e m

La ndes BiOSCienCE www.landesbioscience.com

Supplemental Material to:

Liqin Du, Robert Borkowski, Zhenze Zhao, Xiuye Ma,
Xiaojie Yu, Xian-Jin Xie, Alexander Pertsemlidis

A high-throughput screen identifies
miRNA inhibitors regulating lung cancer cell survival
and response to paclitaxel

2013; 10(11)
http://dx.doi.org/10.4161/rna.26541

www.landesbioscience.com/journals/rnabiology/article/26541/

Addendum:
1. 2013RNABIOL0096R1-SupTable1.xlsx



Supplementary Material

Supplementary Figure 1. Experimental design for the HTS screens. The inhibitors, each of which targets
one human miRNA, were arrayed in a one-inhibitor—one-well format on 96-well plates. Cells were reverse-
transfected with the library oligos. After 72 h, cells were treated with paclitaxel at the ICs, for each cell line.
After 48 h of incubation with paclitaxel, cell viability was measured by quantifying the ATP concentration
produced by living cells. The raw measurements of cell viability were normalized to the mean of the central 60
wells of each plate to permit plate-to-plate comparisons. Each miRNA inhibitor was assigned three numbers,
its effect on cell viability in the absence (Vcamicr) OF presence of paclitaxel (Vpaciitaxe), and a sensitivity ratio (S)
calculated as viability in paclitaxel divided by viability in the absence of drug (S = Vpactitaxel/Vcarrier). MiRNA
inhibitors in the tails of the distribution identified as potent regulators of viability or paclitaxel response of the

lung cancer cell lines.

Supplementary Figure 2. Dose-dependent cytotoxicity curves for paclitaxel in cell lines H1993, H1155
and H358. Cells were treated with different concentrations of paclitaxel for three days. Cell viability was then
measured as described above. The ICsy for each cell line was derived by non-linear regression with a variable

slope inhibitory dose-response model.

Supplementary Figure 3. Distributions of z scores for the effects of individual miRNA inhibitors on cell
viability and paclitaxel response. (A-F) The quantile-quantile plots compare the observed z scores with those
expected from a standard normal distribution. The observed scores deviate significantly from normality and

exhibit an excess of large values corresponding to screen hits.

Supplementary Figure 4. Expression levels of miR-133a/b, miR-361-3p and miR-346 in a panel of lung
cancer cell lines. Expression levels of (A) miR-133a, (B) miR-133b, (C) miR-346 and (D) miR-361-3p levels
were measured using miRNA expression arrays. Shown are the relative expression levels of the miRNAs in

the indicated cell lines.



Supplementary Table 1. miRNA inhibitors identified as having general effects on lung cancer cell

survival and response to paclitaxel using 20% and 30% thresholds.

Supplementary Table 2. ICsy values for cytotoxicity of the three miRNA inhibitors derived from dose-
response analysis. Shown are the cell line names and the 1Csps and 95% confidence intervals (CI) associated

with each miRNA inhibitor.

Supplementary Table 3. Genetic backgrounds of cell lines used in this study. Shown are the cell line
names, tumor sub-types from which the cell lines are derived, ages and genders of the patients, and identified

mutations in TP53, CDKN2A and KRAS.

Supplementary Table 4. Cell cycle distribution of G1 phase-synchronized cells treated with miR-133a/b

and miR-361-3p inhibitors.
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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Supplementary Table 2.

Cell Line

miR-133a/b inh
ICso (95% Cl)

miR-346 inh
ICs0 (95% Cl)

miR-361-3p inh
ICso (95 %Cl)

H1993
H157
H1299
H1819
HCC95
HCC2450

4.60 (4.34-4.88)
2.74 (2.53-2.96)
4.07 (3.84-4.32)
26.13 (22.93-30.10)
10.49 (9.36-11.88)
16.95 (14.01-20.98)

16.62 (14.15-20.06)
8.05 (7.22-9.03)
6.68 (6.27-7.13)

41.21 (33.87-50.85)

73.85 (52.24- )

21.45 (18.52-25.43)

13.59 (11.83-15.84)
4.91 (4.34-5.57)
5.72 (5.43-6.01)

42.05 (36.14-49.17)

11.65 (10.51-12.95)

24.69 (20.37-30.63)




Supplementary Table 3.

Cell Line Tumor Subtype Age Gender TP53 CDKN2A KRAS
H358 Adenocarcinoma M WT WT G1la2v
H1819 Adenocarcinoma 55 F WT WT WT
H1993 Adenocarcinoma 47 F C242wW WT WT
H1155 Large Cell Neuroendocrine 36 M R273H WT Q61H
H1299 Large Cell Neuroendocrine 43 M WT WT WT
H157 Squamous Cell Carcinoma 59 M E298* E69* G12R
HCC95 Squamous Cell Carcinoma 65 M WT del WT
HCC2450  Squamous Cell Carcinoma 52 M WT WT WT




Supplementary Table 4

scrambled inh

miR-133a/b inh

miR-361-3p inh

G1

G2

G1

G2

G1

G2

Oh 2h 4h 6h 8h 10h
441 476 109 144 205 234
48.3 458 841 785 742 364
6.4 4.4 8.8 6.6 3.3 395
46.1 46.2 254 7.9 11 184
50.3 481 73.2 851 808 564
1.3 6.2 5.3 5.7 6.5 234
47.6 55 103 115 106 123
426 452 854 80 80.5 76
7.3 0.3 7.1 7.2 7 9.1




	2013RNABIOL0096R1-Supcov.pdf
	Supplementary Material
	supfig1
	supfig2
	supfig3
	supfig4
	Table S2
	Table S3
	Table S4 Sheet1

