
Supplemental Methods S1 
 
Supplementary Data: Populations 
 
The BWH RoCI is approved by the Partners IRB committee (2008-P-000495). 
The protocol for recruitment for RoCI has been published in detail elsewhere.[1]  
Briefly, adult patient (over age 18) who is admitted to the BWH Medical Intensive 
Care Unit is eligible for inclusion in the RoCI within 72 hours of presentation, 
unless certain exclusion criteria are met (unable to provide consent due to 
cognitive dysfunction or no appropriate health care proxy, prior refusal, 
admission purely for comfort care, Jehova’s Witness status, or a baseline 
hemoglobin <8 g/dL or hemoglobin <9 g/dL with either admission for active 
bleeding or with acute ischemia).  Plasma is obtained on Days 1, 3, and 7 of 
enrollment.  Extensive phenotypic data (including age, gender, key comorbidities, 
and APACHE II score), laboratory and radiologic data are recorded for all 
subjects.  Classification of Systemic Inflammatory Response (SIRS), Sepsis, and 
ARDS is determined by a consensus panel of ICU physicians using the current 
disease classification.  Mortality data was recorded using the Partners Research 
Patient Data Registry (RPDR), and the Social Security Data Index.   
 
Between September 2008 and May 2010, 225 subjects were enrolled in the RoCI.  
Among these 225 subjects, 90 subjects were selected for metabolic profiling: 29 
with SIRS, 30 with Sepsis, and 31 with sepsis-ARDS.  Cases were selected for 
profiling based in part on IL-18 levels as part of a separate analysis[1] (sepsis 
and SIRS patients with low IL-18 levels, ARDS with high IL-18 levels; 31 of the 
34 ARDS cases at that time were used).  Cases were not selected with regards 
to risk of death or any known metabolic feature.   
 
CAPSOD Population: The protocol for enrollment in the Community Acquired 
Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study has likewise 
been previously published.[2-4] Briefly, 1152 patients with sepsis (≥2 SIRS 
criteria and presumed infection) were enrolled in emergency rooms associated 
with 3 US Hospitals (Henry Ford Hospital, Duke University Medical Center, and 
Durham Veterans Administration Medical Center).  Blood samples and extensive 
phenotypic and laboratory data were recorded at enrollment.  Survival/death was 
the primary outcome.   The validation set of 150 patients (13% of the total 
CAPSOD cohort) had five groups that reflected conventional concepts of sepsis 
progression as a pyramid. The number of subjects was governed by power to 
test associations with survival/death. The five groups were: day 28 sepsis 
survivors with uncomplicated courses (n=27), sepsis survivors who developed 
severe sepsis or septic shock by day 3 (n=25 and n=38, respectively), sepsis 
deaths (by day 28; n=31), and non-infected patients who exhibited SIRS criteria 
(SIRS-positive, “ill” controls, presumed septic at enrollment but later determined 
to have non-infectious reasons for SIRS; n=29). 
 
 



Supplementary Data: Formation of Bayesian Network associated with 28-
day mortality for analysis of metabolomics data 
 
A Bayesian network (BN) is a data structure that encodes conditional probability 
distributions among variables of interest by using a graph composed of nodes 
and directed edges[5].  In a BN, variables in the domain are modeled as random 
variables and represented by nodes, and edges between them represent a 
statistical dependence of the child node on the parent node.  Each node is 
annotated with the marginal distribution of the variable conditioned on the values 
of its parents, and this information can be used to predict the most likely values 
of variables in the BN.  A conditional Gaussian Bayesian network (CGBN) is a 
type of BN that allows mixing discrete and continuous variables in the same 
network [6].  
 
To apply CGBN methods to the RoCI and CAPSOD datasets, we log2 
transformed metabolite values and normalized separately in the RoCI and 
CAPSOD datasets. The only other continuous variable, age, was also normalized. 
Demographic variables that were eligible for inclusion in the Bayesian network 
were age, sex, APACHE II score, and renal function (using the glomerular 
filtration rate estimated using the GFR-MDRD equation(5)). Race and 
malignancy status were excluded based on the large disparity in racial and 
cancer compositions of the RoCI and CAPSOD cohorts. Apache II score, while 
significantly different between the cohorts, was included as a potential predictor 
because of its existing role as a predictor of ICU outcomes. 
 
We constructed a pheno-centric CGBN [7] based on predicting the 28-day 
mortality  This is a predictive network model that starts with the phenotype as the 
independent variable and then tests each other variable for statistical 
dependence. The network makes a link from the phenotype to the variable if the 
probability of association is more likely than the probability of independence, a 
test known as the Bayes Factor [8]. The pheno-centric network is then completed 
by testing if those variables are dependent variables of other metabolites.  This 
forms the Markov neighborhood of the phenotype node and, according to 
Bayesian network semantics [5], are the only variables that influence the 
distribution of the phenotype.  We then used the pheno-centric network to predict 
the value of 28-day ICU mortality from the data. Such a pheno-centric network 
has two main benefits. First, it can allow prediction in domains where building a 
full BN over all the variables is computationally prohibitive. Second, it does not 
rely on network structure constraints and as such does not needlessly exclude 
many potential network structures from consideration.  
 
We used the CGBayesNets package[9] [7] in MATLAB for all Bayesian and 
related statistical computations. We used 5-fold cross-validation on RoCI to 
arrive at hyper parameters for the Bayesian likelihood calculations. We 
performed 2500 bootstrap realizations of the RoCI dataset, and learned a pheno-
centric CGBN for each bootstrap realization. From the sample of 2500 networks, 



we built a consensus network by starting with the phenotype node and then 
adding, in sequence, the most frequent edge occurring in the bootstrap networks, 
and measuring the performance of that network on the dataset in cross-validation.  
This provides a way of estimating the value of adding each node to the network, 
and roughly the point of diminishing returns.  We used a network with a total of 
seven predictive nodes, shown in Figure 2, to define the final network model, as 
adding further nodes did not increase the predictive performance in cross-
validation. 
 
Assessing Performance of Bayesian Networks: Predictive performance of each 
network was assessed by the convex hull [10] of the Area Under the Receiver 
Operator Characteristic Curve (AUC).[11] Statistically significant differences 
between two AUCs over the same data points were assessed by first measuring 
the variance of this quantity, assuming the difference follows a normal distribution, 
and using a standard t-test.[11] The variance is computed according to the 
nonparametric method described by DeLong et al.[12] Network structure was 
determined by the RoCI dataset and was tested in CAPSOD without any 
parameter refitting, which provides the most stringent possible test of model 
replication. 
 
For comparison with the predictive model identified by Langley et al. [13], we 
computed a Bayesian network using the 7 predictive variables identified by 
Langley et al.  Using these 7 variables (age, hematocrit, lactate, 2-
methylbutyroylcarnitine (C5), butyrylcarnitine (C4), and hexanoylcarnitine (C6), 
cis-4-decenoyl carnitine) we constructed the pheno-centric network that 
maximized the posterior likelihood of the CAPSOD data, using the same priors 
and parameters as used above. We then tested this network for predictive 
accuracy in both RoCI and CAPSOD. This provided the most apt comparison 
between the predictive variables identified by Langley et al. and identified 
through our analysis. 
 
 



Supplementary Data: Sample Processing 
 
Sample Handling, RoCI and CAPSOD cohorts 
In the RoCI cohort, blood samples were drawn and transferred into EDTA coated 
blood collection tubes within 24 hours from study inclusion and processed within 
4 hours after venipuncture.  Subsequently, plasma was fractionated and stored at 
-80°C as previously described [1].  150 µl aliquots were shipped on dry-ice to 
Metabolon, Inc., without any accompanying clinical information. Following receipt, 
the frozen samples in the box were immediately stored at -80oC.   
 
In CAPSOD study, blood for metabolomic and proteomic analyses was collected 
in bar-coded EDTA-plasma tubes at enrollment (t0) and the following day (t24), 
incubated on ice, plasma separated (within 4 hours), and aliquots stored at -80°C. 
At the time of analysis samples were extracted and prepared for analysis using 
Metabolon’s standard solvent extraction method. [14] The extracted samples 
were split into equal parts for analysis on the GC/MS and LC/MS/MS platforms.  
Also included were several technical replicate samples created from a 
homogeneous pool containing a small amount of all study samples (“Client 
Matrix”).   
 
While metabolomic profiling for RoCI and CAPSOD was independently 
performed, identical methods for sample preparation were used in both studies. 
 
Sample Accessioning:  Each sample received was accessioned into the 
Metabolon LIMS system and was assigned by the LIMS a unique identifier, which 
was associated with the original source identifier only.  This identifier was used to 
track all sample handling, tasks, results etc.  The samples (and all derived 
aliquots) were bar-coded and tracked by the LIMS system.  All portions of any 
sample were automatically assigned their own unique identifiers by the LIMS 
when a new task was created; the relationship of these samples was also 
tracked.  All samples were maintained at -80 ºC until processed.  
 
Sample Preparation:  The sample preparation process was carried out using 
the automated MicroLab STAR® system from Hamilton Company.  Recovery 
standards were added prior to the first step in the extraction process for QC 
purposes.  Sample preparation was conducted using a proprietary series of 
organic and aqueous extractions to remove the protein fraction while allowing 
maximum recovery of small molecules.  The resulting extract was divided into 
two fractions; one for analysis by LC and one for analysis by GC.  Samples were 
placed briefly on a TurboVap® (Zymark) to remove the organic solvent.  Each 
sample was then frozen and dried under vacuum.  Samples were then prepared 
for the appropriate instrument, either LC/MS or GC/MS. 
 
QA/QC:  For QA/QC purposes, a number of additional samples are included with 
each day’s analysis.  Furthermore, a selection of QC compounds is added to 
every sample, including those under test.  These compounds are carefully 



chosen so as not to interfere with the measurement of the endogenous 
compounds.  Tables 1 and 2 describe the QC samples and compounds.    These 
QC samples are primarily used to evaluate the process control for each study as 
well as aiding in the data curation 
 
Table 1:  Description of Metabolon QC Samples 

Type Description Purpose 

MTRX 

Large pool of human plasma 
maintained by Metabolon that 
has been characterized 
extensively. 

Assure that all aspects of Metabolon 
process are operating within 
specifications. 

CMTRX 
Pool created by taking a small 
aliquot from every customer 
sample. 

Assess the effect of a non-plasma matrix 
on the Metabolon process and distinguish 
biological variability from process 
variability. 

PRCS Aliquot of ultra-pure water 
Process Blank used to assess the 
contribution to compound signals from the 
process. 

SOLV Aliquot of solvents used in 
extraction. 

Solvent blank used to segregate 
contamination sources in the extraction. 

 
 
Table 2:  Metabolon QC Standards 

Type Description Purpose 

DS Derivatization Standard Assess variability of derivatization for GC/MS 
samples. 

IS Internal Standard Assess variability and performance of 
instrument. 

RS Recovery Standard Assess variability and verify performance of 
extraction and instrumentation. 

 
Liquid chromatography/Mass Spectrometry (LC/MS, LC/MS2):  The LC/MS portion of 
the platform was based on a Waters ACQUITY UPLC and a Thermo-Finnigan 
LTQ mass spectrometer, which consisted of an electrospray ionization (ESI) 
source and linear ion-trap (LIT) mass analyzer.  The sample extract was split into 
two aliquots, dried, then reconstituted in acidic or basic LC-compatible solvents, 
each of which contained 11 or more injection standards at fixed concentrations.  
One aliquot was analyzed using acidic positive ion optimized conditions and the 
other using basic negative ion optimized conditions in two independent injections 
using separate dedicated columns.  Extracts reconstituted in acidic conditions 
were gradient eluted using water and methanol both containing 0.1% Formic acid, 
while the basic extracts, which also used water/methanol, contained 6.5mM 
Ammonium Bicarbonate.  The MS analysis alternated between MS and data-
dependent MS2 scans using dynamic exclusion. 
  
Gas chromatography/Mass Spectrometry (GC/MS):  The samples destined for 
GC/MS analysis were re-dried under vacuum desiccation for a minimum of 24 
hours prior to being derivatized under dried nitrogen using bistrimethyl-silyl-



triflouroacetamide (BSTFA).  The GC column was 5% phenyl and the 
temperature ramp is from 40° to 300° C in a 16 minute period.  Samples were 
analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole 
mass spectrometer using electron impact ionization.  The instrument was tuned 
and calibrated for mass resolution and mass accuracy on a daily basis.  The 
information output from the raw data files was automatically extracted as 
discussed below. 
 
Accurate Mass Determination and MS/MS fragmentation (LC/MS), 
(LC/MS/MS):  The LC/MS portion of the platform was based on a Waters 
ACQUITY UPLC and a Thermo-Finnigan LTQ-FT mass spectrometer, which had 
a linear ion-trap (LIT) front end and a Fourier transform ion cyclotron resonance 
(FT-ICR) mass spectrometer backend.    For ions with counts greater than 2 
million, an accurate mass measurement could be performed.  Accurate mass 
measurements could be made on the parent ion as well as fragments.  The 
typical mass error was less than 5 ppm.  Ions with less than two million counts 
require a greater amount of effort to characterize.  Fragmentation spectra 
(MS/MS) were typically generated in data dependent manner, but if necessary, 
targeted MS/MS could be employed, such as in the case of lower level signals. 
 
Bioinformatics:  The informatics system consisted of four major components, 
the Laboratory Information Management System (LIMS), the data extraction and 
peak-identification software, data processing tools for QC and compound 
identification, and a collection of information interpretation and visualization tools 
for use by data analysts.  The hardware and software foundations for these 
informatics components were the LAN backbone, and a database server running 
Oracle 10.2.0.1 Enterprise Edition. 
 
LIMS:  The purpose of the Metabolon LIMS system was to enable fully auditable 
laboratory automation through a secure, easy to use, and highly specialized 
system.  The scope of the Metabolon LIMS system encompasses sample 
accessioning, sample preparation and instrumental analysis and reporting and 
advanced data analysis.  All of the subsequent software systems are grounded in 
the LIMS data structures. It has been modified to leverage and interface with the 
in-house information extraction and data visualization systems, as well as third 
party instrumentation and data analysis software. 
 
Data Extraction and Quality Assurance:  The data extraction of the raw mass 
spec data files yielded information that could loaded into a relational database 
and manipulated without resorting to BLOB manipulation.  Once in the database 
the information was examined and appropriate QC limits were imposed.  Peaks 
were identified using Metabolon’s proprietary peak integration software, and 
component parts were stored in a separate and specifically designed complex 
data structure. 
 



Compound identification:  Compounds were identified by comparison to library 
entries of purified standards or recurrent unknown entities.  Identification of 
known chemical entities was based on comparison to metabolomic library entries 
of purified standards.  As of this writing, more than 1000 commercially available 
purified standard compounds had been acquired registered into LIMS for 
distribution to both the LC and GC platforms for determination of their analytical 
characteristics.  The combination of chromatographic properties and mass 
spectra gave an indication of a match to the specific compound or an isobaric 
entity.  Additional entities could be identified by virtue of their recurrent nature 
(both chromatographic and mass spectral).  These compounds have the potential 
to be identified by future acquisition of a matching purified standard or by 
classical structural analysis.   
 
Curation:  A variety of curation procedures were carried out to ensure that a high 
quality data set was made available for statistical analysis and data interpretation.  
The QC and curation processes were designed to ensure accurate and 
consistent identification of true chemical entities, and to remove those 
representing system artifacts, mis-assignments, and background noise.   
Metabolon data analysts use proprietary visualization and interpretation software 
to confirm the consistency of peak identification among the various samples.  
Library matches for each compound were checked for each sample and 
corrected if necessary. 
 
Normalization:  For studies spanning multiple days, a data normalization step 
was performed to correct variation resulting from instrument inter-day tuning 
differences.  Essentially, each compound was corrected in run-day blocks by 
registering the medians to equal one (1.00) and normalizing each data point 
proportionately (termed the “block correction”).   For studies that did not require 
more than one day of analysis, no normalization is necessary, other than for 
purposes of data visualization. 
 
Data Quality: Instrument and Process Variability 

QC Sample Measurement Median RSD  

Internal Standards Instrument Variability 5 %  

Endogenous Biochemicals Total Process Variability 11 %  

 
Instrument variability was determined by calculating the median relative standard 
deviation (RSD) for the internal standards that were added to each sample prior 
to injection into the mass spectrometers.  Overall process variability was 
determined by calculating the median RSD for all endogenous metabolites (i.e., 
non-instrument standards) present in 100% of the Client Matrix samples, which 
are technical replicates of pooled client samples.  Values for instrument and 
process variability meet Metabolon’s acceptance criteria as shown in the table 
above. 
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