Supporting Information

A Simple Method for the Electrophilic Cyanation of Secondary Amines

Chen Zhu, Ji-Bao Xia and Chuo Chen*

Division of Chemistry, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, USA

Email: Chuo.Chen@UTSouthwestern.edu

Table of Contents

1.	General Information	S2
2.	General Procedures	S2
3.	Compound Characterization	S3–S7
4.	Crystallographic Data of 5	S8–20
5.	¹ H and ¹³ C NMR Spectra	S21–S36

1. General Information

All reactions were performed in glassware without argon protection. Commercially available reagents were used without further purification. Organic solutions were concentrated by rotary evaporator at ca. 30 mmHg. Flash column chromatography was performed as described by Still (Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, *43*, 2923), employing EMD silica gel 60 (230–400 mesh ASTM). TLC analyses were performed on EMD 250 µm Silica Gel 60 F₂₅₄ plates and visualized by quenching of UV fluorescence (λ_{max} = 254 nm), or by staining ceric ammonium molybdate. ¹H and ¹³C NMR spectra were recorded on a Varian Inova-500 or Inova-400. Chemical shifts for ¹H and ¹³C NMR spectra are reported in ppm (δ) relative to the ¹H and ¹³C Signals in the solvent (CDCl₃: 7.26, 77.00 ppm; C₆D₆: δ 7.16, 128.06 ppm; CD₃CN: δ 1.94 ppm) and the multiplicities are presented as follows: s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet. Mass spectra were acquired on an Agilent 1200 LC-MS or VG 70-VSE. Data collection on 70-VSE (purchased in part with a grant from the Division of Research Resources, National Institutes of Health RR 04648) was serviced by the Mass Spectrometry Laboratory at the University of Illinois at Urbana-Champaign.

2. General Procedures

Secondary amine (0.2 mmol) was loaded in a reaction vial. Acetonitrile (1 mL) followed by TMSCN (0.24 mmol, 30 uL) were syringed into the mixture. Afterwards, bleach (0.3 mmol, ~ 200 uL) were added dropwise to the reaction which was then stirred at rt for 4 h or until the starting material had been consumed as determined by TLC. The reaction was extracted with 3 x 10 mL EtOAc. The organic layer was combined and washed with 5 mL H₂O and 5 mL brine.

After drying with anhydrous Na₂SO₄ and concentration, the residue was purified by column chromatography to give product.

3. Compound Characterization

Compound 2

Yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 4.71 (s, 2H), 6.82-6.86 (m, 2H), 7.02-7.06 (m, 2H), 7.30-7.37 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 54.6, 55.5, 114.7, 114.8, 118.3, 127.5, 128.5, 129.0, 133.1, 134.5, 156.3. MS (ESI)⁺ calcd for C₁₅H₁₅N₂O (M+H)⁺

239.1, found 239.1.

Compound 3

Yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 3.78 (s, 3H), 4.62 (s, 2H), 6.82-6.86 (m, 2H), 6.86-6.90 (m, 2H), 7.01-7.06 (m, 2H), 7.23-7.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 54.2, 55.3, 55.5, 114.3, 114.8, 118.5, 126.3, 129.2, 133.2, 156.3, 159.7.

MS $(ESI)^+$ calcd for $C_{16}H_{16}N_2O_2Na (M+Na)^+$ 291.1, found 291.1.

Compound 4

Yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 4.66 (s, 2H), 6.82-6.87 (m, 2H), 7.00-7.07 (m, 4H), 7.26-7.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 54.1, 55.5, 114.6, 114.9, 116.0 (d, $J_{C-F} = 21.7$ Hz), 118.5, 129.5 (d, $J_{C-F} = 8.3$ Hz), 130.2 (d, $J_{C-F} = 3.1$ Hz), 132.9,

156.4, 162.7 (d, $J_{C-F} = 246.2 \text{ Hz}$). MS (ESI)⁺ calcd for $C_{15}H_{14}FN_2O (M+H)^+ 257.1$, found 257.2.

Compound 5

Yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 4.82 (s, 2H), 6.83-6.88 (m, 2H), 7.01-7.06 (m, 2H), 7.23-7.30 (m, 2H), 7.35-7.38 (m, 1H), 7.40-7.43 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.0, 55.5, 114.3, 114.9, 118.0, 127.3, 129.0, 129.8, 129.9, 131.8, 132.9, 133.3,

156.4. MS $(ESI)^+$ calcd for $C_{15}H_{14}ClN_2O(M+H)^+$ 273.1, found 273.1.

Compound 6

Yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 4.68 (s, 2H), 6.82-6.87 (m, 2H), 6.98-7.03 (m, 2H), 7.21-7.29 (m, 2H), 7.43-7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 54.0, 55.6, 114.5, 114.9, 118.3, 123.1, 125.9, 130.4, 130.6, 131.7, 132.7, 136.8, 156.4.

MS (ESI)⁺ calcd for $C_{15}H_{14}BrN_2O (M+H)^+ 317.0$, found 317.1.

OMe

Compound 7

Yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H), 4.88 (s, 2H), 6.80-6.86 (m, 2H), 7.05-7.11 (m, 2H), 7.45 (dd, J = 1.6, 8.4 Hz, 1H), 7.47-7.51 (m, 2H), 7.78 (s, 1H), 7.78-7.83 (m, 2H), 7.85 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.9, 55.5,

114.8, 114.9, 118.3, 124.8, 126.4, 126.5, 126.6, 127.8, 127.9, 129.0, 131.9, 133.0, 133.1, 133.2, 156.3. MS (ESI)⁺ calcd for C₁₉H₁₇N₂O (M+H)⁺ 289.1, found 289.2.

Compound 8

Yield 69%. ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 4.64 (s, 2H), 6.34 (dd, J = 2.0, 3.2 Hz, 1H), 6.39 (dd, J = 0.8, 3.2 Hz, 1H), 6.84-6.89 (m, 2H), 7.08-7.13 (m, 2H), 7.41 (dd, J = 0.8, 2.0 Hz, 1H); ¹³C NMR (100

MHz, CDCl₃) δ 47.8, 55.5, 110.3, 110.7, 114.3, 114.8, 118.8, 132.9, 143.4, 147.8, 156.6. MS (ESI)⁺ calcd for C₁₃H₁₃N₂O₂ (M+H)⁺ 229.1, found 229.1.

Compound 9

OMe Yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 4.84 (s, 2H), 6.84-6.88 (m, 2H), 6.97 (dd, J = 3.6, 5.2 Hz, 2H), 7.05-7.10 (m, 3H), 7.28 (dd, J = 3.6, 5.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 49.9, 55.5, 114.3, 114.9, 119.1, 126.6, 127.2, 127.8, 132.7, 136.3, 156.6. MS (ESI)⁺

calcd for $C_{13}H_{13}N_2OS (M+H)^+ 245.1$, found 245.0.

Compound 10

Yield 73%. ¹H NMR (400 MHz, CDCl₃) δ 1.12-1.22 (m, 2H), 1.42 (s, 9H), 1.77 (d, *J* = 12.0 Hz, 2H), 1.90-2.00 (m, 1H), 2.66 (dd, *J* = 12.0, 12.0 Hz, 2H), 3.38 (d, *J* = 7.2 Hz, 2H), 3.76 (s, 3H), 4.11 (s, 2H), 6.82-6.92 (m, 2H), 7.00-7.10 (m, 2H); ¹³C NMR (100 MHz,

CDCl₃) δ 28.4, 29.6, 35.0, 55.6, 55.9, 79.6, 114.7, 114.9, 118.2, 133.2, 154.6, 156.3. MS (ESI)⁺ calcd for C₁₉H₂₈N₃O₃ (M+H)⁺ 346.2, found 346.3.

Compound 11

Yield 66%. ¹H NMR (400 MHz, CDCl₃) δ 0.92-1.04 (m, 2H), 1.08-1.28 (m, 3H), 1.62-1.86 (m, 6H), 3.33 (d, *J* = 6.8 Hz, 2H), 3.77 (s, 3H), 6.85-6.89 (m, 2H), 7.01-7.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 25.5, 26.2, 30.6, 36.3, 55.6, 56.7, 114.8, 115.0, 118.0, 133.5, 156.0. MS (ESI)⁺

calcd for $C_{15}H_{21}N_2O(M+H)^+$ 245.1, found 245.2.

Compound 12

Yield 56%. ¹H NMR (400 MHz, CDCl₃) δ 0.86 (t, *J* = 6.8 Hz, 3H), 1.20-1.35 (m, 8H), 1.35-1.45 (m, 2H), 1.72-1.80 (m, 2H), 3.48 (t, *J* = 7.2 Hz, 2H), 3.77 (s, 3H), 6.85-6.90 (m, 2H), 7.01-7.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 26.5, 27.5, 29.0, 29.1, 31.7, 50.3, 55.6, 114.5,

114.8, 118.0, 133.4, 156.1. MS (ESI)⁺ calcd for $C_{16}H_{25}N_2O (M+H)^+$ 261.2, found 261.2.

Compound 13

OMe Yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 1.12-1.25 (m, 1H), 1.25-1.37 (m, 2H), 1.48-1.60 (m, 2H), 1.62-1.70 (m, 1H), 1.82-1.90 (m, 2H), 2.00-2.08 (m, 2H), 3.38 (tt, J = 4.0, 11.6 Hz, 1H), 3.77 (s, 3H), 6.84-6.89 (m, 2H), 7.05-7.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 25.1, 25.2, 31.0, 55.5,

59.1, 113.7, 114.8, 120.2, 133.2, 156.6. MS (ESI)⁺ calcd for $C_{14}H_{19}N_2O$ (M+H)⁺ 231.1, found 231.2.

Compound 14

Yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 4.80 (s, 2H), 7.07-7.15 (m, 3H), 7.32-7.41 (m, 7H); ¹³C NMR (101 MHz, CDCl₃) δ 53.6, 113.8, 115.9, 123.6, 127.2, 128.4, 129.0, 129.5, 134.2, 139.7; MS (ESI)⁺ calcd for C₁₄H₁₂N₂Na (M+Na)⁺ 231.1, found 231.1.

Compound 15

NC N Ph Ph Yield 72%. ¹H NMR (400 MHz, CDCl₃) δ 4.10 (s, 3H), 7.27-7.31 (m, 4H), 7.33-7.41 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 54.2, 118.3, 128.6, 128.7, 128.9, 134.3. MS (ESI)⁺ calcd for C₁₅H₁₅N₂ (M+H)⁺ 223.1, found 223.2.

Compound 16

Ph Yield 88%. ¹H NMR (400 MHz, CDCl₃) δ 1.80-1.88 (m, 4H), 2.54-2.63 (m, 1H), 3.09-3.17 (m, 2H), 3.49-3.55 (m, 2H), 7.16-7.20 (m, 2H), 7.20-7.25 (m, 1H), 7.29-7.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 32.0, 41.3, 50.1, 118.3, 126.6, 126.8, 128.7, 144.5. MS (ESI)⁺ calcd for C₁₂H₁₅N₂ (M+H)⁺ 187.1, found 187.1.

Compound 17

Yield 82%. ¹H NMR (400 MHz, CDCl₃) δ -0.15 (s, 9H), 0.63-0.73 (m, 1H), 1.45-1.55 (m, 1H), 1.82-1.92 (m, 1H), 2.03-2.13 (m, 1H), 2.75 (ddd, J = 5.2, 8.0, 9.2 Hz, 1H), 3.18 (ddd, J = 7.6, 7.6, 9.2 Hz, 1H), 4.75 (dd, J = 4.0, 9.2 Hz, 1H), 7.30-7.38 (m, 6H), 7.40-7.48 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 1.65, 23.8, 27.9, 52.7, 68.3, 82.9, 118.3, 127.4, 127.7, 127.8, 127.9, 129.2, 129.4, 141.9, 142.0. MS (ESI)⁺ calcd for C₂₁H₂₇N₂OSi (M+H)⁺ 351.2, found 351.2. X-ray Experimental for $C_{15}H_{13}N_2OCI$: Crystals grew as colorless prisms by slow evaporation from a mixture of ethyl acetate and hexanes. The data crystal was cut from a larger crystal and had approximate dimensions; $0.24 \times 0.17 \times 0.14$ mm. The data were collected at room temperature on a Rigaku R-Axis Spider diffractometer with an image plate detector using a graphite monochromator with CuK α radiation ($\lambda = 1.5418$ Å). A total of 191 images of data were collected using ω -scans with a scan range of 5° and a counting time of 360 seconds per image. Details of crystal data, data collection and structure refinement are listed in Table 1. Data reduction were performed using the Rigaku Americas Corporation's Crystal Clear version 1.40.^{S1} The structure was solved by direct methods using SIR97^{S2} and refined by full-matrix least-squares on F² with anisotropic displacement parameters for the non-H atoms using SHELXL-97.^{S3} The absolute configuration was determined by the method of Flack.^{S4} The Flack x parameter refined to 0.04(3). The assignment of absolute configuration was corroborated by the Hooft analysis.^{S5} The Hooft y-parameter was determined to by 0.020(8). The hydrogen atoms were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms).

The function, $\Sigma w(|F_0|^2 - |F_c|^2)^2$, was minimized, where $w = 1/[(\sigma(F_0))^2 + (0.0437^*P)^2 + (0.9407^*P)]$ and $P = (|F_0|^2 + 2|F_c|^2)/3$. $R_w(F^2)$ refined to 0.166, with R(F) equal to 0.0926 and a goodness of fit, S, = 1.1257. Definitions used for calculating R(F), $R_w(F^2)$ and the goodness of fit, S, are given below.^{S6} The data were checked for secondary extinction effects but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992).^{S7} All figures were generated using SHELXTL/PC.^{S8} Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are given below.

- ^{S1} DENZO-SMN. (1997). Z. Otwinowski and W. Minor, Methods in Enzymology, 276: Macromolecular Crystallography, part A, 307 – 326, C. W. Carter, Jr. and R. M. Sweets, Editors, Academic Press.
- ^{S2} SIR97. (1999). A program for crystal structure solution. Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R. J. Appl. Cryst. 32, 115-119.
- ^{S3} Sheldrick, G. M. (1994). SHELXL97. Program for the Refinement of Crystal Structures. University of Gottingen, Germany.
- ^{S4} Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- ⁸⁵ Hooft, R. W. W., Straver, L. H. and Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.
- ^{S6} $R_W(F^2) = \{\Sigma w(|F_0|^2 |F_c|^2)^2 / \Sigma w(|F_0|)^4\}^{1/2}$ where w is the weight given each reflection.

 $R(F) = \Sigma(|F_0| - |F_c|)/\Sigma|F_0| \} \text{ for reflections with } F_0 > 4(\sigma(F_0)).$

S = $[\Sigma w(|F_0|^2 - |F_c|^2)^2/(n - p)]^{1/2}$, where n is the number of reflections and p is the number of refined parameters.

- ^{S7} International Tables for X-ray Crystallography (1992). Vol. C, Tables 4.2.6.8 and 6.1.1.4, A. J. C. Wilson, editor, Boston: Kluwer Academic Press.
- ^{S8} Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Figure S1. X-ray structures of **5**.

Table S1. Crystal data and structure refinement for	5.	
Empirical formula	C15 H13 Cl N2 O	
Formula weight	272.72	
Temperature	298(2) K	
Wavelength	1.54180 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 15.5380(13) Å	α= 90°.
	b = 5.5510(6) Å	$\beta = 104.854(5)^{\circ}.$
	c = 16.2790(15) Å	$\gamma = 90^{\circ}.$
Volume	1357.2(2) Å ³	
Z	4	
Density (calculated)	1.335 Mg/m ³	
Absorption coefficient	2.431 mm ⁻¹	
F(000)	568	
Crystal size	0.24 x 0.17 x 0.14 mm	
Theta range for data collection	6.99 to 66.58°.	
Index ranges	-17<=h<=18, -6<=k<=6, -19<=	=l<=19
Reflections collected	15994	
Independent reflections	4704 [R(int) = 0.0470]	
Completeness to theta = 66.58°	99.6 %	
Absorption correction	Semi-empirical from equivalen	its
Max. and min. transmission	1.00 and 0.794	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4704 / 1 / 346	
Goodness-of-fit on F ²	1.249	
Final R indices [I>2sigma(I)]	R1 = 0.0926, wR2 = 0.1590	
R indices (all data)	R1 = 0.1079, wR2 = 0.1664	
Absolute structure parameter	0.04(3)	
Largest diff. peak and hole	$0.283 \text{ and } -0.379 \text{ e.}\text{\AA}^{-3}$	

	Х	у	Z	U(eq)
Cl1	7479(1)	8375(3)	7812(1)	62(1)
01	8573(3)	11217(9)	3530(3)	61(1)
N1	9009(3)	11118(9)	7038(3)	46(1)
N2	10135(4)	8463(13)	7930(3)	81(2)
C1	8561(4)	12191(10)	8347(4)	43(1)
C2	8148(3)	10261(11)	8591(4)	46(2)
C3	8210(4)	9705(12)	9430(4)	58(2)
C4	8715(4)	11179(15)	10051(4)	65(2)
C5	9134(4)	13119(15)	9837(4)	65(2)
C6	9071(4)	13606(12)	8994(4)	56(2)
C7	8500(4)	12811(11)	7432(3)	48(2)
C8	9617(4)	9718(13)	7521(4)	54(2)
C10	8890(3)	11093(11)	6136(3)	40(1)
C11	9272(4)	9321(12)	5762(3)	51(2)
C12	9180(4)	9286(13)	4895(4)	53(2)
C13	8694(4)	11044(13)	4397(4)	50(2)
C14	8311(4)	12805(11)	4762(4)	52(2)
C15	8409(4)	12862(11)	5633(3)	48(2)
C16	8851(4)	9266(16)	3112(4)	79(2)
C12	6382(1)	9201(3)	2848(1)	62(1)
O2	3226(3)	7448(9)	-1412(2)	66(1)
N3	4473(3)	6601(9)	2099(3)	45(1)
N4	3804(3)	9143(12)	3017(3)	66(2)
C17	5590(3)	5397(10)	3394(3)	42(1)
C18	6144(4)	7313(11)	3635(3)	43(1)
C19	6537(3)	7880(12)	4474(4)	50(2)
C20	6359(4)	6431(12)	5097(4)	54(2)
C21	5815(4)	4489(14)	4882(4)	57(2)
C22	5435(4)	3943(12)	4046(4)	52(2)
C23	5156(4)	4813(10)	2489(3)	46(2)
C24	4113(4)	7959(12)	2597(3)	43(1)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C26	4156(3)	6840(10)	1197(3)	37(1)
C27	4372(4)	5158(10)	659(4)	47(2)
C28	4045(4)	5465(11)	-214(4)	52(2)
C29	3515(4)	7357(12)	-542(4)	46(2)
C30	3309(4)	9061(12)	-3(3)	51(2)
C31	3633(3)	8797(11)	864(3)	47(2)
C32	2604(4)	9238(16)	-1775(4)	73(2)

Cl1-C2	1.764(6)	O2-C29	1.373(6)
O1-C13	1.378(6)	O2-C32	1.407(8)
O1-C16	1.405(8)	N3-C24	1.330(7)
N1-C8	1.316(7)	N3-C26	1.430(6)
N1-C10	1.433(6)	N3-C23	1.472(6)
N1-C7	1.476(7)	N4-C24	1.140(7)
N2-C8	1.141(7)	C17-C18	1.361(7)
C1-C2	1.359(7)	C17-C22	1.403(7)
C1-C6	1.389(7)	C17-C23	1.491(7)
C1-C7	1.508(7)	C18-C19	1.382(7)
C2-C3	1.379(7)	C19-C20	1.376(8)
C3-C4	1.379(9)	C19-H19	0.93
С3-Н3	0.93	C20-C21	1.359(9)
C4-C5	1.350(9)	C20-H20	0.93
C4-H4	0.93	C21-C22	1.371(7)
C5-C6	1.376(8)	C21-H21	0.93
С5-Н5	0.93	C22-H22	0.93
С6-Н6	0.93	C23-H23A	0.97
С7-Н7А	0.97	C23-H23B	0.97
C7-H7B	0.97	C26-C27	1.380(7)
C10-C11	1.369(8)	C26-C31	1.381(7)
C10-C15	1.370(7)	C27-C28	1.391(7)
C11-C12	1.382(7)	C27-H27	0.93
C11-H11	0.93	C28-C29	1.357(8)
C12-C13	1.366(8)	C28-H28	0.93
C12-H12	0.93	C29-C30	1.383(8)
C13-C14	1.359(8)	C30-C31	1.379(7)
C14-C15	1.387(7)	С30-Н30	0.93
C14-H14	0.93	C31-H31	0.93
C15-H15	0.93	C32-H32A	0.96
C16-H16A	0.96	C32-H32B	0.96
C16-H16B	0.96	C32-H32C	0.96
C16-H16C	0.96	C13-O1-C16	117.7(5)
Cl2-C18	1.766(6)	C8-N1-C10	119.4(5)

Table S3. Bond lengths [Å] and angles [°] for **5**.

C8-N1-C7	120.0(5)	C14-C13-C12	119.4(6)
C10-N1-C7	120.5(5)	C14-C13-O1	116.0(6)
C2-C1-C6	116.4(5)	C12-C13-O1	124.6(6)
C2-C1-C7	123.7(5)	C13-C14-C15	121.2(6)
C6-C1-C7	120.0(5)	C13-C14-H14	119.4
C1-C2-C3	123.2(6)	C15-C14-H14	119.4
C1-C2-Cl1	119.5(5)	C10-C15-C14	119.6(6)
C3-C2-Cl1	117.3(5)	C10-C15-H15	120.2
C4-C3-C2	118.4(6)	C14-C15-H15	120.2
С4-С3-Н3	120.8	O1-C16-H16A	109.5
С2-С3-Н3	120.8	O1-C16-H16B	109.5
C5-C4-C3	120.3(6)	H16A-C16-H16B	109.5
С5-С4-Н4	119.9	O1-C16-H16C	109.5
C3-C4-H4	119.9	H16A-C16-H16C	109.5
C4-C5-C6	119.9(7)	H16B-C16-H16C	109.5
C4-C5-H5	120.0	C29-O2-C32	117.8(5)
С6-С5-Н5	120.0	C24-N3-C26	119.0(4)
C5-C6-C1	121.7(6)	C24-N3-C23	119.3(4)
С5-С6-Н6	119.1	C26-N3-C23	121.7(4)
С1-С6-Н6	119.1	C18-C17-C22	116.7(5)
N1-C7-C1	112.2(5)	C18-C17-C23	123.2(5)
N1-C7-H7A	109.2	C22-C17-C23	120.1(5)
С1-С7-Н7А	109.2	C17-C18-C19	123.3(5)
N1-C7-H7B	109.2	C17-C18-Cl2	119.3(4)
C1-C7-H7B	109.2	C19-C18-Cl2	117.4(5)
H7A-C7-H7B	107.9	C20-C19-C18	118.3(6)
N2-C8-N1	178.5(8)	С20-С19-Н19	120.8
C11-C10-C15	118.8(5)	С18-С19-Н19	120.8
C11-C10-N1	120.3(5)	C21-C20-C19	120.2(6)
C15-C10-N1	120.8(5)	С21-С20-Н20	119.9
C10-C11-C12	121.4(6)	С19-С20-Н20	119.9
C10-C11-H11	119.3	C20-C21-C22	120.8(6)
C12-C11-H11	119.3	C20-C21-H21	119.6
C13-C12-C11	119.6(6)	C22-C21-H21	119.6
С13-С12-Н12	120.2	C21-C22-C17	120.7(6)
C11-C12-H12	120.2	C21-C22-H22	119.7

C17-C22-H22	119.7	C27-C28-H28	119.2
N3-C23-C17	111.9(4)	C28-C29-O2	116.1(5)
N3-C23-H23A	109.2	C28-C29-C30	119.7(5)
C17-C23-H23A	109.2	O2-C29-C30	124.2(6)
N3-C23-H23B	109.2	C31-C30-C29	119.6(6)
С17-С23-Н23В	109.2	С31-С30-Н30	120.2
H23A-C23-H23B	107.9	С29-С30-Н30	120.2
N4-C24-N3	179.2(6)	C30-C31-C26	120.6(5)
C27-C26-C31	119.8(5)	С30-С31-Н31	119.7
C27-C26-N3	120.9(5)	C26-C31-H31	119.7
C31-C26-N3	119.3(5)	O2-C32-H32A	109.5
C26-C27-C28	118.7(5)	O2-C32-H32B	109.5
С26-С27-Н27	120.6	H32A-C32-H32B	109.5
С28-С27-Н27	120.6	O2-C32-H32C	109.5
C29-C28-C27	121.5(5)	H32A-C32-H32C	109.5
C29-C28-H28	119.2	H32B-C32-H32C	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C11	60(1)	52(1)	71(1)	-9(1)	13(1)	-9(1)
01	67(3)	69(3)	45(2)	0(2)	11(2)	9(3)
N1	42(3)	51(3)	49(3)	3(3)	16(2)	7(2)
N2	82(4)	106(6)	60(4)	21(4)	26(3)	41(4)
C1	43(3)	34(3)	57(4)	2(3)	21(3)	-2(3)
C2	37(3)	46(4)	56(4)	-14(3)	15(3)	0(3)
C3	61(4)	51(4)	74(4)	7(4)	37(4)	0(4)
C4	73(5)	80(6)	45(4)	2(4)	21(4)	9(4)
C5	63(4)	77(6)	51(4)	-16(4)	10(3)	9(4)
C6	53(4)	46(4)	70(4)	-11(4)	20(3)	-3(3)
C7	51(3)	38(4)	58(4)	6(3)	20(3)	2(3)
C8	50(4)	75(5)	43(4)	0(3)	21(3)	11(4)
C10	38(3)	38(3)	47(3)	5(3)	14(3)	-1(3)
C11	55(4)	46(4)	50(3)	11(3)	13(3)	13(3)
C12	53(4)	49(4)	59(4)	-8(4)	16(3)	9(4)
C13	38(3)	62(4)	47(4)	4(3)	7(3)	-4(3)
C14	53(4)	46(4)	54(4)	12(3)	9(3)	15(3)
C15	54(3)	39(4)	52(4)	-3(3)	16(3)	3(3)
C16	87(5)	100(6)	48(4)	-6(5)	15(3)	1(5)
Cl2	67(1)	56(1)	68(1)	10(1)	29(1)	-8(1)
O2	86(3)	71(3)	38(2)	-3(2)	11(2)	22(3)
N3	49(3)	53(3)	35(3)	-2(2)	14(2)	6(3)
N4	68(3)	83(4)	44(3)	-4(3)	11(3)	24(4)
C17	37(3)	36(3)	49(3)	-1(3)	7(3)	6(3)
C18	41(3)	51(4)	43(3)	13(3)	18(3)	10(3)
C19	35(3)	53(4)	63(4)	-7(3)	11(3)	-4(3)
C20	51(4)	63(5)	43(3)	1(3)	4(3)	7(4)
C21	66(4)	60(4)	47(4)	12(4)	15(3)	7(4)
C22	55(4)	35(4)	64(4)	3(3)	15(3)	0(3)
C23	54(4)	36(4)	45(3)	0(3)	8(3)	5(3)
C24	36(3)	53(4)	33(3)	7(3)	-4(2)	0(3)

Table S4. Anisotropic displacement parameters (Å²x 10³) for **5**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C26	31(3)	34(3)	49(3)	0(3)	13(2)	0(2)
C27	50(4)	40(4)	53(4)	-1(3)	16(3)	10(3)
C28	68(4)	45(4)	45(4)	-13(3)	20(3)	6(3)
C29	46(3)	54(4)	42(3)	3(3)	16(3)	-6(3)
C30	56(4)	48(4)	47(3)	3(3)	13(3)	10(3)
C31	54(3)	51(4)	37(3)	-17(3)	17(3)	-4(3)
C32	87(5)	93(6)	35(3)	6(4)	10(3)	-8(5)

	Х	у	Z	U(eq)
Н3	7919	8367	9573	70
H4	8766	10836	10621	78
H5	9465	14124	10257	78
H6	9379	14917	8855	67
H7A	7880	12787	7112	58
H7B	8725	14430	7402	58
H11	9600	8115	6099	61
H12	9446	8073	4652	64
H14	7977	13995	4422	62
H15	8150	14094	5875	58
H16A	9486	9104	3302	118
H16B	8683	9545	2510	118
H16C	8573	7814	3237	118
H19	6911	9206	4615	61
H20	6611	6783	5666	65
H21	5700	3518	5307	69
H22	5071	2595	3911	62
H23A	5605	4757	2171	55
H23B	4883	3233	2457	55
H27	4730	3843	875	56
H28	4192	4346	-581	62
H30	2954	10377	-223	61
H31	3498	9947	1227	56
H32A	2097	9125	-1542	109
	2417	9013	-2379	109
H32B	2417	2015	2517	107

Table S5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for 5.

Table S6. Torsion angles [°] for **5**.

C6-C1-C2-C3	0.8(8)	C22-C17-C18-C19	-1.0(8)
C7-C1-C2-C3	179.8(5)	C23-C17-C18-C19	179.0(5)
C6-C1-C2-Cl1	179.5(4)	C22-C17-C18-Cl2	179.2(4)
C7-C1-C2-Cl1	-1.5(7)	C23-C17-C18-Cl2	-0.8(7)
C1-C2-C3-C4	0.1(9)	C17-C18-C19-C20	0.1(8)
Cl1-C2-C3-C4	-178.7(5)	Cl2-C18-C19-C20	179.9(4)
C2-C3-C4-C5	0.1(9)	C18-C19-C20-C21	0.5(9)
C3-C4-C5-C6	-1.1(10)	C19-C20-C21-C22	-0.1(9)
C4-C5-C6-C1	2.1(9)	C20-C21-C22-C17	-0.8(9)
C2-C1-C6-C5	-1.9(8)	C18-C17-C22-C21	1.4(8)
C7-C1-C6-C5	179.1(5)	C23-C17-C22-C21	-178.6(5)
C8-N1-C7-C1	-17.0(7)	C24-N3-C23-C17	-21.5(7)
C10-N1-C7-C1	167.1(5)	C26-N3-C23-C17	161.4(5)
C2-C1-C7-N1	-71.9(7)	C18-C17-C23-N3	-69.4(7)
C6-C1-C7-N1	107.0(6)	C22-C17-C23-N3	110.6(6)
C8-N1-C10-C11	12.7(8)	C24-N3-C26-C27	-166.6(5)
C7-N1-C10-C11	-171.4(5)	C23-N3-C26-C27	10.4(8)
C8-N1-C10-C15	-165.9(6)	C24-N3-C26-C31	14.0(7)
C7-N1-C10-C15	10.0(8)	C23-N3-C26-C31	-169.0(5)
C15-C10-C11-C12	-0.1(9)	C31-C26-C27-C28	-0.8(8)
N1-C10-C11-C12	-178.8(5)	N3-C26-C27-C28	179.8(5)
C10-C11-C12-C13	-0.4(9)	C26-C27-C28-C29	-0.6(9)
C11-C12-C13-C14	0.2(9)	C27-C28-C29-O2	-179.3(5)
C11-C12-C13-O1	178.6(5)	C27-C28-C29-C30	1.5(9)
C16-O1-C13-C14	-171.4(5)	C32-O2-C29-C28	173.6(5)
C16-O1-C13-C12	10.2(9)	C32-O2-C29-C30	-7.3(8)
C12-C13-C14-C15	0.5(9)	C28-C29-C30-C31	-1.0(8)
O1-C13-C14-C15	-178.1(5)	O2-C29-C30-C31	179.9(5)
C11-C10-C15-C14	0.8(8)	C29-C30-C31-C26	-0.4(8)
N1-C10-C15-C14	179.4(5)	C27-C26-C31-C30	1.3(8)
C13 C14 C15 C10	1.0(0)	N2 C2(C21 C20	170 2(5)

S21

S25

