FIG. S13: Inference from the unzipping force for synthetic data. Top: Left: Free energy inferred for the

first 500 base pairs (blue) compared with a box average of the true sequence with the same b (turquoise).

Right: sliding average of the free energy over w′ = 20 bp (turquoise) compared to the sliding average of the

true sequence with w = 20 (blue). Bottom: Left: error εw and relative error ρw vs. window sizes w and w′

for the sliding averages of, respectively, the true sequence and the inferred sequence. The error is ε20 = 0.05

and ρ20 = 0.3 for w′ = w = 20. Right: error ε20(n− 10, n+ 10) calculated as a sliding average over 20 bases

along the sequence is shown for w′ = w = 20.

D. Inference of the free-energy landscape for Molecule 2

We show in Fig. S14 the outcome of the SP and Box procedures to infer the sequence free energy

of Molecule 2, using the best pairing parameters computed in [1]. The quality of the predictions,

also shown in the position dependent error of Fig. S15 and in the average error of Fig. S16, is

comparable to the ones for Molecule 1, shown in Fig. 2 and 3 of the main text.
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FIG. S14: Inference of the base pair energy from the unzipping force for molecule 2. Top: comparison of

the SP (red line) and the Box (black line) landscapes with the true free energy (sliding average on 50 bp).

Bottom: Box inference for the first (Left, b = 5) and the last (Right, b = 10) base pairs in the sequence.

E. Comparation of SP and Box inferences for Molecule 1 and Molecule 2 on the whole

molecule

Figure S17 shows a magnification of the inferred free energies from Molecule 1 data with the

SP approximation (see Fig. 2 of the main text), and with the Box approximation (see Fig. 3 of the

main text), to allow for a better comparison with the true free energies along the whole molecule.

In Fig. S18 the free energies inferred for the data of Molecule 2 with the SP approximation (see

Fig. 2 of main text) and with the Box approximation are shown.
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FIG. S15: Position-dependent errors in the inference for Molecule 2. Error εw(n−50, n+50) on the inferred

bp free energy with respect to the true value, averaged on a window w = 30 (top) and w = 50 (bottom), vs.

bp index n.

VI. REALIGNMENT OF THE UNZIPPING FORCE CURVES AND COMPARISON

WITH MFOLD PAIRING ENERGY AT 1M

The best pairing parameters fitted in [1] correspond to a global shift of the free-energy landscape

with respect to the MFold predictions, as shown in Fig. S19. This shift can be compensated by

a global offset δf (which takes different values for Molecules 1 and 2) over the unzipping force,

possibly due to the experimental uncertainty on the force. To estimate this offset we have calculated

the average value of the inferred free energies over the sequence for the two molecules, and calculated

the difference, denoted by δg, with the average free energy along the true sequence according to

MFold. We have then translated the force curve by a global shift in the force, δf = δg/(2 `ss). We
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FIG. S16: Average error of the inferred free energy for molecule 2. Top: average error εw; Bottom: averaged

relative error ρw, as functions of the window size w of the running average, and for different size w′ of the

running average on the Box inferred free energy. The errors are computed over the whole sequence (left),

and for 300 bases at the beginning (middle) and at the end (right) of the sequence; SP approximation: red

line, Box approximation: black line.

obtain δf = 1.2 pN for Molecule 1, and δf = 0.7 pN for Molecule 2.

For the alignment of the force signals along the L-axis, we have followed two procedures:

• a very simple and minimal shift done by ’hand’, consisting in a displacement shift for Molecule

1 by δL = 30 nm if n < 1500, and δL = 50 nm if n > 1500, and a displacement shift of

Molecule 2 by δL = 20 nm;

• a more sophisticated realignment with the Needleman-Wunsch algorithm [6] described in

main text (Methods Section).

The force signals obtained with both alignment procedures are shown in Fig. S20.
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FIG. S17: Inference of the base pair energy from the unzipping force for Molecule 1. Comparison of the SP

(red line) and the Box (black line) landscapes with the true free energy (turquoise) (sliding average over 40

bp) and the Box approximation for synthetic data (blue).

After these realignments we have inferred the free-energy landscapes shown in Fig. S21 and

S22. Even if local errors in the alignments are still present the agreement with the free-energy

landscape obtained with MFold is remarkable (and obtained with no fitting of parameters). Resid-

ual alignment errors can be observed, e.g. around position n = 1500 with the Needleman-Wunsch

procedure (which could be cured by lowering the force increment ' 0.2 pN used to discretize the

force signal prior to alignment) and around position n = 1700 with the ’hand-made’ alignment.

Figure S21 and Fig. S23 show that the errors for the SP inferred free energy landscapes, after

manual realignment, are similar to the one obtained with the ’best’ fitted free energies. The

experimental drift is by far the major problem in the analysis of unzipping forces. As we dispose

here of two unzipping curves only, drift problems cannot be completely solved by aligning these
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FIG. S18: Inference of the base pair energy from the unzipping force for Molecule 2. Comparison of the SP

(red line) and the Box (black line) landscapes with the true free energy (sliding average over 40 bp.)

two curves. Alignment of multiple unzipping curves would be very useful to further decrease the

effects of drift.

As explained in the main text the Needleman-Wunsch algorithm is used to align the force signals

after discretization of the force values in Nf values. In Fig. S24 the parameter used in the main

text, Nf = 22, σ2 = 5 and gap penalty Sgap = −20 (middle panel) are compared to Nf = 22,

σ2 = 0.25 and gap penalty Sgap = −100 (top panel), and Nf = 4, σ2 = 0.1 and gap penalty

Sgap = −20. The two choices of parameters with Nf = 22 give almost identical aligned forces.

The alignment with Nf = 4 with a smaller resolution on the force is quite similar, even if slightly

worse, especially at the end of the unzipping curve.

In Fig. S25 we show the total difference ∆g in the inferred free energies between the B-F

bacterium and all the other sequences in the database compared to the number of mismatches,

with a force alignment based on forces discretization on Nf = 4 intervals. Results are very similar
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FIG. S19: Base pair free energies along the initial portion of the sequence for the optimal pairing parameters

for Molecule 1 and Molecule 2 (extracted from [1]) and for the MFold energetic parameters. The sliding

average is computed over w = 30 bp.

to what is obtained with Nf = 22 force increments, see Fig. 7 of the main text.

VII. SYNTHETIC UNZIPPING FORCE SIGNALS FOR BACTERIA N-A, B-F, B-H

AND B-S, AND WHOLE-DATABASE SCREENING

A. Inference of B-F free-energy landscape: comparison between Ktrap = 0.08 and

Ktrap = 0.3 pN/nm

Fig. S26 shows the free-energy landscape, for the first 200 bp, of bacterium B-F inferred from

synthetic data obtained with a trap stiffness Ktrap = 0.08 pN/nm used in [1] (left) and with trap

stiffness Ktrap = 0.3 pN/nm (right). Landscapes are inferred with the SP (top) and the Box

(bottom) procedures. We see that on the first 200 base pairs the SP approximation reproduces, for
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FIG. S20: Top: Experimental force vs. trap displacement for the two unzipping experiments Molecule 1

and Molecule 2, with the corrections to remove the drift done in [1]. Middle: Same data after the manual

alignment described in Section 6. Bottom: Same data after alignment with the Needleman-Wunsch (N-W)

algorithm, see Section 6.

the first 200 base pairs, the free-energy landscape on a scale of 30 bp, and the Box approximation

on a scale of 10 bp for Ktrap = 0.08 pN/nm. With a stiffer trap, Ktrap = 0.3 pN/nm, the SP

approximation reproduces the free energy landscape on a scale of 10 bp, and the Box approach on

a scale of ' 2 bp.

B. Force alignments to compare 16S genes in test (B-F) and reference (N-A, B-H, B-S)

sequences

In Fig. S27 (left) we show the theoretical force signals for the four 16S genes of the bacteria

N-A, B-F, B-H, and B-S, before and after the alignment with the Needleman-Wunsch algorithm
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described in the main text and in Section VI. This alignment allows to infer well aligned free-

energy landscapes even if the sequences are slightly different due to insertions and deletions of some

nucleotides in the course of evolution. It is interesting to note that if the free-energy landscapes

are first inferred from non-aligned force signals and are then compared, e.g. based on standard

pairwise sequence alignments, the two resulting SP landscapes are neither adequately aligned with

one another, nor with the true free-energy landscape.

C. Differences between B-F and N-A sequences through unzipping experiments

As shown in Fig. S28 and in Fig. 5 of the main text, the free energy landscape of the N-

A bacterium is very different from the one of B-F. The number of mismatches (black crosses in

Fig. S28, bottom panel) between the two sequences is, indeed, of 339 bases. N-A and B-F free-

energy landscapes can be clearly distinguished on a 30 base-pair scale. The SP free energies are

also very different along the sequence, see Fig. S28 (bottom). Their difference (orange line) clearly

reflects the difference between the ’true’ free-energy landscapes (turquoise line). As expected the

total difference between the SP free energies of the two genes (' 161 kBT for ' 1540 base pairs)

is smaller then the true total difference (' 470 kBT), as SP underestimates differences in the

landscapes associated to barriers.

D. Comparison of B-F and B-H free-energy landscapes for trap stiffnesses Ktrap = 0.08 and

0.3 pN/nm

Fig. S29 and Fig. S30 compare the free-energy landscapes of B-F and B-H bacteria when using

the SP and Box approximations. The true free-energy landscapes are plotted in top panels. They

are obtained from the aligned B-F and B-H sequences and the pairing parameters of Table S4,

and are averaged over a sliding window w=30 bp for the comparison with the SP approximation

and w=10 bp for the comparison with the Box approximation. In the middle panels the free

energy landscape are inferred from the aligned force signals. In the bottom panels the free energy

landscape differences are plotted, as in the Fig. 6 of the main paper.

The differences between the free energies for bacteria B-F and B-H, inferred with the SP and

Box methods, and with the two trap stiffnesses Ktrap = 0.08 and 0.3 pN/nm are shown for the

first 200 base pairs in Fig. S31 and Fig. S32. In these plots the comparison is made with the true

free-energy landscape without any sliding average.
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E. Comparison of B-F free-energy landscape with the ones of B-S

Figure S33 and Fig. S34 show the true free-energy landscapes computed from the sequences B-F

and B-S and MFold, compared to the outcomes of the SP and Box inferences based on synthetic

unzipping data. The bottom panels shows the free energy differences as in the Fig. 6 of the main

paper. In Fig. S34(bottom) we show the differences in real free energy landscapes without any

sliding average (turquoise line) and the one obtained with the box approximations.

F. NCBI database and whole-database screening of N-A 16S gene

While the NCBI database [7] contains about 2500 sequences of 16S genes, we exclude sequences

containing an N symbol (corresponding to an unknown nucleotide in that position), one sequence

much smaller than the others (112 bases), and 6 sequences with more than 2000 nucleotides. We

are therefore left with 2076 sequences in the data base.

As shown in Fig. S35 the comparison of the N-A gene landscape to all the other sequence

landscapes in the bacterial database shows similar features to what is obtained for the test gene

B-F, see Fig. 7 of the main text. In the N-A case, however, the gap with the most similar sequence

is larger then the estimated experimental resolution in the experiment of Huguet and collaborators

[1] (red line in Fig. S35).
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FIG. S21: Saddle point inference for Molecules 1 (red line) and 2 (blue line) using the MFold energetic

parameters and after further shifts on the pairing energies and on the trap position. The true sequence

landscape (sliding average over w = 30 bp) is shown with the turquoise line.
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FIG. S22: Box inference for Molecules 1 (red line) and 2 (blue line) from MFold energetic parameters and

after global shifts on the force curves and manual alignment on the trap positions. The true sequence

landscape (sliding average over w = 30 bp) is shown with the turquoise line.
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FIG. S23: Absolute (top) and relative (bottom) errors on the inferred free energies as a function of the

window size w of the running average, for the whole sequence and for 300 bases at the beginning and the

end of the sequence. The data correspond to Molecule 1 (with the free energies found by Huguet et al. [1],

black line) and to Molecule 1 with manual shifts (MFold energetic parameters g0).
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FIG. S24: Re-alignement of the experimental forces with 22 (top & middle panels) and with 4 (bottom

panel) force intervales. The values of σ2 and of the gap penalty Sgap are shown in the panels.
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FIG. S25: Total difference ∆g in free energy along the aligned sequence vs. number of mismatches, when

discretizing the forces with Nf = 4 values only. The test sequence is bacterium B-F.
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FIG. S26: Free-energy landscape (green curves) on the first 200 base pairs from synthetic unzipping data

generated from the sequence of the B-F bacterium, with trap stiffness Ktrap = 0.08 pN/nm (left) and

Ktrap = 0.3 pN/nm (right), inferred with the SP (top) and the Box (bottom) approximations. Black curves

show the sliding averages of the ’true’ free energies over w base pairs (values of w are shown in the panels).
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FIG. S27: Top: Unzipping force signals corresponding to N-A, B-F, B-H and B-S bacteria. Bottom: align-

ment of the B-F unzipping force curve (blue) with the N-A (top), B-H (middle) and B-S (bottom) force

curves.
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FIG. S28: Comparison of free-energy landscapes for bacteria B-F and N-A. Top: free energy with a sliding

average over w = 30 base pairs, obtained from the sequences and the pairing parameters of MFold at 150

mM NaCl, after having aligned the two sequences. Middle: inferred SP free-energy landscape obtained from

the synthetic force signals computed for the two sequences and then aligned (with parameter σ2 = 5 and

Sgap = −20). Bottom: difference (turquoise line) between the aligned free-energy landscapes of B-F and

N-A of the top panel with a sliding average w = 30, compared to the difference between the inferred SP

free-energy landscape (orange line). Mismatches between the two sequences are shown with black crosses.
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FIG. S29: Comparison of 16S gene of bacteria B-F and B-H from the SP inference on aligned unzipping

force signals. Top panel: Pairing free energy with a sliding average over w = 30 base pairs, obtained

from the aligned sequences and the pairing parameters of Mfold at 150 mM NaCl. Middle panel: inferred

SP free energy landscape from the synthetic force signals after their alignment. Bottom panel: difference

(turquoise line) between the aligned free energy landscapes of B-F and B-H of the top panel compared with

the difference (orange line) between the inferred SP free energy landscapes of the middle panel (as the top

left panel of Fig.6 in the main paper). Black crosses: mismatches between the two sequences.
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FIG. S30: Comparison of 16S gene of bacteria B-F and B-H from the Box inference on aligned unzipping

force signals. Top panel: Pairing free energy with a sliding average over w = 10 base pairs, obtained

from the aligned sequences and the pairing parameters of Mfold at 150 mM NaCl. Middle panel: inferred

Box free energy landscape from the synthetic force signals after their alignment. Bottom panel: difference

(turquoise line) between the aligned free energy landscapes of B-F and B-H of the top panel compared with

the difference ( black line) between the inferred Box free energy landscapes of the middle panel. Red crosses:

mismatches between the two sequences.
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FIG. S31: Trap stifness Ktrap = 0.08 pN/nm. Magnification over the first 200 bases of the sequence:

comparison between the real free energy differences (without any sliding average), the SP inference and the

Box inference for B-F and B-H bacteria. Dark crosses locate mismatches between the two sequences.
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FIG. S32: Trap stifness Ktrap = 0.3 pN/nm. Focus on the first 200 bases of the sequence: comparison

between the real free energy differences (without any sliding average),the SP inference and the Box inference

for B-F and B-H bacteria. Dark crosses locate mismatches between the two sequences.
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FIG. S33: Comparison of 16S gene of bacteria B-F and B-S from the SP inference on aligned unzipping

force signals. Top panel: Pairing free energy with a sliding average over w = 30 base pairs, obtained

from the aligned sequences and the pairing parameters of Mfold at 150 mM NaCl. Middle panel: inferred

SP free energy landscape from the synthetic force signals after their alignment. Bottom panel: difference

(turquoise line) between the aligned free energy landscapes of B-F and B-S of the top panel compared with

the difference (orange line) between the inferred SP free energy landscapes of the middle panel (as the top

left panel of Fig.6 in the main paper). Black crosses: mismatches between the two sequences.
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FIG. S34: Comparison of 16S gene of bacteria B-F and B-S from the Box inference on aligned unzipping

force signals. Top panel: Pairing free energy with a sliding average over w = 10 base pairs, obtained from

the aligned sequences and the pairing parameters of Mfold at 150 mM NaCl. Middle panel: inferred Box free

energy landscape from the synthetic force signals after their alignment. Bottom panel: difference (turquoise

line) between the aligned free energy landscapes of B-F and B-S without any sliding average (w=1) and

difference ( black line) between the inferred Box free energy landscapes . Red crosses: mismatches between

the two sequences.
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FIG. S35: Comparison of the SP inferred free-energy landscape for bacterium N-A with the other bacteria in

the database. Total differences in free energies vs. number of mismatches (left) and vs. the true diferences

in free energies along the sequences (right), computed after pairwise alignments.
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