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Regression-based ranking of pathogen strains3

with respect to their contributions to natural epidemics4

S. Soubeyrand∗†, C. Tollenaere‡§, E. Haon-Lasportes∗, and A.-L. Laine‡5

A Simulation under the regression model and results6

A.1 Simulation model and tests7

We considered a 10× 10 square grid with inter-node distance equal to one. In each grid
cell, the proportions of three strains were drawn from independent Dirichlet distributions
with spatially varying means and variances defined using sine and cosine functions applied
to the coordinates of the cells:

(pi(1), pi(2), pi(3)) ∼ Dirichlet[100{cos(x2,i) + 1.5, sin(x1,i) + 1.5, sin(x2,i) + 1.5}], (S1)

where(x1,i, x2,i) are the coordinates of cell center i. The growth variables Zi were generated
by simulating the normal variables ηi and applying the formula defining Zi (Equation (2)
in the main text):

Zi =

(
3∑

s=1

pi(s)z(s)

)
+ ηi.

We carried out 800 simulations of the true model, 200 with equal coefficients:8

(z(1), z(2), z(3)) = (2.0, 2.0, 2.0), 200 with slight differences in the coefficients:9

(z(1), z(2), z(3)) = (1.9, 2.0, 2.2), 200 with intermediate differences:10

(z(1), z(2), z(3)) = (1.5, 2.0, 3.0), and 200 with large differences:11

(z(1), z(2), z(3)) = (1.0, 2.0, 4.0). For each simulation, n sampling sites were randomly and12

uniformly drawn among the 100 grid cells. Then, multinomial distributions of size m and13

with probabilities given by Equation (S1) were drawn to generate the pathogen samples14
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(J = n×m). We used different numbers of sampling sites (n ∈ {10, 20, 30}) and different15

numbers of samples per sampling site (m ∈ {1, 5, 10}) to study the effect of the sampling16

effort. Regarding the bandwidth, we tested four different values: b ∈ {0, 1, 2, 3}. By doing17

so, we took into account up to 28 neighbor cells in the estimation of pi(s).18

For each simulation and each sampling effort, we tested the hypothesis of no difference in19

the coefficients for each pair of strains (1 and 2; 2 and 3; 1 and 3) by using the unilateral20

permutation test orientated with respect to the estimated coefficients (e.g. if ẑ(1) > ẑ(2),21

we tested z(1) = z(2) versus z(1) > z(2)). Consequently, in each case, we can count the22

numbers of adequate and inadequate rejections of the null hypothesis among 20023

repetitions.24

A.2 Application to a simulation with equal coefficients25

We considered one of the simulations described above corresponding to26

z(1) = z(2) = z(3) = 2. We used 30 sampling sites and 10 samples per site. Strain27

proportions were estimated with b = 1. Figure S1 and Table S1 show the simulation and28

provide the results. In this case, the ranking was not significant.29

Table S1: Results of the unilateral tests obtained for a simulation under the regression model
with equal coefficients (z(1) = z(2) = z(3) = 2).

z(1) z(2) z(3)
True value 2.00 2.00 2.00
Estimated value 2.06 1.94 2.02

z(1) > z(2) z(1) > z(3) z(3) > z(2)
p-value 0.209 0.384 0.241

A.3 Application to a simulation with increasing coefficients30

We considered one of the simulations described above corresponding to z(1) = 1.5, z(2) = 231

and z(3) = 3. We used 30 sampling sites and 10 samples per site. Strain proportions were32

estimated with b = 1. Figure S2 and Table S2 show the simulation and provide the results.33

In this case, the ranking between strains 3 and 1 and between strains 3 and 2 was correct34

and significant. The ranking between strains 2 and 1 was correct but not significant.35

A.4 Application to series of simulations36

For each combination of the bandwidth b (0, 1, 2 or 3), the number n of sampling sites (10,37

20 or 30) and the number m of collected strains per sampling point (1, 5 or 10), Figure S338

shows the numbers of times among 200 repetitions that the null hypothesis (z(s) = z(s′))39

was rejected. The rejection threshold was fixed at 0.05/3 (using Bonferroni’s correction).40

The following conclusions can be drawn. One rarely reject the null hypothesis for the41

wrong alternative hypothesis (white bars). The larger differences between the coefficients42

2



Prop. strain  1 Prop. strain  2 Prop. strain  3

Growth variable Sampling sites

0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

True x estimated prop.

Coef. strain  1

1.8 1.9 2.0 2.1 2.2

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Coef. strain  2

1.8 1.9 2.0 2.1 2.2

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0 Coef. strain  3

1.8 1.9 2.0 2.1 2.2

0
1

0
0

2
0

0
3

0
0

Figure S1: Data and results obtained for a simulation under the regression model with
equal coefficients (z(1) = z(2) = z(3) = 2). The space is a 10×10 square grid. Top
panels: Simulated proportions of each strain. Centre-left: Simulated values of Zi (growth
variable). Centre: Sampling sites (filled circles). Centre-right: True values of proportions
of strains (abscissa) versus estimated values (ordinate). Bottom panels: True (solid ver-
tical lines) and estimated (dashed vertical lines) values of the coefficients z(s), and corre-
sponding permutation-based distributions under the null hypothesis of coefficient equality
(histograms).

z(s) are more often detected than the smaller ones. Increasing the bandwidth leads to a43

more powerful test (in particular for the smallest differences in the z(s) –between strains 144

and 2– and when the number of collected strains per sampling sites is low) but slightly45

increase the number of times that the wrong alternative is accepted.46
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Figure S2: Data and results obtained for a simulation under the regression model with
increasing coefficients (z(1) = 1.5, z(2) = 2 and z(3) = 3). The space is a 10×10 square
grid. Top panels: Simulated proportions of each strain. Centre-left: Simulated values of
Zi (growth variable). Centre: Sampling sites (filled circles). Centre-right: True values of
proportions of strains (abscissa) versus estimated values (ordinate). Bottom panels: True
(solid vertical lines) and estimated (dashed vertical lines) values of the coefficients z(s),
and corresponding permutation-based distributions under the null hypothesis of coefficient
equality (histograms).

Table S2: Results of the unilateral tests obtained for a simulation under the regression model
with increasing coefficients (z(1) = 1.5, z(2) = 2 and z(3) = 3).

z(1) z(2) z(3)
True value 1.50 2.00 3.00
Estimated value 1.83 2.01 2.62

z(2) > z(1) z(3) > z(1) z(3) > z(2)
p-value 0.224 5e-04 0.008
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Figure S3: Numbers of test rejections for simulations performed under the regression models.
Grey bars: number of times that the null hypothesis was rejected and that the alternative
was true; White bars: number of times that the null hypothesis was rejected and that
the alternative was wrong. The rejection threshold was fixed at 0.05/3 (using Bonferroni’s
correction). Between each consecutive ticks, there are three bars corresponding, from left to
right, to 1, 5 and 10 collected samples per sampling site.
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B Simulation under the mechanistic model and47

additional results48

B.1 Mechanistic model49

In the mechanistic simulation model, the epidemic spreads over a 10× 10 square grid with50

inter-node distance equal to one (I = 100), and at discrete integer times t = 1, 2, . . . , T = 7.51

The epidemic is the sum of S = 3 sub-epidemics corresponding to S strains. The S52

sub-epidemics are mutually independent.53

Immigration. Strain s immigrates in the grid at one single time and eventually at54

several grid nodes.55

• The immigration time T immigr
s is randomly drawn in {1, . . . , T} with higher56

probabilities for earlier times. The probability that T immigr
s = t ∈ {1, . . . , T} is57

(T − t)2/
∑T

k=1(T − k)2.58

• The number of immigration nodes is drawn from a binomial distribution with size N2
59

and with probability α1 ∈ (0, 1] (we used α1 = 0.05). The immigration nodes are60

uniformly drawn in the grid; let Is ⊂ {1, . . . , I} denote the set of immigration nodes61

for strain s.62

• At time T immigr
s , the numbers of pathogen units Us(i, T

immigr
s ) of strain s at63

immigration nodes i ∈ Is are independently drawn under a Poisson distribution with64

mean α2 > 0 (we used α2 = 5).65

Propagation. At time t ∈ {T immigr
s + 1, . . . , T}, given the numbers of units

{Us(i, t− 1) : i = 1, . . . , I} of strain s at the preceding time t− 1, the numbers of units of
strain s in nodes i ∈ {1, . . . , I} are independently drawn under Poisson distributions with
means λs(i, t):

Us(i, t) | {Us(i
′, t− 1) : i′ = 1, . . . , I} ∼ Poisson{λs(i, t)}

λs(i, t) = βs

I∑
i′=1

Us(i
′, t− 1) exp{−d(i, i′)/γ},

where βs > 0 is proportional to the infection strength of a unit of strain s; d(i, i′) is the
Euclidean distance between nodes i and i′; γ > 0 is the dispersal parameter. Thus, only the
nodes i′ where strain s is present contribute to the spread of this strain to nodes i, the
contribution being larger when i′ is close to i. We consider that strains differs in their
fitness represented in this model by the parameter βs > 0. The coefficients βs in the
mechanistic model are the counterparts of the coefficient z(s) in the following regression
model (Equation (2) in the main text):

Zi =

(
S∑

s=1

pi(s)z(s)

)
+ ηi.
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We carried out 1,600 simulations of the mechanistic model; 800 with the dispersal66

parameter γ equal to 0.2, 800 with γ = 0.5 (longer dispersal distances). Among each series67

of 800 simulations, 200 were made with equal coefficients: (β1, β2, β3) = (2.0, 2.0, 2.0), 20068

with slight differences in the coefficients: (β1, β2, β3) = (1.9, 2.0, 2.2), 200 with intermediate69

differences: (β1, β2, β3) = (1.5, 2.0, 3.0), and 200 with large differences:70

(β1, β2, β3) = (1.0, 2.0, 4.0).71

Sampling. At the two final times T − 1 and T , the quantities of pathogen units are
measured at every nodes. Thus, we know the quantities

∑S
s=1 Us(i, t) for all i ∈ {1, . . . , I}

and for t ∈ {T − 1, T}. This observation allows us to compute for each node i the growth
variable defined in Equation (1) in the main text and satisfying, under the mechanistic
model,

Zi = log

(
1 +

∑S
s=1 Us(i, T )

1 +
∑S

s=1 Us(i, T − 1)

)
.

At the final time T of the epidemic, J pathogen units are sampled and classified with72

respect to the strain.73

• The number n of sampling sites is the minimum between a target number n0 and the74

total number of nodes where the pathogen is present at time T . The sampling sites75

are uniformly drawn in the subset of the grid where the pathogen is present; let76

I ⊂ {1, . . . , I} denote the set of sampling nodes.77

• At each sampling site i ∈ J , mi pathogen units are sampled (uniform sampling78

without replacement) and classified. The number mi is the minimum between a79

target number m0 and the total number of units
∑S

s=1 Us(i, T ) in node i at time T .80

The number of samples is J =
∑

i∈J mi ≤ n0 ×m0.81

We used different target numbers of sampling sites (n0 ∈ {10, 20, 30}) and different target82

numbers of samples per sampling site (m0 ∈ {1, 5, 10}) to study the effect of the sampling83

effort.84

B.2 Application to a simulation with equal coefficients and short85

distance dispersal86

We considered one of the mechanistic simulations described in Material and Methods87

corresponding to β1 = β2 = β3 = 2 (equal coefficients) and γ = 0.2 (short distance88

dispersal). We used 30 sampling sites and 10 samples per site. Strain proportions were89

estimated with b = 1. Figures S4–S5 and Table S3 show the simulation and provide the90

results. In this case, the ranking was not significant.91

B.3 Application to a simulation with increasing coefficients and92

short distance dispersal93

We considered one of the mechanistic simulations described in Material and Methods94

corresponding to β1 = 1.5, β2 = 2 and β3 = 3 (equal coefficients) and γ = 0.2 (short95
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Figure S4: Spread of three strains of a pathogen simulated under the mechanistic model
over a 10×10 square grid and over 7 time steps. The simulation was performed with equal
coefficients (β1 = β2 = β3 = 2) and short distance dispersal (γ = 0.2). Intensities of the
three strains at time t are given by the t-th column of panels. Each row of panels provides
the intensities of a given strain across time. Larger the dot, larger the intensity.

distance dispersal). We used 30 sampling sites and 10 samples per site. Strain proportions96

were estimated with b = 1. Figures S6–S7 and Table S4 show the simulation and provide97

the results. In this case, the ranking between strains 3 and 1 and between strains 3 and 298

was correct and significant. The ranking between strains 2 and 1 was correct but not99

significant.100

B.4 Application to a simulation with increasing coefficients and101

long distance dispersal102

We considered one of the mechanistic simulations described in Material and Methods103

corresponding to β1 = 1.5, β2 = 2 and β3 = 3 (equal coefficients) and γ = 0.5 (long distance104

dispersal). We used 30 sampling sites and 10 samples per site. Strain proportions were105

estimated with b = 1. Figures S8–S9 and Table S5 show the simulation and provide the106

results. In this case, the ranking is not correct but is not significant.107
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Table S3: Results of the unilateral tests obtained for a simulation under the mechanistic
model with equal coefficients (β1 = β2 = β3 = 2) and short distance dispersal (γ = 0.2); the
simulation is displayed in Figure S4.

Mechanistic coefficients β1 β2 β3
True value 2.00 2.00 2.00
Regression coefficient z(1) z(2) z(3)
Estimated value 0.85 0.85 0.70

z(1) > z(2) z(1) > z(3) z(2) > z(3)
p-value 0.487 0.336 0.337

Table S4: Results of the unilateral tests obtained for a simulation under the mechanistic
model with increasing coefficients (β1 = 1.5, β2 = 2 and β3 = 3) and short distance dispersal
(γ = 0.2); the simulation is displayed in Figure S6.

Mechanistic coefficients β1 β2 β3
True value 1.50 2.00 3.00
Regression coefficient z(1) z(2) z(3)
Estimated value 0.44 0.62 1.17

z(2) > z(1) z(3) > z(1) z(3) > z(2)
p-value 0.282 0.002 0.002

Table S5: Results of the unilateral tests obtained for a simulation under the mechanistic
model with increasing coefficients (β1 = 1.5, β2 = 2 and β3 = 3) and long distance dispersal
(γ = 0.5); the simulation is displayed in Figure S8.

Mechanistic coefficients β1 β2 β3
True value 1.50 2.00 3.00
Regression coefficient z(1) z(2) z(3)
Estimated value 1.90 1.68 1.73

z(1) > z(2) z(1) > z(3) z(3) > z(2)
p-value 0.393 0.406 0.464
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Figure S5: Data and results obtained for a simulation under the mechanistic model with
equal coefficients (β1 = β2 = β3 = 2) and short distance dispersal (γ = 0.2); the simulation
is displayed in Figure S4. Top panels: Simulated proportions of each strain. Centre-left:
Simulated values of Zi (growth variable). Centre: Sampling sites (filled circles). Centre-
right: True values of proportions of strains (abscissa) versus estimated values (ordinate).
Bottom panels: Estimated values of the coefficients z(s) (dashed lines), and correspond-
ing permutation-based distributions under the null hypothesis of coefficient equality (his-
tograms).
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Figure S6: Spread of three strains of a pathogen simulated under the mechanistic model over
a 10×10 square grid and over 7 time steps. The simulation was performed with increasing
coefficients (β1 = 1.5, β2 = 2 and β3 = 3) and short distance dispersal (γ = 0.2). Intensities
of the three strains at time t are given by the t-th column of panels. Each row of panels
provides the intensities of a given strain across time. Larger the dot, larger the intensity.
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Figure S7: Data and results obtained for a simulation under the mechanistic model with
increasing coefficients (β1 = 1.5, β2 = 2 and β3 = 3) and short distance dispersal (γ =
0.2); the simulation is displayed in Figure S6. Top panels: Simulated proportions of each
strain. Centre-left: Simulated values of Zi (growth variable). Centre: Sampling sites (filled
circles). Centre-right: True values of proportions of strains (abscissa) versus estimated
values (ordinate). Bottom panels: Estimated values of the coefficients z(s) (dashed lines),
and corresponding permutation-based distributions under the null hypothesis of coefficient
equality (histograms).
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Figure S8: Spread of three strains of a pathogen simulated under the mechanistic model over
a 10×10 square grid and over 7 time steps. The simulation was performed with increasing
coefficients (β1 = 1.5, β2 = 2 and β3 = 3) and long distance dispersal (γ = 0.5). Intensities
of the three strains at time t are given by the t-th column of panels. Each row of panels
provides the intensities of a given strain across time. Larger the dot, larger the intensity.
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Figure S9: Data and results obtained for a simulation under the mechanistic model with
increasing coefficients (β1 = 1.5, β2 = 2 and β3 = 3) and long distance dispersal (γ =
0.5); the simulation is displayed in Figure S8. Top panels: Simulated proportions of each
strain. Centre-left: Simulated values of Zi (growth variable). Centre: Sampling sites (filled
circles). Centre-right: True values of proportions of strains (abscissa) versus estimated
values (ordinate). Bottom panels: Estimated values of the coefficients z(s) (dashed lines),
and corresponding permutation-based distributions under the null hypothesis of coefficient
equality (histograms).
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