
Automated Design of Complex Dynamical Systems: Supporting

Derivations

Michiel Hermans, Joni Dambre, Benjamin Schrauwen, Peter Bienstman

January 8, 2014

1 Structure

This document contains the mathematical derivations for the paper: Automated Design of
Complex Dynamical Systems. It is structured as follows. Section 2 is devoted to explaining the
BPTT algorithm as it is commonly used for training recurrent neural networks in machine
learning. It explains the discrete-time version of BPTT and the necessary concepts. Is
section 3 we introduce the online version of continuous time backpropagation through time
for ordinary differential equations. In section 4 we show how it is possible to transform this into
a computationally less demanding algorithm. Sections 5 to 7 provide similar derivations for
important other kinds of differential equations, such that the primary theoretical contribution
of this paper is contained within sections 3 to 7. Throughout this document, we will often
use the word ‘training’ in the same context as ‘optimisation’.

2 Discrete time backpropagation through time

Before we start, it is useful to consider notations. Throughout the following derivations
(sections 3 to 7), we will use bold uncapitalised letters for column vectors, except for the
gradients ∇θ and γθ which are row vectors by definition, and bold capital letters for matrices.
When we define a derivative of the form dx/dy, this is a matrix with vertical size the dimension
of x and horizontally that of y.
In this section we will give a brief overview of backpropagation through time (BPTT) as it is
commonly applied in recurrent neural networks (RNNs). Suppose we have a state at, which
is governed by the following update equation:

at+1 = f(at, st,θ),

in which st is a discrete time external input signal, and θ is the set of parameters that need to
be updated. In typical recurrent neural networks (RNN), these parameters are the elements
that make up a square recurrent weight matrix W and input matrix V, and the nonlinear
function is commonly a sigmoid function, e.g., the hyperbolic tangent. The equation takes
the form

at+1 = tanh (Wat + Vst) ,

but here we will keep the derivation fully general.
The goal is to minimise a certain cost function C(at, t) at a certain moment in time. The

1



gradient of this cost function w.r.t the parameters is given by

∇t
θ =

dC(at, t)

dθ

=
dC(at, t)

dat

dat

dθ

= ēTt Gt. (1)

Here, ēt is the output error (the transpose of the gradient of the cost function w.r.t, at), and

Gt =
dat

dθ
, (2)

is the total state derivative w.r.t. θ. Due to the recursion relation, at will depend on
at−1,at−2, ...,a0 (we assume that a0 is a fixed initial value). This means that we can use
the chain rule to “unfold” the total derivative in Gt in time, until we end up with nothing
but partial derivatives:

Gt =
∂at

∂θ
+

∂at

∂at−1

∂at−1
∂θ

+ · · ·+ ∂at

∂at−1

∂at−1
∂at−2

· · · ∂a2

∂a1

∂a1

∂θ
. (3)

If we define

Kt =
∂at

∂θ
, (4)

and

Jt+1 =
∂f(at, st,θ)

∂at
=
∂at+1

∂at
, (5)

equation 3 can be rewritten as

Gt =
t∑

i=1

QitKi, (6)

in which
Qit = 1 if i = t,

and

Qit =

t−1∏
j=i

Jj+1 if i 6= t.

More efficiently, Gt can be computed with a recursion relation:

Gt = Kt + JtGt−1.

This forms the basis of real-time recurrent learning (RTRL), an online variant of the more
common BPTT scheme. It provides a gradient for the associated cost at each time step, such
that optimisation can happen during the system updates. The downside of this approach is
that, while Kt is often very sparse, Gt generally is not, and computing it iteratively is slow
and cumbersome compared to updating the recursion equation. It has dimensions equal to
the number of states times the number of parameters, which can be a very large number.

2



Suppose that instead of computing the cost gradient at just one moment in time, we consider
its sum over a whole sequence of length T :

γθ =
T∑
t=1

∇t
θ.

Inserting equation 1 and replacing Gt with the expression given in equation 6 yields

γθ =

T∑
t=1

ēTt

t∑
i=1

QitKi.

If we exchange the order of summation, we get

γθ =

T∑
i=1

T∑
t=i

ēTt Qit︸ ︷︷ ︸
eTi

Ki.

The variable ei can be computed recursively, just like Gt, but backwards in time (hence the
term backpropagation through time):

eTi = ēTi + Jie
T
i+1.

This means that we can write the sum of the gradients over the whole sequence as

γθ =
T∑
i=1

eTi Ki. (7)

The advantage of this expression is twofold. First of all, computing the sequence ei is usu-
ally comparable in computational cost to computing the sequence of states at, as it has the
same dimensionality. Furthermore, in most practical situations Kt is highly sparse. This is
especially true for RNNs, but the argument remains valid for many continuous time systems
as well (which is important in the following sections). The sum over matrix-vector multi-
plications in equation 7 can commonly be written as a single, highly efficient matrix matrix
multiplication which only takes a small fraction of additional time to compute.
In what follows we will formally extend the presented algorithm to continuous time.

3 Cost gradient for ordinary differential equations

In this section we introduce the simplest method for computing a parameter gradient for
dynamical systems (DS). Suppose we have a continuous-time dynamical system characterised
by a state a(t) and a set of parameters θ. It is also excited by an external input signal s(t).
The dynamics are governed by the following differential equation

f(a(t), ȧ(t), s(t),θ) = 0 (8)

3



Suppose we have a cost function C(a(t), t) we wish to minimise. The gradient of this cost
function w.r.t the parameters is given by

∇θ(t) =
dC(a(t), t)

dθ

=
dC(a(t), t)

da(t)

da(t)

dθ

= ēT(t)G(t).

Here, ē(t) is the output error (the gradient of the cost function w.r.t, a(t)), and

G(t) =
da(t)

dθ
, (9)

is the total derivative of the state a(t) w.r.t. the parameters; a matrix with vertical dimension
the number of elements in a(t), and horizontal dimension the number of elements in θ For
notational reasons we also introduce the partial derivative:

K(t) =
∂f(a(t), ȧ(t), s(t),θ)

∂θ
, (10)

which has the same dimensions as G(t). Finally, we introduce the Jacobian of f w.r.t. a(t) as

J0(t) =
∂f(a(t), ȧ(t), s(t),θ)

∂a(t)
, (11)

and w.r.t. ȧ(t)

J1(t) =
∂f(a(t), ȧ(t), s(t),θ)

∂ȧ(t)
, (12)

If we take the derivative of equation 8 w.r.t the parameters, we can write:

0 =
∂f(a(t), ȧ(t), s(t),θ)

∂θ
+
∂f(a(t), ȧ(t), s(t),θ)

∂a(t)

da(t)

dθ
+
∂f(a(t), ȧ(t), s(t),θ)

∂ȧ(t)

d ˙a(t)

dθ

= K(t) + J0(t)G(t) + J1(t)Ġ(t) (13)

In other words, we have defined a differential equation for the evolution of G(t), provided
that J1(t) is an invertible matrix. This is for instance the case for explicit ODEs, where J1(t)
is the identity matrix. Computing G(t) allows to perform online learning. We can compute
G(t) online, together with the actual simulation of the DS, and slowly adjust the parameters
concurrently1. In reality, the dimensionality of G(t) may prove to be impractically large.
Even though the size of the matrix is the same, the partial derivative K(t) is usually much
sparser, as most variables only depend directly on a small subset of the parameters.

4 Offline backpropagation through time

Very much like in discrete-time RNNs, it is possible to avoid explicitly computing G(t). We
can for continuous time let the error evolve backwards in time too, where it evolves according

1such that they change significantly slower than the relevant time scales within the DS

4



to a differential equation instead of an update equation. It is possible to get the same result by
considering BPTT on an Euler integration of the differential equation, and taking the limit of
dt→ 0. This step can be omitted, however, and we will stay in the continuous time domain,
which proves that the validity of our approach does not depend on any specific method used
to solve the differential equations. Let us start by considering the integral of the gradient
for a given time span T . Indeed, if we consider limited time sequences in which we update
the parameters slowly each moment in time using the previously defined gradient, the total
change of the parameters would be the integral over time of the gradient (provided the change
is so small that the dynamics of the DS are not changing during the considered time interval).

γθ =

∫ T

0
dt∇θ(t)

=

∫ T

0
dtēT(t)G(t), (14)

We will assume that the input signal, the internal state, the derivatives G(t) and the error
signal ē(t) are identical to zero for t < 0 and t > T .
If we use γθ to perform parameter updates, we can avoid computing G(t) explicitly. To
achieve this, we introduce the variable e(t), which is governed by the following differential
equation :

de(s)

ds
= ē(s) + x(s), (15)

where s = T − t, i.e., s is time running backwards, starting from T . This means that, in order
to solve e(s) numerically, we need to integrate the equation backwards in time. The unknown
variable x(s) is what we wish to find. Assuming that ē(t) = e(t) = 0 if t < 0 or t > T , we
can implicitly solve equation 15 using an integral:

e(s) =

∫ s

0
ds′
[
ē(s′) + x(s′)

]
, (16)

or in the normal time domain this becomes:

e(t) =

∫ T

t
dt′
[
ē(t′) + x(t′)

]
. (17)

As we will show, e(t) is the continuous time equivalent of the backpropagated error. We start
by replacing G(t) in equation 41 by its implicit integral solution:

γθ = −
∫ T

0
dt ēT(t)

∫ t

0
dt′J−11 (t′)

[
K(t′) + J0(t

′)G(t′)
]
.

We can switch the order of integration over t and t′, yielding

γθ = −
∫ T

0
dt

(∫ T

t
dt′ēT(t′)

)
J−11 (t) [K(t) + J0(t)G(t)]. (18)

If we reorder equation 17, we find that∫ T

t
dt′ē(t′) = e(t)−

∫ T

t
dt′x(t′). (19)

5



Taking the transpose and insertion in equation 18 yields

γθ = −
∫ T

0
dt

(
eT(t)−

∫ T

t
dt′xT(t′)

)
J−11 (t) [K(t) + J0(t)G(t)]

= −
∫ T

0
dt eT(t)J−11 (t)K(t)−

∫ T

0
dt eTJ−11 (t)J0(t)G(t)

+

∫ T

0
dt

∫ T

t
dt′xT(t′)J−11 (t) [K(t) + J0(t)G(t)]. (20)

Switching the order of integration in the final term yields∫ T

0
dt

∫ T

t
dt′xT(t′)J−11 (t) [K(t) + J0(t)G(t)]

=

∫ T

0
dt xT(t)

∫ t

0
dt′J−11 (t′)

[
K(t′) + J0(t

′)G(t′)
]

=

∫ T

0
dt xT(t)G(t),

such that the last two terms in equation 20 disappear if

xT(t) = eT(t)J−11 (t)J0(t). (21)

This means that with this definition of x(t) the time integral of the gradient reduces to

γθ = −
∫ T

0
dt eT(t)J−11 (t)K(t), (22)

in which the matrix G(t) no longer occurs.

5 Differential algebraic equations

In the case that J1(t) is non-invertible, the previous analysis no longer holds. The system
of equations is known as differential algebraic equations (DAE). This situation happens often
in engineering applications such as finite-element methods, electric circuits etc. Often, it is
possible to rewrite the equations as follows:

q̇(t) = g(q(t), r(t), s(t),θ)

0 = h(q(t), r(t), s(t),θ). (23)

Here, the bottom equation is known as the algebraic part of the system. It will impose
restrictions on the variables q(t) through additional variables r(t). First of all we introduce
the following notations:

Gq(t) =
dq(t)

dθ
, Gr(t) =

dr(t)

dθ
, (24)

Kg(t) =
∂g(q(t), r(t), s(t),θ)

∂θ
, Kh(t) =

∂h(q(t), r(t), s(t),θ)

∂θ
, (25)

6



Jg
q(t) =

∂g(q(t), r(t), s(t),θ)

∂q(t)
, Jg

r (t) =
∂g(q(t), r(t), s(t),θ)

∂r(t)
, (26)

Jh
q(t) =

∂h(q(t), r(t), s(t),θ)

∂a(t)
, Jh

r (t) =
∂h(q(t), r(t), s(t),θ)

∂r(t)
. (27)

Using these notations we can take the derivative of equation 23 w.r.t. θ:

Ġq(t) = Kg(t) + Jg
q(t)Gq(t) + Jg

r (t)Gr(t)

0 = Kh(t) + Jh
q(t)Gq(t) + Jh

r (t)Gr(t). (28)

This takes on the form of another set of equations. For the remainder of the derivation we
will assume that Jh

r (t) is non-singular, which is true for DAEs of index 1. Now we can solve
for Gr(t) in the second equation, which yields

Gr(t) = −
[
Jh
r (t)

]−1 (
Kh(t) + Jh

q(t)Gq(t)
)
, (29)

leaving a single differential equation for Gq(t). We wish to find out if we can redo the previous
analysis in order to find a backpropagation algorithm. First we define output errors2 on q(t)
and r(t) as ēq(t) and ēr(t). The integral over the gradient is then given by

γθ =

∫ T

0
dt
(
ēTq(t)Gq(t) + ēTr (t)Gr(t)

)
(30)

Eliminating Gr(t) leads to

γθ = −
∫ T

0
dtēTr (t)

[
Jh
r (t)

]−1
Kh(t)

+

∫ T

0
dt

(
ēTq(t) + ēTr (t)

[
Jh
r (t)

]−1
Jh
q(t)

)
Gq(t).

The first term no longer contains Gq(t). In the second term we replace the expression between
curved brackets by ēTx (t). Changing Gq(t) into its implicit integral solution and changing the
order of integration then yields for the second term (ST):

ST =

∫ T

0
dt

∫ T

0
dt′ēTx (t′)

[
Kg(t) + Jg

q(t)Gq(t) + Jg
r (t)Gr(t)

]
(31)

We now assume that there exists a backpropagated error eq(t), defined by

deq(s)

ds
= ēx(s) + x(s), (32)

such that we find that ∫ T

0
dt′ēx(t′) = eq(t)−

∫ T

0
dt′x(t′). (33)

We can insert this expression into the second term and largely repeat the same derivation as
before. The end result is given by:

xT(t) = eTq(t)

(
Jg
q(t)− Jg

r (t)
[
Jh
r (t)

]−1
Jh
q(t)

)
, (34)

γθ =

∫
0

T

dt

(
eTq(t)Kg(t)−

(
eTq(t)Jg

r (t)− ēTr (t)
) [

Jh
r (t)

]−1
Kh(t)

)
. (35)

2These are the gradients of a cost function C(q(t), r(t), t) w.r.t. q(t) and r(t), respectively.

7



6 Delayed differential equations

Many real-world DSs are governed by interconnection delays. One important example is the
finite speed of light, which matters greatly in high-speed electronics or photonics components.
Delays are an interesting phenomenon in DSs as, at least in principle, they make the state
space infinite-dimensional (the state history over the full length of the delay is now part of the
“immediate” state of the DS). Furthermore, in contrast to discrete time DSs, in continuous
time delays are differentiable, such that they too are parameters trainable by gradient descent.
We define a set of N delays, denoted by d = [d1, d2, · · · , dN ].
We now consider the following differential equation.

ȧ(t) = f(a(t), s(t),ad(t),θ). (36)

Here, ad(t) is a vertical concatenation of delayed versions of a(t):

ad(t) = [a(t− d1),a(t− d2), · · · ,a(t− dN )] ,

such that we assume that the evolution of a(t) depends on N delays. Note that, if the state
evolution would happen to depend on delayed versions of the input signal, we can simply
use all previous definitions, where we augment the input signal with the delayed versions. In
this case, however, the situation is a little more complicated because we cannot reduce the
equation to an ordinary differential equation, and we will need to redo the previous derivation.
Before we begin we use the chain rule to find the total derivative of the state of the DS w.r.t.
the parameters. We find that

Ġ(t) = K(t) + J(t)G(t) +
∂f(a(t), s(t),ad(t),θ)

∂ad(t)

dad(t)

dθ
. (37)

We will use the following definitions:

Jd(t) =
∂f(a(t), s(t),ad(t),θ)

∂ad(t)
, (38)

and

Gd(t) =
dad(t)

dθ
= [G(t− d1),G(t− d2), · · · ,G(t− dN )] . (39)

This reduces equation 37 to

Ġ(t) = K(t) + J(t)G(t) + Jd(t)Gd(t). (40)

Consequently, changing G(t) by its implicit integral solution in equation 41 yields:

γθ =

∫ T

0
dt ēT(t)

∫ t

0
dt′
(
K(t′) + J(t′)G(t′) + Jd(t′)Gd(t′)

)
, (41)

We now wish to define a differential equation for the error backpropagation. We will for now
assume it to be equal to

de(s)

ds
= ē(s) + x(s), (42)

8



where x(s), is the unknown part, again with s = T − t. We repeat the same derivation as
before, but now exchange the integral over ē(t) by∫ T

t
dt′ēT(t′) = eT(t)−

∫ T

t
dt′xT(t′). (43)

Changing the order of the integration, and substituting the integral over ē(t) finally yields:

γθ =

∫ T

0
dt

(
eT(t)−

∫ T

t
dt′xT(t′)

)
[K(t) + J(t)G(t) + Jd(t)Gd(t)]

=

∫ T

0
dt eT(t)K(t) +

∫ T

0
dt eT(t) [J(t)G(t) + Jd(t)Gd(t)]

−
∫ T

0
dt

∫ T

t
dt′xT(t′) [K(t) + J(t)G(t) + Jd(t)Gd(t)],

and after switching the order of the integration in the final term and replacing the implicit
integral solution of G(t), this becomes

γθ =

∫ T

0
dt eT(t)K(t) +

∫ T

0
dt eT(t) [J(t)G(t) + Jd(t)Gd(t)]

−
∫ T

0
dtxT(t)G(t),

We again wish to obtain the following equality:

γθ =

∫ T

0
dt eT(t)K(t), (44)

such that we require that∫ T

0
dtxT(t)G(t) =

∫ T

0
dt eT(t) [J(t)G(t) + Jd(t)Gd(t)] (45)

We start by making the following observation

Jd(t)Gd(t) =
N∑
i=1

Jdi(t)G(t− δi), (46)

where

Jdi(t) =
∂f(a(t), s(t),ad(t),θ)

∂a(t− di)
. (47)

This means that we can rewrite the left hand side of equation 45 as∫ T

0
dtxT(t)G(t) =

∫ T

0
dt eT(t) [J(t)G(t) + Jd(t)Gd(t)]

=

∫ T

0
dt eT(t)

[
J(t)G(t) +

N∑
i=1

Jdi(t)G(t− di)

]
.

9



Due to the fact that we have explicitly defined G(t) and e(t) to be equal to zero outside the
range 0 < t < T , we can integrate over each term in this equation separately and change the
integration variable without changing the limits of integration, yielding:∫ T

0
dtxT(t)G(t) =

∫ T

0
dt eT(t)J(t)G(t) +

N∑
i=1

∫ T

0
dt eT(t)Jdi(t)G(t− di)

=

∫ T

0
dt eT(t)J(t)G(t) +

N∑
i=1

∫ T

0
dt eT(t+ di)Jdi(t+ di)G(t),

which is fulfilled if

xT(t) = eT(t)J(t) +
N∑
i=1

eT(t+ di)Jdi(t+ di) (48)

This result reduces the differential equation for e(s) to

de(s)

ds
= ē(s) + JT(s)e(s) +

N∑
i=1

JT
di

(s− di)e(s− di), (49)

such that it too is defined by a delayed differential equation.
Let us as an example consider what happens if we wish to find the gradient w.r.t. a certain
delay value dk. The only variable we need to consider is the part of K(t) which corresponds
to the partial derivative of f w.r.t. dk. As we assume that dk is part of the parameter set, we
also assume that f explicitly depends on dk. We can write

Kdk(t) =
∂f(a(t), s(t),ad(t),θ)

∂dk
=
∂f(a(t), s(t),ad(t),θ)

∂a(t− dk)

∂a(t− dk)

∂dk
= −Jdk(t)ȧ(t− dk)

7 Delayed differential algebraic equations

Obviously, certain DSs will have both an algebraic part and interconnection delays. We will
limit ourselves here to one particular case which describes the photonic SOA networks.
We again use two variables r(t) and q(t), the first algebraic, the second dynamic. Furthermore
we write rd(t) = [r(t− d1), r(t− d2), · · · , r(t− dN )]. The DDAE we will consider is of the
form

q̇(t) = g(q(t), rd(t), s(t),θ) (50)

r(t) = h(q(t), rd(t), s(t),θ). (51)

If external errors on q and r are written as ēq and ēr, respectively, we can associate the
backpropagated errors eq and er as

ėTq(t) = ēTq + eTq(t)Jg
q(t) + eTr (t)Jh

q(t) (52)

eTr (t) = ēTr +

N∑
i=1

(
eTq(t+ di)J

h
di

(t+ di) + eTr (t+ di)J
g
di

(t+ di)
)
, (53)

10



in which

Jg
di

(t) =
∂g(q(t), rd(t), s(t),θ)

∂r(t− di)
, Jh

di
(t) =

∂h(q(t), rd(t), s(t),θ)

∂r(t− di)
. (54)

We end up with the following expression for the gradient

γθ =

∫ T

0
dt
(
eTq(t)Kg(t) + eTr (t)Kh(t)

)
The proof is lengthy but highly similar to the previous two derivations, therefore we

omit it here. For the photonic networks, the dynamic variable q(t) corresponds to the free
carrier densities of the SOAs, and the algebraic variable r(t) to the complex amplitudes of
the incoming light (see main text for more details)

11


