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Promoter-mediated Transcriptional Dynamics
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ABSTRACT Genes in eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a va-
riety of transcription factors, but how promoter dynamics affect transcriptional dynamics has remained poorly understood. In this
study, we analyze gene models at the transcriptional regulation level, which incorporate the complexity of promoter structure
(PS) defined as transcriptional exits (i.e., ON states of the promoter) and the transition pattern (described by a matrix consisting
of transition rates among promoter activity states). We show that multiple exits of transcription are the essential origin of gener-
ating multimodal distributions of mRNA, but promoters with the same transition pattern can lead to multimodality of different
modes, depending on the regulation of transcriptional factors. In turn, for similar mRNA distributions in the models, the mean
ON or OFF time distributions may exhibit different characteristics, thus providing the supplemental information on PS. In addi-
tion, we demonstrate that the transcriptional noise can be characterized by a nonlinear function of mean ON and OFF times.
These results not only reveal essential characteristics of promoter-mediated transcriptional dynamics but also provide signa-
tures useful for inferring PS based on characteristics of transcriptional outputs.
INTRODUCTION
Gene expression involves transcription, translation,
chromatin remodeling, histone modifications, alternative
splicing, and recruitment of transcription factors (TFs),
and polymerases. These biochemical processes inevitably
lead to stochastic fluctuations (or the noise) in expression
levels (1–4). This noise is essential for many cellular func-
tions (5,6) and has been identified as a key factor underlying
the observed phenotypic variability of genetically identical
cells in homogeneous environments (7). Although recent
advances in experimental methods allow direct observations
of real-time fluctuations in gene expression levels in individ-
ual live cells (8–12), there is considerable interest in theoret-
ically understanding how different molecular mechanisms
of gene expression affect variations in mRNA and protein
levels across a population of cells. Quantifying the contribu-
tions of different sources of noise using stochastic models of
gene expression is an important step toward understanding
fundamental cellular processes and variations in cell popu-
lations (13–30).

Transcription is a key step during gene expression, where
the transcription machinery is responsible for transcribing
DNA to RNA and initiating mRNA transcripts (31).
Biochemical processes associated with transcription often
involve a variety of TFs, which bind to multiple sites on
regulatory DNA in response to intracellular or extracellular
signals. When bound to these sites, the TFs either inhibit or
enhance transcription through interactions with RNA poly-
merase and other TFs. Most regulatory sequences called
as ‘‘promoters’’ contain several operator sequences, each
of which is often recognized with different affinities by
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more than one type of TF. For bacterial cells, the promoters
that are viewed as simple can exist in a surprisingly large
number of regulatory states. For example, the PRM
promoter of phage lambda in E. coli is regulated by two
different TFs binding to two sets of three operators that
can be brought together by looping out the intervening
DNA. As a result, the number of regulatory states of the
PRM promoter is 128 (32). In contrast, eukaryotic
promoters are more complex, involving nucleosomes
competing with or being removed by TFs (33). In addition
to the conventional regulation by TFs, the eukaryotic
promoters can be also epigenetically regulated via histone
modifications (34–36). Such regulation may lead to very
complex promoter structure (PS) (37). To help readers
understand how a PS is formed, we simply introduce three
molecular mechanisms (38): 1) nucleosome occupancy
that promoter-DNA condensation into chromatin may lead
to long-lived, silenced or OFF, promoter states, which are
followed by rapid, short-lived initiation events; 2) TATA
box that activates the promoter by helping assemble the
pre-initiation complex; 3) TF binding sites for which the
molecular mechanism has not been well understood.

Transcription takes place often in a bursting manner.
Single-cell experimental measurements have provided
evidence for transcriptional bursting both in bacteria (8)
and in eukaryotic cells (9,39). Although the sources of the
transcriptional burst remain poorly understood (40), several
lines of evidence (3,4,10,11,41–45) point to transitions
among the ON and OFF states of the promoter as an impor-
tant source of noise in gene expression, which is responsible
for generating cell-to-cell heterogeneity in the response of
genetically identical cells to the same stimulus. Complex
promoters with more than two activity states are not the
exception but the rule as combinatorial control of gene
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regulation by multiple TFs is widespread (46). In two
relevant studies, an experiment in yeast cells demonstrated
that high levels of cell-to-cell variability, originated by pro-
moter state fluctuations, may confer cell colonies with an
enhanced probability of cell survival when subjected to
external stress (47); another experiment showed that a stable
transcription scaffold that regulates the rate of transitions
between ON and OFF states of the promoter can result in
‘‘bursts’’ of gene expression beneficial to increasing cell-
to-cell variability (5). In particular, all three of the molecular
mechanisms (described above) for the formation of PS can
lead to transcriptional bursting. In fact, rapid, short-lived
initiation events taking place in nucleosome occupancy
can lead to bursting synthesis of mRNA (4); in the TATA
box case, it was experimentally demonstrated that mutations
that weaken the strength of the TATA box of the PHO5 gene
in yeast cells result in a reduction in gene expression noise
(4); in the case of TF binding sites, experiments have shown
that the number of binding sites for TFs can significantly
affect the gene expression noise (10,48).

Given the complexity of most PSs, quantitative models
play an important role in testing molecular mechanisms
of transcriptional regulation, helping to connect these
biochemical models of transcription with experimental
measurements of gene expression in vivo (26). Thus far,
many theoretical models have been developed. A class of
gene models developed in response to bulk experiments
focused on computing the steady-state occupancies of
different operators by TFs (49,50) and can be used to well
predict the equilibrium probability of each promoter state
and therefore the average transcriptional output. These
models, although very useful for computing average gene
expression levels at steady state, have nothing to say about
the dynamics of gene regulation, that is, which promoter
states are kinetically connected, and how often the promoter
makes transitions from one state to another. To address these
questions, another class of gene models have been also
developed during the past decade (24,25,41,51–55), which
are specifically tailored to tackle transcription from
arbitrarily complex promoters at the single-cell level. In
particular, for analytically solvable gene models such
as the common ON-OFF model (14,17,19,22,56–58),
and multi-OFF models (also called as gene models of
promoter progression (59,60), which are often used to
model DNA looping), the mechanisms of transcriptional
dynamics have been basically revealed from the analytical
distributions available in these models (26). However,
for multi-ON gene models for which we can find their
prototypes in natural and synthetic systems (48), how
promoter dynamics affect transcriptional dynamics remain
poorly understood, although an experiment combined
with model analysis showed that a TF can result in bursty
expression, enabling rapid individual cell responses in
the transient and increased cell-cell variability at steady
state (47).
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A related yet interesting question is how multimodality
is generated in gene models. As is well known, bimodal
or multimodal gene expression (i.e., the mRNA or protein
distribution exhibits two or multiple peaks) is a cause of
phenotypic diversity in genetically identical cell popula-
tions, and it is critical for population survival in a fluctuating
environment (61,62). In some instances, the effect of noise
can be amplified by the presence of multistability in a
genetic network, thus leading to multiple phenotypes coex-
isting in a cell population. Individual cells can make transi-
tions between those phenotypes driven by fluctuations in the
expression of certain key genes in the network, so as to
better adapt them to changes in environments. Given this
importance, studying the mechanism of generating multi-
modality including bimodality is of biological significance.

In this study, we investigate a general gene model, which
incorporates the complexity of PS, e.g., multiple ON states.
By analysis and simulation, we find that unlike the multi-
OFF mechanism (i.e., the promoter has more than one OFF
states but only oneONstate) that can lead to atmost twopeaks
in the mRNA distribution, the multi-ONmechanism (i.e., the
promoter has multiple ON states) can lead to mRNA multi-
modal distributions with different modes depending on tran-
sition and transcription rates, implying that multiple exits of
transcription are the essential source of multimodality.
Similar mRNA distributions do not necessarily imply that
the average ON andOFF time distributions have similar char-
acteristics; the PS can tune the mRNA noise in a nonlinear
manner where the nonlinearity depends mainly on the tran-
scriptional rates. These results not only uncover essential
characteristics of promoter-mediated transcriptional dy-
namics but also provide signatures useful for inferring PS
based on characteristics of transcriptional outputs.
RESULTS

Multiple exits of transcription are the essential
mechanism of generating multimodality

In spite of the complex nature of multistate gene models, one
can learn many things from the corresponding master equa-
tions. For instance, we used a master equation for the mRNA
probability density ever function to show whether multi-
modality (i.e., distributions with three or more modes) can
emerge in a gene model of multiple OFF states; we did not
find it in parameter regimes under our investigation but
found that the region of parameter space (defined by the ki-
netic rates between promoter states) for which bimodality is
observed can be made smaller by having multiple promoter
states (59). In particular, slow transitions between promoter
states, which can lead to a bimodal mRNA distribution in the
common two-state gene model, can result in a unimodal
mRNA distribution when the number of promoter states is
larger than two. This might explain why bimodal protein dis-
tributions appear to be rare in nature. In addition, we also
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found slight differences in shape between the mRNA distri-
bution generated by multistate promoters and the one gener-
ated by two-state promoters, e.g., the former is flatter than
the latter. However, we did not find that multimodality can
emerge in a genemodel where the promoter has one ON state
and multiple OFF states that together constitute a loop.
These imply that the multi-OFF mechanism is not the main
source of generating multimodality including bimodality.

To clearly show how bimodality or multimodality is
generated because of PS, we consider only a simple gene
model, where the promoter comprises three activity states
that may be either ON or OFF but form a loop. The time-
dependent distribution of the mRNA number, denoted by
Pðm; tÞ, can be computed according to the following:

Pðm; tÞ ¼
XN
n¼m

ð�1Þn�m

�
n
m

�
bnðtÞ (1)

where

�
n
�

is the combinatorial number of choosing m

m

from n; bn represent binomial moments, seeing the Model
and Method section for their computation. The numerical
simulation has verified that the results obtained by Eq. 1
are in good accord with those obtained by the Gillespie
algorithm (63) after the time is sufficiently large (data are
not shown). Therefore, we may consider steady-state distri-
butions only. In the Supporting Material, we derive analyt-
ical distributions in gene models with specific PS, which
include all the distributions in the existing literature as
their particular cases. Interestingly, we find that if all the
promoter states are ON with the same transcriptional rate,
then mRNA follows a Poisson distribution, independently
of PS; in other cases, the mRNA distributions can be in gen-
eral expressed as an algebraic sum of confluent hypergeo-
metric functions. These results themselves are interesting
facts, not shown in previous references.
A

D E F

B C
By numerical simulation, we find that the presence of
bimodality or multimodality is mainly because of multiple
exits of transcription. Moreover, we find that modes of
multimodal distribution depend on the transition rates
and the transition pattern among promoter activity states.
Fig. 1 shows a related example where the promoter com-
prises several activity states that together form a loop.
This gene model can demonstrate six modes of the mRNA
distribution, including one peak close to zero, one nonzero
peak (hereafter by nonzero peak we mean that the mRNA
number corresponding to the peak is an integer of more
than one), the combination of the former two, two nonzero
peaks, both one peak close to zero and two nonzero peaks,
and three nonzero peaks. We observe that the mRNA distri-
bution may exhibit one peak of two different shapes, two
peaks of two different shapes, and three peaks with one
peak close to zero, depending on transition rates. However,
the mRNA distribution in this model cannot exhibit three
nonzero peaks as observed in the gene model with three
exits of transcription (comparing two distributions indicated
by red in the second row of Fig. 1). In other words, the
mRNA distribution in models of two ON states exhibits at
most two nonzero peaks. The similar conclusion also holds
for other similar gene models. All these imply that the multi-
ON mechanism is the essential cause of generating multi-
modality including bimodality.
Mean waiting time distributions exhibit different
characteristics albeit similar mRNA distributions

Experiments that reveal the dynamics of transcription initia-
tion at promoters can reveal molecular mechanisms of
transcription regulation (64). Several such experiments,
where the synthesis of newmRNAmolecules was visualized
in live cells using single-molecule resolution technology,
have been carried out in bacteria or eukaryotic cells
FIGURE 1 Numerical steady-state multimodal

distributions of different modes in gene models

with the same transition pattern between promoter

activity states. The inactive state is denoted by

orange whereas active states by green; thick arrows

represent large transition rates whereas thin arrows

represent small transition rates; large circles cor-

respond to large transcription rates where small

circles to small transcription rates. The two distri-

butions indicated by the red imply that multiple

exits of transcription are the essential source of

generating multimodal distributions. The param-

eter values used in the computation are found in

the Supporting Material. To see this figure in color,

go online.
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(8,9,39), demonstrating that transcription occurs in a burst
fashion. In these experiments, the spatial distribution of poly-
merases along a gene may bear the fingerprint of the time
series of transcription initiation events, which is in turn deter-
mined by promoter dynamics. In response to experiments
that probe transcription dynamics in single cells, in this study
we consider how regulatory architecture modifies the pro-
bability distribution of mean waiting times between tran-
scription initiation events. These times are experimentally
testable. Here the goal is to provide experimental signatures
predicted by theory that are capable of distinguishing be-
tween different mechanisms of transcriptional regulation.

First, we give the analytical results. Consider a gene
model with the transition matrix among promoter activity

states, denoted by A ¼
�
A00 A10

A01 A11

�
, where A00 describes

the internal transitions between OFF states and the transi-
tions from some ON states to OFF states; A10 and A01

describe transitions from ON to OFF states and from OFF
to ON states, respectively; and A11 describes the internal
transitions between ON states and the transitions from
some OFF states to ON states. Then, the distribution func-
tions for the mean ON and OFF times are computed
according to the following formulae:

foff ðtÞ ¼ uLA01 expðA00tÞA10u
T
L; fonðtÞ

¼ uKA10 expðA11tÞA01u
T
K (2)

and, the mean waiting times at OFF and ON states are given
by the following:

htOFFi ¼ 1

uLA10u
T
L

uLA01ðA00Þ�2
A10u

T
L ; htONi

¼ 1

uKA01u
T
K

uKA10ðA11Þ�2
A01u

T
K (3)
BA

DC

ττ
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where the row vectors uL ¼ ð1; 1;/; 1Þ and
uK ¼ ð1; 1;/; 1Þ with L and K being the order of A00 and
A11, respectively. See the Model and Method section for
their derivation. The above formulae indicate that mean
ON and OFF time distributions as well as mean ON and
OFF times are easily computed as long as the transition
matrix A is determined. For example, for a gene model
where the promoter has two ON states and one OFF state
that together constitute a loop, we have the following:

�
toff

� ¼ 1

�a11
; htoni ¼ 1

�a11

c2 þ c3
c1

(4)

where ci is the algebraic complement of the diagonal
element aii of the transition matrix A ði ¼ 1; 2; 3Þ.

Then, we perform numerical simulation. Consider two
gene models with different PSs (see insets in Fig. 2 A
and B) . We observe that two mRNA distributions exhibit
the similar bimodal shape with two nontrivial peaks (the
bimodality in Fig. 2 A is generated because of two distinct
transcription exits whereas the one of two peaks in Fig. 2
B, which is closed to the y axis, is generated because of
the cumulating effect of multiple inactive states and the
other peak results from the transcription exit), but the
mean ON and OFF times display different characteristics.
Specifically, for the model in Fig. 2 A, the peak for the
mean OFF time is close to zero whereas for the model in
Fig. 2 B, the peak for the mean OFF time is away from
zero (i.e., nontrivial peak); the mean ON time distributions
exhibit different shapes for the time close to zero. Moreover,
the time series of the ON states display different dynamical
behaviors (compare the insets of Fig. 2 A and B).

The above results indicate that on the one hand, the PS
determines the mean ON and OFF times and their distribu-
tions; on the other hand, the characteristics of mean ON and
FIGURE 2 Two mRNA number distributions

(A, B) look similar, but ON and OFF time distribu-

tions (C, D) exhibit different characteristics. In (C)

and (D), the red lines correspond to ON whereas

the blue lines to OFF. The insets show the time

series of mRNAs and describe the time change of

ON (red) and OFF states (green). The meaning of

symbols in the inset of (A) and (B) is the same as

in Fig. 1. The parameter values used in the compu-

tation are found in the Supporting Material. To see

this figure in color, go online.
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OFF time distributions or those of the time series of ON and
OFF states or both can provide the additional information on
PS, thus enabling a remedy when the characteristics of
mRNA distributions are insufficient to infer the PS.
Mean ON and OFF times together can
characterize the transcriptional noise

For a gene model, the mRNA noise has two origins: one
from the promoter fluctuations (called as the promoter
noise) attributable to stochastic transitions among promoter
activity states, and the other from stochastic synthesis and
degradation of mRNA. The former is called the mRNA
external noise whereas the latter the mRNA internal noise.
The noise of the two kinds would together contribute to
the generation of cell-to-cell variability.

For a multistate gene model, the mRNA internal noise is
easy to describe since it can be characterized by the inverse
of the mean mRNA number under our assumption. In
contrast, describing the mRNA external noise is more diffi-
cult because of the complex PS. Therefore, we will focus on
the promoter noise in the following.

Note that for the common ON-OFF model, the formula
for computing the mRNA noise intensity, denoted by hm,
is the following:

h2
m ¼ 1

hmi þ
�
toff

�2
htoni þ

�
toff

�þ htoni
�
toff

� (5)

where the first term on the right side of Eq. 5 represents the
internal noise of mRNA from transcription, which is the
inverse of the mRNA mean; the second term describes
the promoter noise, denoted by h2promoter, which is a
nonlinear function of mean ON and OFF times, denoted
by Fðhtoni; htoff iÞ. In the Model and Method section, we
show that for any gene model, the intensity of the noise in
mRNA can be computed according to the following:

h2
m ¼ 1

b1
þ 2b2 � b21

b21
(6)

where b1 and b2 represent the first- and second-order bino-
mial moments, respectively. Note that b1 is the mRNAmean
hmi. Therefore, in analog to Eq. 5, it is reasonable to adopt
the following formula to compute the intensity of the pro-
moter noise:

h2
promoter ¼ 2b2 � b21

b21
(7)

According to the Model and Method section, this formula
indicates that the promoter noise depends not only on tran-
sition matrix among promoter activity states but also on the
transcription matrix since b1 and b2 depends on transition
and transcription rates except in particular cases, e.g., all
the transcription rates are precisely the same.

For example, consider the gene model studied in the pre-
vious subsection, i.e., the one where the promoter has two
ON states and one OFF state. We can show the following:

b1 ¼
�
toff

�
htoni þ

�
toff

�
�
m1

c2
c1

þ m2

c3
c1

�
(8)

1

b2 ¼

2 detðI� AÞðc1 þ c2 þ c3Þh
c2m

2
1A

ð1Þ
22 þ m1m2

�
c2A

ð1Þ
23 þ c3A

ð1Þ
32

�
þ c3m

2
2A

ð1Þ
33

i (9)

where A
ð1Þ
ij are elements of the transposed matrix ðI� AÞT ,

i; j ¼ 2; 3. See the next section for their derivation. There-
fore, h2promoter depends in general on transcription rates m1

and m2 unless m1 ¼ m2. Note that Eqs. 4, 8, and 9 are easily
extended to the case that the promoter has one OFF and mul-
tiple ON states that together form a loop or one ON and mul-
tiple OFF states that together constitute a loop as well.

Next, we perform numerical analysis for the promoter
noise. Fig. 3 plots the dependence of the promoter noise in-
tensity ðh2Þ computed by Eq. 7 in combination with Eqs. 8
and 9 on the referred quantity Fðhtoni; htoff iÞ with Eq. 4. In
this figure, different symbols correspond to different PSs
whereas the same symbols correspond to different transition
patterns with the fixed promoter state number and the fixed
transcription rates. More precisely, for a fixed PS and tran-
scription rates, we have different dependences of h2 on
FðtON; tOFFÞ as the transition rates are randomly changed.

We observe that the differences among transcription rates
have important influences on the deviation of the indicated
symbols from the line with the slope equal to 1. Specifically,
if all the promoter states are ON and all the transcription
rates are precisely the same, then there is no promoter noise.
In fact, in this case we can show that the corresponding
mRNA number follows a Poisson distribution with the char-
acteristic parameter being the common transcription rate,
which is independent of the PS (see the Supporting Mate-
rial). If a part of promoter states are ON and all the corre-
sponding transcription rates are precisely the same, then
the dependence of h2 on FðtON; tOFFÞ is basically orientated
on this slope, depending on transition rates regardless of the
transition pattern among promoter activity states. This case
implies that Eq. 7 can be used to quantify the promoter noise
whose level is determined completely by the mean ON and
OFF times. In other cases, we find that the larger the differ-
ences among transcription rates are because of, e.g., the
regulation of TFs, the greater is the deviation of the indi-
cated symbols from the line with the slope equal to 1,
implying that the Eq. 7 cannot be used to approximate the
promoter noise intensity. Such a nonlinear relationship can
provide useful information on PS.
Biophysical Journal 106(2) 479–488



FIGURE 3 As an example of promoter structure,

if all the transcription rates are precisely the same,

then log10ðh2Þ vs. log10 FðtON ; tOFFÞ is located on

a line and will deviate from the line otherwise.

Here the abscissa represents the logarithm of the

quantity FðtON ; tOFFÞ computed according to

Eq. 5, whereas the y axis represents the logarithm

of the square of the promoter noise intensities

computed by Eq. 7. Different symbols correspond

to different promoter structures, whereas the

same symbols correspond to different transition

patterns with a fixed promoter state number and

fixed transcription rates. The inset corresponds to

the case without the logarithm. To see this figure

in color, go online.
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In other words, the promoter noise and also the mRNA
noise depend in general on the transition pattern among
the promoter activity states as well as the transcription exits;
the mean ON and OFF times that are experimentally
measurable can be used to characterize the promoter noise
and the mRNA noise, thus providing signatures useful for
inferring PS.
MODEL AND METHOD

For the convenience of applications, in this section we consider a general

gene model where the promoter has several ON and OFF states among

which transitions may exist, and we give general formulae for computing

steady-state mRNA distributions, mean waiting times, and waiting time

distributions. These formulas are very useful and contain previous results

obtained in simple gene models (e.g., the common ON-OFF model

(14,17,19,22,56–58) and gene models of promoter-progression (25,26))

as their particular cases.
Model description

Assume that the promoter has N states, L states of which are active

(denoted by Ai) and the other K ¼ N � L are inactive (denoted by Ij).
Let matrices A11 and A00 describe transitions among the active states and

among the inactive states, respectively. The matrix A10 describes how the

active states transition to the inactive states, and similarly for matrix A01.

These matrices, called as the transition matrices, together describe the PS

partially. Denote by m, the number of mRNA molecules, and let PkðmÞ
represent the distribution that mRNA has m molecules at state-k of the pro-

moter and let P ¼ ðP1;/;PNÞT represent the column vector. Denote by lij,

the transition rate from state-j to state-i (lij ¼ 0 means that no transition

occurs), the size of which may be regulated by TFs. Denote by A ¼ ðlijÞ,
the N � N transition matrix, which consist of four block matrices A11,

A00, A10, and A01; and let L ¼ diagðm1;/;mNÞ describe the exits of tran-
scription (called transcription matrix) with mi representing the transcription

rate of mRNA in state-i (mi ¼ 0 means that no transcription takes place).

Two matrices A and L together describe the PS completely. Then, the

biochemical master equation describing mRNA dynamics takes the

following form:
Biophysical Journal 106(2) 479–488
dPðm; tÞ
dt

¼ APðm; tÞDdðE� IÞ½mPðm; tÞ�
þL

�
E�1 � I

	½Pðm; tÞ�
(10)

where E and E�1 are shift operators, and I is the identity operator. Clearly,

the first term in Eq. 10 describes dynamics of the promoter with the transi-

tion matrix A that is actually an M-matrix (since the sum of every column

elements is equal to zero); the second term describes the degradation dy-

namics of mRNA with the degradation matrix d that is a diagonal matrix

(throughout this paper, we consider only the same degradation rate for

simplicity, and denote it as d); and the third term describes the exits of tran-

scription with the transcription matrix L. We point out that the model in

Eq. 10 includes all previously studied mRNA expression models as its

particular cases.
Computation of mRNA distributions

To solve Eq. 10, we introduce probability-generating functions of

the vector form G ¼ ðG1;/;GNÞT with every component Gkðz; tÞ ¼P
mR0z

mPkðm; tÞ for the distributions of the vector form Pðm; tÞ. Then,
from Eq. 10, we can derive the following linear system of partial differential

equations:

v

vt
G ¼ AG� s

v

vs
Gþ sLG (11)

where s ¼ z� 1 is taken as a new variable, and all the system parameters

are rescaled by d. Note that Eq. 11 is an equivalent version of the biochem-
ical master equation in Eq. 10 because of the relationship between the prob-

ability distribution and the generating function. This equivalence can help

us find solutions to Eq. 11. Now, we expand every generating function as

GkðsÞ ¼
PN

n¼0a
ðkÞ
n sn. Then, we can show the following:

a
ðiÞ
k ðtÞ ¼

X
mRk

�
m
k

�
Piðm; tÞ (12)

where

�
m
k

�
represents the common binomial coefficient. Therefore, the
fixed i,a
ðiÞ
k ðtÞ are called as binomial moments (65,66) corresponding to

the probability Piðm; tÞ. In particular, bk ¼
PN

i¼1a
ðiÞ
k are the total binomial



Systems biophysics 485
moments corresponding to the total probability P ¼ PN
i¼1Pi. Note that

b0 ¼ 1 because of the conservative condition
PN

m¼0PðmÞ ¼ 1. Denote

an ¼ ðað1Þn ; að2Þn ;/; aðNÞn ÞT . Then, from Eq. 11 we attain the following:

d

dt
an ¼ �ðnI� AÞan þLan�1 (13)

which is a linear ordinary differential equation that is easily solved. Once all

a
ðiÞ
k ðtÞ are given, then the distribution Piðm; tÞ is computed according to the

following:

Piðm; tÞ ¼
X
kRm

ð�1Þk�m

�
k
m

�
a
ðiÞ
k ðtÞ (14)

In particular, we can give analytical results at steady state. In fact, if we

denote the total steady-state generating function GðsÞ ¼ PN
k¼1GkðsÞ with

Gð0Þ ¼ 1 and Taylor expand GðsÞ ¼ PN
n¼0bns

n, then it is not difficult to

show m1G1ðsÞ þ/þ mNGNðsÞ ¼ G
0 ðsÞ since A is an M-matrix. We find

that bn takes the following form:

bn ¼ 1

n

XN

i¼ 1
mia

ðiÞ
n�1 ¼ 1

n
uNLan�1 (15)

which is useful for deriving analytical distributions, where

uN ¼ ð1; 1;/; 1Þ is a row vector and an ¼ ðað1Þn ; að2Þn ;/; aðNÞn ÞT is a column

vector. Substituting the expansions of GkðsÞ into Eq. 11 at steady state, we

see that the vector an satisfies the following algebraic equations:

ðnI� AÞan ¼ Lan�1; n ¼ 1; 2;/ (16)

where a0 can be analytically given (see the Supporting Material). When Eq.

16 is combined with Eq. 15, then bn can be formally expressed as the

following:

bn ¼ 1

n!
Qn

k¼ 1detðkI� AÞ uN

Y1
k¼ n

½ðkI� AÞ�L� a0;

n ¼ 1; 2;/

(17)

where ðkI� AÞ� and detðkI� AÞ are the adjacency matrix and the determi-

nant of matrix ðkI� AÞ, respectively; a0 is given in the Supporting Mate-

rial. Such a formal expression of bn does not impose any condition on

the transition matrix A and the transcription matrix L.

Equation 17 indicates that Eq. 11 at steady state is solvable. Furthermore,

Eq. 10 at steady state is also solvable. In some cases, the steady-state dis-

tributions can be expressed by confluent hypergeometric functions (67–

70). Refer to the Supporting Material. In any case, PðmÞ can be approxi-

mately computed up to a desired accuracy because bn/0 as n/N (65).

We point out that such a binomial moment method can be generalized to

the stochastic analysis of any reaction networks. The details will be pub-

lished elsewhere.
Computation of waiting time distributions and
mean waiting times

Given a transition matrix A that is expressed as a block matrix of the form�
A00 A10

A01 A11

�
, where A00, A11, A10 and A01 are the K � K, L� L, K � L

and L� K matrix, respectively, we derive the waiting-time distribution

functions for ON and OFF states. Assume that the promoter states begin

to transition from OFF (ON) to ON (OFF) at time t ¼ 0, and we define

Q
ð1Þ
i ðtÞ ði ¼ 1;/;LÞ and Q

ð0Þ
k ðtÞ ðk ¼ 1;/;KÞ as the subsequent ‘‘sur-

vival’’ probability that the promoter is still at the ith ON and at the kth
OFF state at the time t ¼ t>0, respectively. Then, the master equations

for Q
ð0Þ
i ðtÞ and Q

ð1Þ
i ðtÞ take the following form:

dQð0ÞðtÞ
dt

¼ A00Q
ð0ÞðtÞ

dQð1ÞðtÞ
dt

¼ A11Q
ð1ÞðtÞ

(18)

respectively, where Qð0ÞðtÞ ¼ ðQð0Þ
1 ðtÞ;/;Q

ð0Þ
K ðtÞÞT, Qð1ÞðtÞ ¼

ðQð1ÞðtÞ;/;Q
ð1ÞðtÞÞT. The solution to Eq. 18 can be expressed as the
1 L

following:

Qð0ÞðtÞ ¼ expðA00tÞQð0Þð0Þ
Qð1ÞðtÞ ¼ expðA11tÞQð1Þð0Þ (19)

Thus, for two given sets of initial survival probabilities

fQð0Þ
1 ð0Þ;/;Q

ð0Þ
K ð0Þg and fQð1Þ

1 ð0Þ;/;Q
ð1Þ
L ð0Þg, the distribution functions
for the dwell times t at the OFF and ON states are given by the following:

~f off ðtÞ ¼ uLA01Q
ð0ÞðtÞ ¼ uLA01 expðA00tÞQð0Þð0Þ

~f onðtÞ ¼ uKA10Q
ð1ÞðtÞ ¼ uKA10 expðA11tÞQð1Þð0Þ (20)

From Eq. 20, we can see that each of two distribution functions is in general

a linear combination of exponential functions of the form eljt , so the result
is an extension of that found in previous studies (71–73). Furthermore, the

mean OFF and ON times can be computed by substituting ~f off ðtÞ;~f onðtÞ
into the general expression hti ¼ RN

0
tf ðtÞdt, which attains the following:

h~tOFFi ¼ RN

0
tuLA01 expðA00tÞQð0Þð0Þdt

¼ uLA01ðA00Þ�2
Qð0Þð0Þ

h~tONi ¼ RN

0
tuKA10 expðA11tÞQð1Þð0Þdt

¼ uKA10ðA11Þ�2
Qð1Þð0Þ

(21)

However, Eq. 21 is not the resulting mean waiting times at OFF and

ON states since the initial survival probabilities Qð0ÞðtÞ and Qð1ÞðtÞ
depend on the transition pattern among ON and OFF states. For a given

PS, to obtain the total OFF and ON dwell times, we have to average

h~tOFFi or h~tONi over all such ON states that transition to OFF states or

over all such OFF states that transition to ON states. For example, to

compute the resulting fonðtÞ, one should choose Q
ð1jÞ
i ð0Þ ¼

ðPL
l¼1a

ð0/1Þ
il =

PK
k¼1

PL
l¼1a

ð0/1Þ
kl Þdij ðj; i ¼ 1;/;KÞ as the initial condi-

tions, where dij is the Kronecker delta; and for clarity and convenience,

we let a
ð0/1Þ
ik represent the transition rate from the kth OFF state to the

ith ON state (similarly, a
ð1/0Þ
ik , a

ð0/0Þ
ik , and a

ð1/1Þ
ik ). The resulting distribu-

tion functions for the mean ON and OFF times are computed according to

the following:

foff ðtÞ ¼ uLA01 expðA00tÞA10u
T
L

fonðtÞ ¼ uKA10 expðA11tÞA01u
T
K

(22)

whereas the resulting mean dwell times at OFF and ON states are given by

the following:
htOFFi ¼ 1

uLA10u
T
L

uLA01ðA00Þ�2
A10u

T
L

htONi ¼ 1

uKA01u
T
K

uKA10ðA11Þ�2
A01u

T
K

(23)

CONCLUSIONS AND DISCUSSIONS

Transcription is a complex biochemical process, involving
recruitment of TFs and DNA polymerases, chromatin
Biophysical Journal 106(2) 479–488
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remodeling, and a sequence of transitions between activity
states of the promoter. Previous studies have shown that
transcription occur either as pulsatile bursts or as Poisson-
like accumulations, but how promoter dynamics quantita-
tively and qualitatively affect transcriptional dynamics
remains to be fully explored. In this study, we have analyzed
gene models that corporate the complexity of PS, focusing
on the effects of the multi-ON mechanism on transcriptional
dynamics. We have shown that multiple exits of transcrip-
tion are the essential source of generating multimodal
mRNA distributions (Fig. 1). In addition, we have demon-
strated that in the (log F,h2) plane, the larger the differences
among transcription rates are, the higher is the nonlinearity
describing the dependence of the transcriptional noise on PS
(Fig. 3). These qualitative characteristics that still hold
in more complex gene models reveal the essential mecha-
nism of how promoter dynamics affect transcriptional
dynamics.

In a previous study (59), we demonstrated that slow tran-
sitions between promoter states that can lead to a bimodal
distribution of the mRNA copy number as observed in the
two-state promoter model can also result in a unimodal dis-
tribution when the number of promoter states is larger than
two. In this study, we have shown that multiple exits of tran-
scription can lead to multimodal mRNA distributions, but
there are exceptions, e.g., when all the promoter states are
ON with the same transcription rate, which result in a Pois-
son distribution independent of PS. A more careful investi-
gation of this issue would clarify whether distributions from
multistate promoters can be clearly distinguished from those
produced by two-state ON/OFF promoters, and how many
events would be needed to see the difference in the experi-
mental data. If it were found that two-state and multistate
promoters cannot be clearly distinguished by virtue of the
distribution, it would call into the question of how seriously
we should take the fitting parameters extracted from fitting
experimental distributions of mRNA numbers. We would
like to point out that our model cannot exhibit bistability
in the deterministic case but can exhibit stochastic multimo-
dality including bistability in the stochastic case according
to the definition in a previous study (74).

For gene models with more complex PS, which would
correspond to complicated mathematical forms expressed
in the master equation, the first- and second-order moments
of mRNA can be derived using the same simple method
used to compute the moments in the two-state promoter
model. In fact, the formulas for the moments apply to any
other promoter model as well, regardless of the number of
promoter states. In addition, the focus of the analysis in
this study is on mRNA noise, but the mathematical ap-
proaches to compute mRNA statistics can be easily
extended to compute protein distributions and their mo-
ments as well. For instance, for a promoter switching be-
tween two different states, in the limit when mRNA
lifetime is much shorter than protein lifetime, the ratio of
Biophysical Journal 106(2) 479–488
variance over mean for protein takes the form very similar
to that for mRNA. At least in this limit, all of the conclu-
sions about how complex promoter dynamics affect
mRNA noise would be qualitatively true for protein noise.
In other words, all the related extension and computation
are easily carried out in the case that TFs do not temporally
regulate transition rates among the promoter activity states
(47). However, the regulation of TFs is often dynamic and
noisy. In this case, what is the dependence relationship be-
tween transcriptional output and TFs (as inputs) or how
the latter affects the former deserves further study since
analytical results (e.g., analytical distributions as derived
in this paper) are in general unavailable. If the gene pro-
moter has only one ON and one OFF state (i.e., the common
gene model), one can use the input-associated Signed Acti-
vation Time (iSAT) index introduced in another study (75),
which concisely captures an intrinsic temporal property at
either the ON or OFF state, to characterize the input-output
relation including the transcriptional noise. In the case of
complex PS (i.e., the promoter has multiple ON or OFF
states or both), the iSAT index would be still effective in
quantifying this relation but its definition seems to need
modification. By analyzing this modified index, it is
possible to reveal which of the multiple ON and OFF mech-
anisms is dominant in buffering the transcriptional noise. In
particular, it is possible that there is a tradeoff between
achieving good noise buffering in the ON versus the OFF
states as shown in a previous study(75). The further study
is under way.

Finally, as with any quantitative model, especially one at-
tempting to describe processes within a living cell, it is
important to understand the limitations of the chemical mas-
ter equation description of transcription presented in this pa-
per. Particular care has to be taken when using mathematical
models in conjunction with experimental data to test specific
hypotheses about biological mechanisms. Even for most
informative models, there would be a discrepancy between
the model predictions and experimental data. This offers
the opportunity to discard incorrect assumptions about the
mechanisms of interest. But to reach such strong conclu-
sions, we must have some degree of certainty that the
discrepancy between the model predictions and experi-
mental outcomes is because of the deficiencies in our under-
standing of the underlying biological mechanism, and not
because of spurious experimental effects that have nothing
to do with the biological process of interest. This is a partic-
ularly challenging problem when using cell-to-cell or tem-
poral variability of cellular outputs as the experimental
signature of a biological process because there are typically
multiple sources of this variability, and we are interested in
the only one of them. For example, if the variability of the
transcriptional output of a single cell is used as the experi-
mental signature of promoter dynamics, then we must
make sure that this is indeed the dominant source of the
observed fluctuations.
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gene induction reveals the regulatory principle behind stochastic IL-4
expression. Mol. Syst. Biol. 6:359.

45. Miller-Jensen, K., S. S. Dey, ., A. P. Arkin. 2011. Varying virulence:
epigenetic control of expression noise and disease processes. Trends
Biotechnol. 29:517–525.

46. Gama-Castro, S., H. Salgado, ., J. Collado-Vides. 2011. RegulonDB
version 7.0: transcriptional regulation of Escherichia coli K-12 inte-
grated within genetic sensory response units (Gensor Units). Nucleic
Acids Res. 39 (Suppl.):D98–D105.
Biophysical Journal 106(2) 479–488

http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)05800-1
http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)05800-1


488 Zhang and Zhou
47. Blake, W. J., G. Balázsi, ., J. J. Collins. 2006. Phenotypic conse-
quences of promoter-mediated transcriptional noise. Mol. Cell.
24:853–865.

48. To, T.-L., and N. Maheshri. 2010. Noise can induce bimodality in pos-
itive transcriptional feedback loops without bistability. Science.
327:1142–1145.

49. Bintu, L., N. E. Buchler, ., R. Phillips. 2005. Transcriptional regula-
tion by the numbers: models. Curr. Opin. Genet. Dev. 15:116–124.

50. Bintu, L., N. E. Buchler, ., R. Phillips. 2005. Transcriptional regula-
tion by the numbers: applications. Curr. Opin. Genet. Dev. 15:125–135.

51. Coulon, A., O. Gandrillon, and G. Beslon. 2010. On the spontaneous
stochastic dynamics of a single gene: complexity of the molecular
interplay at the promoter. BMC Syst. Biol. 4:2.

52. Simpson, M. L., C. D. Cox, and G. S. Sayler. 2004. Frequency domain
chemical Langevin analysis of stochasticity in gene transcriptional
regulation. J. Theor. Biol. 229:383–394.
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In this supplementary material, we first derive the analytical expression of 0a  used in 

the main text, then give some detailed processes for the derivation of analytical 

distributions in particular cases, and finally list some parameter values used in figures 

shown in the main text.  

 

A. Analytical expression of 0a  

Based on the iterative Eq. (16) with 0n =  in the main article and using the 

conservative condition for probability, we have the following algebraic equation 

0
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1N =
=

u a
Aa 0
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To give the analytical expressions of components of the vector 0a , we let kM  
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1 2 10, , , , Nα α α −− − −   the eigenvalues of matrix A  and by ( ) ( ) ( )
1 2 1, , ,k k k

Nβ β β −− − −

 
the 

eigenvalues of matrix kM . Note that −A  is an M-matrix, so the real part of each iα  
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which are practically the characteristic polynomial of A  and kM , respectively. Now, 

we show  
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In fact, ( )det∗ = =AA A I 0  due to ( )det 0=A . In addition, as a consequence 

of Laplace's formula for the determinant of matrix A , we have 
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=
= − ∏M . Note that the null space of A  is of one dimension 

due to ( ) 1rank N= −A . Thus, combining 0 =Aa 0 , we know that 
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where c  is a constant. The condition 0 1N =u a  gives ( )1
1 detN

kk
c

=
= ∑ M . A direct 

computation yields ( ) 1

10

N

i
i

df
d

µ

µ
α

µ

−

==

=∏A .  On the other hand, Jacobi's formula gives  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

* 1

1 1 10 0 0

det
1 det

NN N
N kN N

N k i
k k i

df d d
tr

d d d
µ µ µ

µ µ µ
µ β

µ µ µ

−
−

= = == = =

− − 
= = − = − = 

 
∑ ∑∏A I A I A

I A M

The combination of both yields the equality ( )
1 1

1 1 1

N NN
k

i i
k i i

β α
− −

= = =

=∑∏ ∏ . Using this fact 

combined with the expressions of c  and ( )det kM , we immediately know that Eqn. 

(A3) holds. 

Finally, we point out that if matrix A  is symmetric, then the adjacency matrix 

( )*Nn −I A  is also symmetric for any n .  

 

B. Derivation of analytical distributions in particular cases 

Case 1 NµΛ = Ι  

    Such a case corresponds to a model of constitutive gene expression with the 



3 

 

same transcription rate. Using the above symbols, we have n Nb = nu a  due to 

( )
1

N i
n ni

b a
=

= ∑ , and 1 1
1

n N n N nb
n n

µ
− −= =u a u aΛ . Thus, we obtain 1 !

n

n nb b
n n
µ µ

−= = . According 

to Eq. (1) in the main text, we compute and obtain  

( ) ( ) ( )1 1 ,   0,1, 2,
! !

k m
k m k m

k
k m k m

k k
P m b e m

m m k m
mmm ∞ ∞

− − −

= =

   
= − = − = =   

   
∑ ∑                  (B1) 

which is a Poisson distribution with characteristic parameter µ . Eqn. (B1) indicates 

that the mRNA distribution is independent of the pattern of transitions between 

activity states of the promoter. In other words, whatever transitions among activity 

states are, does the static mRNA obey the same Poisson distribution determined 

completely by the transcription rate. 

Case 2 ( )1

1
Nµ − 

  
 

0 0

0
Λ =  

Such a case corresponds to the gene model where the promoter has one ON and 

multiple OFFs. It follows from Eq. (16) in the main text that  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

*
1

1 1

11

* ** *1
* det 1det det

*
*

N

N

n nN N
N Nn n

M NN
nM n

n
nn na a

f n
af n af n

f n

µ

µ µ

−
− −

−−

     
= = − =        −− −      

 
   

= =    
   

 
A

A

O O
a I A a

I M OI A I A
Λ

 

Using the expressions of ( )f nA  and ( )
NMf n , we can obtain 

( )
( )( )

( ) ( )
( )

1 1
1 1 1

01 1

11 1

a a
!

N N N
n ii iN Nn i

n N N N
i ini i

n

β aµ

a β

− −
= + =

− −

+= =

=
∏ ∏
∏ ∏

                                     (B2) 

Furthermore, according to 1
1

n N nb
n −= u aΛ , we compute and obtain 

( )( )
( ) ( )

( )

1 1
1 1

01 1

1 1

a
!

N N N
n ii i Nn i

n N N N
i ini i

b
n

b aµ

ab

− −
= =

− −

= =

=
∏ ∏
∏ ∏

                                       (B3) 
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Furthermore, combined with ( )
( )1

1
0 1

1

a
N N

iN i
N

ii

β

a

−

=
−

=

= ∏
∏

, Eq. (B3) implies that the total static 

generating function is  

( )
( ) ( )

1 1
1 1

1 1

, , ;
, ,

N N
N

N N
N

G s F sβ β µ
α α

−
− −

−

 
=   

 





                                         (B4) 

Again according to Eq. (1) in the main text, we compute and obtain 

( ) ( )
( ) ( )

( )( )
( )

( )
( ) ( ) ( )

( )( )
( )

( )
( )

( )
( )

( )( )

11
11

0 1 1

1 1
11

11
0 1 1

0
1 1

1 1
11 1

0 1 1

1 1

a 1
!

a 1
!

a
!

N NN
k ik m iiN i k

N NN
k mi i ki i

N NN
k m ik iiN i k m

N NN
ki i k mi i

N NN N
m iii iN mi i k

N NN
i i mi i

k
P m

m k

k m
m k m

m

m

βa m

β a

βa m

β a

βa βm

β a

−−
∞

− ==
− −

=
= =

−−
+∞

== +
− −

=
+= =

−− −
== =

− −

= =

 
= −  

 

+ 
= −   + 

+
=

∏∏ ∑
∏ ∏

∏∏ ∑
∏ ∏

∏ ∏
∏ ∏ ( )

( )
1

1
0

1
!

k

N
k i ki

km

m

a

∞

−
=

=

−

+

∏
∑

∏

 

Using Eq. (A3), we obtain the analytical expression of mRNA distribution as 

( )
( )( )

( )
( ) ( )1 1

1 1
1 1

1 1 1

, , ; ,   0,1, 2,
! , ,

N N Nm N
m N

N N
i i Nm

m mP m F m
m m m

β β βm m
α α α

−
−

− −
= −

 + +
= − =  + + 

∏ 





              (B5) 

where 1

1

, ,
;

, ,
n

n n
n

a a
F

b b
σ

 
 
 





 is a confluent hypergeometric function (1). 

It is worth being pointed out that if 2N =  that corresponds to the common 

ON-OFF model, then Eqn. (B5) can reproduce the result obtained previously (2,3). 

That is, 

( )
( )( )

( )
( )
( )

( )2 2
1 1 1

1 1
1 1 1

; ,   0,1, 2,
!

m m mP m F m
m m m

β αm β m
α β α

Γ +  Γ +
= − =  Γ + Γ + 

                      (B6) 

where 1 12 21+α λ λ= , ( )1
1 12β λ= , ( )2

1 21β λ=  

Case 3 ( )1

0
Nµ − 

  
 

I 0

0
Λ =  

Such a case corresponds to the gene model where the promoter has ( )1N −  

active states with the same transcription rate. Correspondingly, Eq. (11) at steady 
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state in the main article becomes 

1, 1,

1 1

1 1

0, 1, 2, , 1

0

N N
i

ki k ik i i
k i k i

N N
N

kN k Nk N
k k

G
G G s sG i N

s
G

G G s
s

λ λ µ

λ λ

= ≠ = ≠

− −

= =

∂
− − + = = −

∂

∂
− − =

∂

∑ ∑

∑ ∑



                         (B7) 

One will see that solving Eq. (B7) can become Case 2. In fact, the transformations 

s
i iG e Fµ=  (1 i N≤ ≤ ) will transform Eq. (B7) into 

1, 1,

1 1

1 1

0, 1, 2, , 1

0

N N
i

ki k ik i
k i k i

N N
N

kN k Nk N N
k k

F
F F i N

F
F F F

λ λ τ
τ

λ λ τ µτ
τ

= ≠ = ≠

− −

= =

∂
− − = = −

∂

∂
− − + =

∂

∑ ∑

∑ ∑



                              (B8) 

with sτ = − , which is nothing but the gene model with one ON with the transcription 

rate µ  and ( )1N − OFFs. According to discussion in Case 2, we have  

( )
( ) ( )

1 1
1 1

1 1

, , ;
, ,

N N
N

N N
N

F F β βτ µτ
α α

−
− −

−

 
=   

 





                                        (B9) 

Note that ( ) ( ) ( )
( ) ( )

( )1 1 1
1 1

1 1

, , ; 1
, ,

N N
zs N

N N
N

G z e F s e F zµµ β β µ
α α

− −
− −

−

 
= − = −  

 





. Therefore, using the 

relationship between probability distribution and generating function, we have 

( ) ( )

( )
( )( )

( )
( ) ( )

0

1 1
1 1

1 1
0 1 1 1

1
!

, ,1 ;
! , ,

m

m
z

N N NNm
km k k N

N N
k i i Nk

dP m G z
m dz

m k ke F
km k k

m β β βmm
α α α

=

− −
− −

− −
= = −

=

   + +
= −     + +   

∑ ∏ 



            (B10) 

 

C. The parameter values used in computation in Fig. 1 

(A) 
0.2 1 1
0.1 1.1 0.1
0.1 0.1 1.1

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ;  

(B) 
2 0.1 0.1

1 1.1 0.1
1 1 0.2

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 
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(C) 
0.3 0.1 0.1

0.2 1.1 0.1
0.1 1 0.2

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 

(D) 
2 0.02 0.02

1 0.12 0.1
1 0.1 0.12

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 

(E) 
0.2 0.02 0.02
0.1 0.12 0.1
0.1 0.1 0.12

A
− 
 = − 
 − 

, ( )0,10,30µ = , 1δ = ; 

(F) 
0.09 0.02 0.02

0.04 0.07 0.04
0.05 0.05 0.06

A
− 
 = − 
 − 

, ( )5,20,45µ = , 1δ = . 

D. The parameter values used in computation in Fig. 2 

(A)(C) 
4 0.2 0.2

2 0.6 0.2
2 0.4 0.4

A
− 
 = − 
 − 

, ( )0,10,90µ = , 1δ = ; 

(B)(D) 

4 4
4 4

4 4
4 4

4 4
4 4

4 4
4 4

4 0.08
4 0.08

A

− 
 − 
 −
 

− 
 −
 =

− 
 − 
 −
 − 
 − 

, ( )0,0,0,0,0,0,0,0,0,90µ = ,

1δ = . 
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