
1 
 

Supporting Online Material for  

Promoter-mediated transcriptional dynamics 
Jiajun Zhang and Tianshou Zhou* 

School of Mathematics and Computational Science, Sun Yat-Sen University, 

Guangzhou 510275, P. R. China 

 

In this supplementary material, we first derive the analytical expression of 0a  used in 

the main text, then give some detailed processes for the derivation of analytical 

distributions in particular cases, and finally list some parameter values used in figures 

shown in the main text.  

 

A. Analytical expression of 0a  

Based on the iterative Eq. (16) with 0n =  in the main article and using the 

conservative condition for probability, we have the following algebraic equation 

0

0

1N =
=

u a
Aa 0

                                                           (A1) 

To give the analytical expressions of components of the vector 0a , we let kM  

represent an ( ) ( )1 1N N− × −  matrix, which is the minor one of the N N×  matrix A  

by crossing out the kth  row and kth  column of its entry kka . Denote by 

1 2 10, , , , Nα α α −− − −   the eigenvalues of matrix A  and by ( ) ( ) ( )
1 2 1, , ,k k k

Nβ β β −− − −

 
the 

eigenvalues of matrix kM . Note that −A  is an M-matrix, so the real part of each iα  

is positive. Therefore, with loss of generality, we assume 0iα > . With the similar 

reason, we also assume ( ) 0k
iβ > . In addition, we introduce two symbols  

( ) ( ) ( )1

1
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which are practically the characteristic polynomial of A  and kM , respectively. Now, 

we show  

( )
( )1

0
1

, 1
kN

k i

i i

a k N
β
α

−

=

= ≤ ≤∏                                                (A3) 

In fact, ( )det∗ = =AA A I 0  due to ( )det 0=A . In addition, as a consequence 

of Laplace's formula for the determinant of matrix A , we have 
( )

( )

1det

det N

 
 

= 
 
 

M
A 0

M
 , 

where ( ) ( ) ( )11

1
det 1 NN k

k ii
β−−

=
= − ∏M . Note that the null space of A  is of one dimension 

due to ( ) 1rank N= −A . Thus, combining 0 =Aa 0 , we know that 
( )

( )

1

0

det

det N

c
 
 

=  
 
 

M
a

M
 , 

where c  is a constant. The condition 0 1N =u a  gives ( )1
1 detN

kk
c

=
= ∑ M . A direct 

computation yields ( ) 1

10

N

i
i

df
d

µ

µ
α

µ

−

==

=∏A .  On the other hand, Jacobi's formula gives  
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I A M

The combination of both yields the equality ( )
1 1

1 1 1

N NN
k

i i
k i i

β α
− −

= = =

=∑∏ ∏ . Using this fact 

combined with the expressions of c  and ( )det kM , we immediately know that Eqn. 

(A3) holds. 

Finally, we point out that if matrix A  is symmetric, then the adjacency matrix 

( )*Nn −I A  is also symmetric for any n .  

 

B. Derivation of analytical distributions in particular cases 

Case 1 NµΛ = Ι  

    Such a case corresponds to a model of constitutive gene expression with the 

http://en.wikipedia.org/wiki/Laplace_expansion
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same transcription rate. Using the above symbols, we have n Nb = nu a  due to 

( )
1

N i
n ni

b a
=

= ∑ , and 1 1
1

n N n N nb
n n

µ
− −= =u a u aΛ . Thus, we obtain 1 !

n

n nb b
n n
µ µ

−= = . According 

to Eq. (1) in the main text, we compute and obtain  

( ) ( ) ( )1 1 ,   0,1, 2,
! !

k m
k m k m

k
k m k m

k k
P m b e m

m m k m
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− − −
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= − = − = =   

   
∑ ∑                  (B1) 

which is a Poisson distribution with characteristic parameter µ . Eqn. (B1) indicates 

that the mRNA distribution is independent of the pattern of transitions between 

activity states of the promoter. In other words, whatever transitions among activity 

states are, does the static mRNA obey the same Poisson distribution determined 

completely by the transcription rate. 

Case 2 ( )1

1
Nµ − 

  
 

0 0

0
Λ =  

Such a case corresponds to the gene model where the promoter has one ON and 

multiple OFFs. It follows from Eq. (16) in the main text that  

( ) ( ) ( ) ( ) ( ) ( )
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Using the expressions of ( )f nA  and ( )
NMf n , we can obtain 

( )
( )( )

( ) ( )
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                                     (B2) 

Furthermore, according to 1
1

n N nb
n −= u aΛ , we compute and obtain 
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Furthermore, combined with ( )
( )1

1
0 1

1

a
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N
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−

=
−

=

= ∏
∏

, Eq. (B3) implies that the total static 

generating function is  
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                                         (B4) 

Again according to Eq. (1) in the main text, we compute and obtain 
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Using Eq. (A3), we obtain the analytical expression of mRNA distribution as 

( )
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              (B5) 

where 1

1

, ,
;

, ,
n

n n
n

a a
F

b b
σ

 
 
 





 is a confluent hypergeometric function (1). 

It is worth being pointed out that if 2N =  that corresponds to the common 

ON-OFF model, then Eqn. (B5) can reproduce the result obtained previously (2,3). 

That is, 

( )
( )( )

( )
( )
( )

( )2 2
1 1 1

1 1
1 1 1

; ,   0,1, 2,
!

m m mP m F m
m m m

β αµ β µ
α β α

Γ +  Γ +
= − =  Γ + Γ + 

                      (B6) 

where 1 12 21+α λ λ= , ( )1
1 12β λ= , ( )2

1 21β λ=  

Case 3 ( )1

0
Nµ − 

  
 

I 0

0
Λ =  

Such a case corresponds to the gene model where the promoter has ( )1N −  

active states with the same transcription rate. Correspondingly, Eq. (11) at steady 
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state in the main article becomes 

1, 1,

1 1

1 1
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                         (B7) 

One will see that solving Eq. (B7) can become Case 2. In fact, the transformations 

s
i iG e Fµ=  (1 i N≤ ≤ ) will transform Eq. (B7) into 

1, 1,

1 1

1 1

0, 1, 2, , 1

0
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i
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                              (B8) 

with sτ = − , which is nothing but the gene model with one ON with the transcription 

rate µ  and ( )1N − OFFs. According to discussion in Case 2, we have  

( )
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Note that ( ) ( ) ( )
( ) ( )

( )1 1 1
1 1

1 1

, , ; 1
, ,
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. Therefore, using the 

relationship between probability distribution and generating function, we have 
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            (B10) 

 

C. The parameter values used in computation in Fig. 1 

(A) 
0.2 1 1
0.1 1.1 0.1
0.1 0.1 1.1

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ;  

(B) 
2 0.1 0.1

1 1.1 0.1
1 1 0.2

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 
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(C) 
0.3 0.1 0.1

0.2 1.1 0.1
0.1 1 0.2

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 

(D) 
2 0.02 0.02

1 0.12 0.1
1 0.1 0.12

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 

(E) 
0.2 0.02 0.02
0.1 0.12 0.1
0.1 0.1 0.12

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 

(F) 
0.09 0.02 0.02

0.04 0.07 0.04
0.05 0.05 0.06

A
− 
 = − 
 − 

, ( )5,20,45µ = , 1δ = . 

D. The parameter values used in computation in Fig. 2 

(A)(C) 
4 0.2 0.2

2 0.6 0.2
2 0.4 0.4

A
− 
 = − 
 − 

, ( )0,10,90µ = , 1δ = ; 

(B)(D) 

4 4
4 4

4 4
4 4

4 4
4 4

4 4
4 4

4 0.08
4 0.08

A

− 
 − 
 −
 

− 
 −
 =

− 
 − 
 −
 − 
 − 

, ( )0,0,0,0,0,0,0,0,0,90µ = ,

1δ = . 
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