Supporting Information ## **Materials and Methods** ## Ca²⁺-permeability measurements For these set of experiments, we increased external Ca^{2+} in the recording solution from 1 mM to 10 mM without changing the concentration of the other ions. We used the GHK equation to calculate the permeability ratio, P_{Ca}/P_{Na} . Due to BAPTA treatment before recordings, we assumed the internal $[Ca^{2+}]$ to be negligible; we also assumed permeability to Na and K, P_{Na} and P_K , are equal. Ionic activities were used for the calculations (activity coefficients: 0.56 for Ca^{2+} and 0.72 for Na^+ and K^+). Below is the GHK equation used to calculate the calcium permeability ratio, with the activity coefficients for Na^+ , K^+ and Ca^{2+} inserted. $E_{rev} = RT/F \ln\{(P_{Na}*0.72[Na]_o + P_K*0.72[K]_o + 4P'*0.56[Ca]_o)/\{P_{Na}*0.72[Na]_i + PK*0.72[K]_i)\}$ Where R is the universal gas constant (8.314 JK⁻¹mol⁻¹); F is Faraday's constant (96485 Cmol⁻¹); T is the temperature (room temperature, 298 K); and $P' = P_{Ca}/P_{Na}\{1/(1 + e^{FErev/RT})\}$. Table S1.0 Primers used for the PCR and cloning of O. dentatum AChR subunits | Gene name | Primer name | Primer sequence | |------------|-------------|-------------------------------------| | | | | | Ode-unc-29 | F-Hind3 | AAAAAGCTTATGCGTCTCGAACCGTTACTTC | | | R-Apa1 | TTTGGGCCCTAAACCCGTACAGTCATAAAACAAT | | Ode-unc-38 | F-Xho1 | AAACTCGAGATAGCTGGTTGCAAGTGCGTATT | | | R-Apa1 | TTTGGGCCCTCTCAACAAAATTGGCCTAATATAC | | Ode-unc-63 | F-Xho1 | AAACTCGAGATGCTGACGCGACAAGTGTTC | | | R-Apa1 | TTTGGGCCCTACCCAGCCGGCTGCTCGC | | Ode-acr-8 | F-Hind3 | AAACTCGAGCTTGGCTAGCTTAAAACTAAGATT | | | R-Apa1 | TTTGGGCCCAACCATAATACTATACATATCTCAGA |