Supporting Material for

Switching of swimming modes in Magnetospirillium gryphiswaldense

M. Reufer¹, R. Besseling¹, J. Schwarz-Linek¹, V.A. Martinez¹, A.N. Morozov¹, J. Arlt¹, D. Trubitsyn², F.B. Ward², W. C. K. Poon¹

¹ SUPA and COSMIC, School of Physics & Astronomy, The University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, United Kingdom

² Institute of Cell Biology, The University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom

Supporting Figures

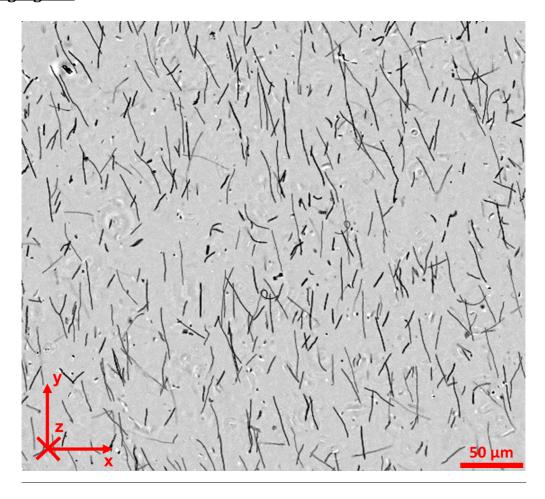


Figure S1: Superposition of images recorded during 1 s of M. gryphiswaldense swimming along the bottom of the observation chamber. Each line represents a single cell. The dots are non-motile cells. The horizontal and vertical magnetic field are 1.4 mT and 0.86 mT, respectively.

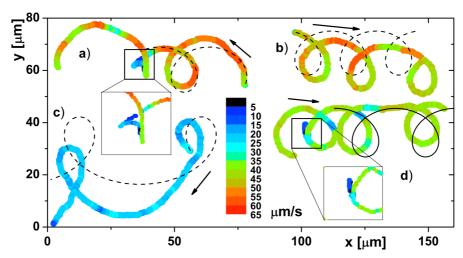


Figure S2: Trajectories of individual cells swimming in the indicated (arrow) direction in a horizontal field of $B_y = -1.5$ mT recorded under conditions summarized in Table S1. The color code corresponds to the absolute swimming speed. The dashed lines show the calculated trajectories with the best-fit parameters summarized in Table S1. Trajectory a) shows a cell swimming SS^{fast}, then reversing to NS^{slow} for a short stretch (see inset) before swimming again SS^{fast}. Note, that the averaging over 0.2 s to calculate the absolute swimming speed leads to the impression that the cell slows down before switching to the slower swimming speed. Trajectory b) shows a cell swimming SS^{fast}. Trajectory c) shows a cell swimming NS^{slow}. Trajectory d) shows a cell swimming SS^{fast}, then switching briefly to SS^{slow} that leads to an almost straight trajectory (see inset), then reversing to NS^{slow} to swim back to the first mode switching point and reversing again to continue a looped trajectory in SS^{fast} mode. Note that the sense of the curvatures of all the trajectories correspond to what Fig. 3 shows for straight swimmers.

	z position	B_z [mT]	р	ω [1/s]	v $[\mu \text{m/s}]$
Track a)	bottom	1.4	0.60	-7.1	53
Track b)	top	-1.4	-0.57	6.6	49
Track c)	bottom	-1.8	0.60	3.2	21
Track d)	top	-1.4	-0.65	5.1	40

Table S1: Recording parameters and best fit parameters for tracks shown in Fig. S2