

Supplementary Figure S1. Degree of Targets. The number of drugs that aimed each target protein in the tinnitus drug-target network is shown by the grey bars. In black the total number each protein is targeted by drugs in the reference database.

Supplementary Figure S2. Hearing Impaired Target Network. A drug-target network was generated with Cytoscape 3.0, by retrieving all drugs that produce hearing impairment as side effect from SIDER 2 and their targets from DrugBank and PDSP Ki. An edge was placed between a drug node and a target node if the protein is a target of that drug in the reference database. Drug nodes were minimized in order to visualize the tinnitus target space. Targets were color-coded according to protein family members.

Supplementary Figure S3. Hyperacusis Target Network. A drug-target network was generated with Cytoscape 3.0, by retrieving all drugs that produce hyperacusis as side effect from SIDER 2 and their targets from DrugBank and PDSP Ki. An edge was placed between a drug node and a target node if the protein is a target of that drug in the reference database. Drug nodes were minimized in order to visualize the tinnitus target space. Targets were color-coded according to protein family members.

Supplementary Figure S4. Depression Target Network. A drug-target network was generated with Cytoscape 3.0, by retrieving all drugs that produce depression as side effect from SIDER 2 and their targets from DrugBank and PDSP Ki. An edge was placed between a drug node and a target node if the protein is a target of that drug in the reference database. Drug nodes were minimized in order to visualize the tinnitus target space. Targets were color-coded according to protein family members.

Supplementary Table S1: Side effects. Drugs that produce tinnitus, hearing impairment,

hyperacusis and depression were downloaded from SIDER 2 (http://sideeffects.embl.de) as of

September 2012. (See supplementary excel files).

ATC CODE	Total Drugs	Drugs in Giant Component
A: Alimentary tract and metabolism	17	9
B: Blood and blood forming organs	2	0
C: Cardiovascular system	51	36
D: Dermatologicals	6	3
G: Genito-urinary system	10	6
H: Systemic hormonal preparations	2	0
J: Antiinfectives	25	1
L: Antineoplastic	21	8
M: Musculo-skeletal system	25	21
N: Nervous system	94	85
P: Antiparasitic	3	1
R: Respiratory system	8	7
S: Sensory organs	3	2
V: Various	10	1
GRAND TOTAL	277	180

Supplementary Table S2: Number of drugs in the Drug Network

Supplementary Table S3: Drug Targets. Protein targets were extracted from a drug-target

reference database built with drugs and targets derived from DrugBank

(http://www.drugbank.ca/) and the NIMH Psychoactive Drug Screening Program (PDSP) Ki

Database (<u>http://pdsp.med.unc.edu/pdsp.php</u>), as of September 2012. PubChemID were extracted

from http://pubchem.ncbi.nlm.nih.gov/ and ATC codes from the World Health Organization

Center for drug Statistics Methodology http://www.whocc.no/atc_ddd_index/. Column E

indicates the 1st Level ATC code used for color-coding in Figure 1. (See supplementary excel files).

Supplementary Table S4: Target Description. Gene names were according to the National center for Biotechnology Information (<u>http://www.ncbi.nlm.nih.gov/gene</u>). (See supplementary excel files).

Supplementary Table S5: Tinnitus. Statistical calculations for tinnitus as side effect performed according to Methods. Column B indicates the number of times a target is present in the tinnitus database and C the total times each protein is targeted by drugs in the reference database. Column F, q value after correction for false discovery rate. EF, enhancement factor. (See supplementary excel files).

Supplementary Table S6: Hearing Impaired. Statistical calculations for hearing impairment as side effect performed according to Methods. Column B indicates the number of times a target is present in the tinnitus database and C the total times each protein is targeted by drugs in the reference database. Column F, q value after correction for false discovery rate. EF, enhancement factor. (See supplementary excel files).

Supplementary Table S7: Hyperacusis. Statistical calculations for hyperacusis as side effect performed according to Methods. Column B indicates the number of times a target is present in

the tinnitus database and C the total times each protein is targeted by drugs in the reference database. Column F, q value after correction for false discovery rate. EF, enhancement factor. (See supplementary excel files).

Supplementary Table S8: Depression. Statistical calculations for depression as side effect performed according to Methods. Column B indicates the number of times a target is present in the tinnitus database and C the total times each protein is targeted by drugs in the reference database. Column F, q value after correction for false discovery rate. EF, enhancement factor. (See supplementary excel files).

Supplementary Table S9. PubMed references which support the link of salicylate and suggest the participation of the serotoninergic system and voltage-gated sodium channels in tinnitus.

Salicylate	
reviews including animal and human effects	1, 2, 3, 4, 5, 6, 7, 8
as side effect in humans	9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
animal models	21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
Serotoninergic	
increased c-fos expression in gerbil raphe nucleus	39, 40
increased serotonin levels in rat inferior colliculus and auditory cortex	41
increased plasmatic levels of 5-hydroxyindoleacetic acid in humans	42
serotonin reuptake inhibitors in tinnitus treatment	43, 44, 45, 46, 47, 48, 49
Voltage-gated sodium channels	
inhibition of voltage-gated sodium channels in rat inferior colliculus by lidocaine	50
inhibition of voltage-gated channel currents in rat auditory cortex neurons by salicylate	51, 52
changes in expression of voltage-gated channels after acoustic trauma in rat cochlea	53
tinnitus reduction by lidocaine in patients	54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
tinnitus increase by lidocaine in patients	60, 62
tinnitus reduction by ronivacaine in patients	
unintus reduction by ropivacante in patients	55
tinnitus reduction by tocainide in patients	55 65, 66, 67

- 1. Cazals, Y. Auditory sensori-neural alterations induced by salicylate. *Prog Neurobiol* 2000, 62: 583-631 (2000).
- 2. Chen, G. D., *et al.* Salicylate-induced cochlear impairments, cortical hyperactivity and retuning, and tinnitus. *Hear Res* 2013, 295: 100-113 (2013).
- 3. Eggermont, J. J. Hearing loss, hyperacusis, or tinnitus: what is modeled in animal research? *Hear Res* 2013, 295: 140-149 (2013).
- 4. Evans, E. F., Wilson, J. P. & Borerwe, T. A. Animal models of tinnitus. *Ciba Found Symp* 1981, 85: 108-138 (1981).
- 5. Jastreboff, P. J. & Sasaki, C. T. An animal model of tinnitus: a decade of development. *Am J Otol* 1994, 15: 19-27 (1994).
- 6. Knipper, M., Zimmermann, U. & Muller, M. Molecular aspects of tinnitus. *Hear Res* 2010, 266: 60-69 (2010).
- 7. Puel, J. L. & Guitton, M. J. Salicylate-induced tinnitus: molecular mechanisms and modulation by anxiety. *Prog Brain Res* 2007, 166: 141-146 (2007).
- 8. Stolzberg, D., Salvi, R. J. & Allman, B. L. Salicylate toxicity model of tinnitus. *Front Syst Neurosci* 2012, 6: 28 (2012).
- 9. Chyka, P. A., *et al.* Salicylate poisoning: an evidence-based consensus guideline for outof-hospital management. *Clin Toxicol (Phila)* 2007, 45: 95-131 (2007).
- 10. Day, R. O., *et al.* Concentration-response relationships for salicylate-induced ototoxicity in normal volunteers. *Br J Clin Pharmacol* 1989, 28: 695-702 (1989).
- 11. Grigor, R. R., Spitz, P. W. & Furst, D. E. Salicylate toxicity in elderly patients with rheumatoid arthritis. *J Rheumatol* 1987, 14: 60-66 (1987).
- 12. Halla, J. T., Atchison, S. L. & Hardin, J. G. Symptomatic salicylate ototoxicity: a useful indicator of serum salicylate concentration? *Ann Rheum Dis* 1991, 50: 682-684 (1991).
- 13. Halla, J. T. & Hardin, J. G. Salicylate ototoxicity in patients with rheumatoid arthritis: a controlled study. *Ann Rheum Dis* 1988, 47: 134-137 (1988).
- Janssen, T., Boege, P., Oestreicher, E. & Arnold, W. Tinnitus and 2f1-f2 distortion product otoacoustic emissions following salicylate overdose. *J Acoust Soc Am* 2000, 107: 1790-1792 (2000).

- 15. Jung, T. T., Rhee, C. K., Lee, C. S., Park, Y. S. & Choi, D. C. Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs, and quinine. *Otolaryngol Clin North Am* 1993, 26: 791-810 (1993).
- 16. Myers, E. N. & Bernstein, J. M. Salicylate ototoxicity; a clinical and experimental study. *Arch Otolaryngol* 1965, 82: 483-493 (1965).
- 17. Proudfoot, A. T. Toxicity of salicylates. Am J Med 1983, 75: 99-103 (1983).
- 18. Rivera, W., Kleinschmidt, K. C., Velez, L. I., Shepherd, G. & Keyes, D. C. Delayed salicylate toxicity at 35 hours without early manifestations following a single salicylate ingestion. *Ann Pharmacother* 2004, 38: 1186-1188 (2004).
- 19. Temple, A. R. Acute and chronic effects of aspirin toxicity and their treatment. *Arch Intern Med* 1981, 141: 364-369 (1981).
- 20. Atkinson, M. H., Menard, H. A. & Kalish, G. H. Assessment of salsalate, a nonacetylated salicylate, in the treatment of patients with arthritis. *Clin Ther* 1995, 17: 827-837 (1995).
- 21. Bauer, C. A., Brozoski, T. J., Rojas, R., Boley, J. & Wyder, M. Behavioral model of chronic tinnitus in rats. *Otolaryngol Head Neck Surg* 1999, 121: 457-462 (1999).
- 22. Berger, J. I., Coomber, B., Shackleton, T. M., Palmer, A. R. & Wallace, M. N. A novel behavioural approach to detecting tinnitus in the guinea pig. *J Neurosci Methods* 2013, 213: 188-195 (2013).
- 23. Cheng, K. S., Chen, L. H. & Wang, Y. J. The identification and clustering analysis of auditory neurons for salicylated-induced rat model. *Conf Proc IEEE Eng Med Biol Soc* 2005, 6: 6281-6284 (2005).
- 24. Guitton, M. J. Tinnitus-provoking salicylate treatment triggers social impairments in mice. *J Psychosom Res* 2009, 67: 273-276 (2009).
- 25. Guitton, M. J., *et al.* Salicylate induces tinnitus through activation of cochlear NMDA receptors. *J Neurosci* 2003, 23: 3944-3952 (2003).
- 26. Holt, A. G., Bissig, D., Mirza, N., Rajah, G. & Berkowitz, B. Evidence of key tinnitusrelated brain regions documented by a unique combination of manganese-enhanced MRI and acoustic startle reflex testing. *PLoS One* 2010, 5: e14260 (2010).
- 27. Jastreboff, P. J. & Brennan, J. F. Evaluating the loudness of phantom auditory perception (tinnitus) in rats. *Audiology* 1994, 33: 202-217 (1994).
- 28. Jastreboff, P. J., Brennan, J. F. & Sasaki, C. T. An animal model for tinnitus. *Laryngoscope* 1988, 98: 280-286 (1988).

- 29. Kizawa, K., *et al.* Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats. *Neuroscience* 2010, 165: 1323-1332 (2010).
- 30. Lobarinas, E., *et al.* Effects of the potassium ion channel modulators BMS-204352 Maxipost and its R-enantiomer on salicylate-induced tinnitus in rats. *Physiol Behav* 2011, 104: 873-879 (2011).
- 31. Norena, A. J., Moffat, G., Blanc, J. L., Pezard, L. & Cazals, Y. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma. *Neuroscience* 2010, 166: 1194-1209 (2010).
- 32. Paul, A. K., *et al.* Metabolic imaging of rat brain during pharmacologically-induced tinnitus. *Neuroimage* 2009, 44: 312-318 (2009).
- 33. Ruttiger, L., Ciuffani, J., Zenner, H. P. & Knipper, M. A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus. *Hear Res* 2003, 180: 39-50 (2003).
- 34. Stolzberg, D., *et al.* A novel behavioral assay for the assessment of acute tinnitus in rats optimized for simultaneous recording of oscillatory neural activity. *J Neurosci Methods* 2013, 219: 224-232 (2013).
- 35. Sun, W., Doolittle, L., Flowers, E., Zhang, C. & Wang, Q. High Doses of Salicylate Causes Prepulse Facilitation of Onset-Gap Induced Acoustic Startle Response. *Behav Brain Res* 2013: (2013).
- 36. Wei, L., Ding, D., Sun, W., Xu-Friedman, M. A. & Salvi, R. Effects of sodium salicylate on spontaneous and evoked spike rate in the dorsal cochlear nucleus. *Hear Res* 2010, 267: 54-60 (2010).
- 37. Zheng, Y., Baek, J. H., Smith, P. F. & Darlington, C. L. Cannabinoid receptor downregulation in the ventral cochlear nucleus in a salicylate model of tinnitus. *Hear Res* 2007, 228: 105-111 (2007).
- 38. Zheng, Y., Stiles, L., Hamilton, E., Smith, P. F. & Darlington, C. L. The effects of the synthetic cannabinoid receptor agonists, WIN55,212-2 and CP55,940, on salicylate-induced tinnitus in rats. *Hear Res* 2010, 268: 145-150 (2010).
- 39. Caperton, K. K. & Thompson, A. M. Activation of serotonergic neurons during salicylate-induced tinnitus. *Laryngoscope* 2010, 120 Suppl 4: S203 (2010).
- 40. Caperton, K. K. & Thompson, A. M. Activation of serotonergic neurons during salicylate-induced tinnitus. *Otol Neurotol* 2011, 32: 301-307 (2011).
- 41. Liu, J., *et al.* Effects of salicylate on serotoninergic activities in rat inferior colliculus and auditory cortex. *Hear Res* 2003, 175: 45-53 (2003).

- 42. Kim, D. K., *et al.* Diagnostic value and clinical significance of stress hormones in patients with tinnitus. *Eur Arch Otorhinolaryngol* 2013: (2013).
- 43. Baldo, P., Doree, C., Molin, P., McFerran, D. & Cecco, S. Antidepressants for patients with tinnitus. *Cochrane Database Syst Rev* 2012, 9: CD003853 (2012).
- 44. Oishi, N., *et al.* Effects of selective serotonin reuptake inhibitor on treating tinnitus in patients stratified for presence of depression or anxiety. *Audiol Neurootol* 2010, 15: 187-193 (2010).
- 45. Baldo, P., Doree, C., Lazzarini, R., Molin, P. & McFerran, D. J. Antidepressants for patients with tinnitus. *Cochrane Database Syst Rev* 2006: CD003853 (2006).
- 46. Robinson, S. K., Viirre, E. S. & Stein, M. B. Antidepressant therapy in tinnitus. *Hear Res* 2007, 226: 221-231 (2007).
- 47. Robinson, S. K., *et al.* Randomized placebo-controlled trial of a selective serotonin reuptake inhibitor in the treatment of nondepressed tinnitus subjects. *Psychosom Med* 2005, 67: 981-988 (2005).
- 48. Folmer, R. L. & Shi, Y. B. SSRI use by tinnitus patients: interactions between depression and tinnitus severity. *Ear Nose Throat J* 2004, 83: 107-108, 110, 112 passim (2004).
- 49. Christensen, R. C. Paroxetine in the treatment of tinnitus. *Otolaryngol Head Neck Surg* 2001, 125: 436-438 (2001).
- 50. Yu, M. & Chen, L. Modulation of major voltage- and ligand-gated ion channels in cultured neurons of the rat inferior colliculus by lidocaine. *Acta Pharmacol Sin* 2008, 29: 1409-1418 (2008).
- 51. Liu, Y., *et al.* Inhibition of voltage-gated channel currents in rat auditory cortex neurons by salicylate. *Neuropharmacology* 2007, 53: 870-880 (2007).
- 52. Liu, Y. & Li, X. Effects of salicylate on voltage-gated sodium channels in rat inferior colliculus neurons. *Hear Res* 2004, 193: 68-74 (2004).
- 53. Fryatt, A. G., Mulheran, M., Egerton, J., Gunthorpe, M. J. & Grubb, B. D. Ototrauma induces sodium channel plasticity in auditory afferent neurons. *Mol Cell Neurosci* 2011, 48: 51-61 (2011).
- 54. Shemirani, N., Tang, D. & Friedland, D. R. Acute auditory and vestibular symptoms associated with heat and transdermal lidocaine. *Clin J Pain* 2010, 26: 58-59 (2010).
- 55. Kallio, H., *et al.* I.V. ropivacaine compared with lidocaine for the treatment of tinnitus. *Br J Anaesth* 2008, 101: 261-265 (2008).

- Baguley, D. M., Jones, S., Wilkins, I., Axon, P. R. & Moffat, D. A. The inhibitory effect of intravenous lidocaine infusion on tinnitus after translabyrinthine removal of vestibular schwannoma: a double-blind, placebo-controlled, crossover study. *Otol Neurotol* 2005, 26: 169-176 (2005).
- 57. Kalcioglu, M. T., Bayindir, T., Erdem, T. & Ozturan, O. Objective evaluation of the effects of intravenous lidocaine on tinnitus. *Hear Res* 2005, 199: 81-88 (2005).
- 58. Marzo, S., Stankiewicz, J. A. & Consiglio, A. P. Lidocaine for the relief of incapacitating tinnitus. *Ear Nose Throat J* 2004, 83: 236-238 (2004).
- 59. Otsuka, K., Pulec, J. L. & Suzuki, M. Assessment of intravenous lidocaine for the treatment of subjective tinnitus. *Ear Nose Throat J* 2003, 82: 781-784 (2003).
- 60. Reyes, S. A., *et al.* Brain imaging of the effects of lidocaine on tinnitus. *Hear Res* 2002, 171: 43-50 (2002).
- 61. den Hartigh, J., *et al.* Tinnitus suppression by intravenous lidocaine in relation to its plasma concentration. *Clin Pharmacol Ther* 1993, 54: 415-420 (1993).
- 62. Duckert, L. G. & Rees, T. S. Treatment of tinnitus with intravenous lidocaine: a doubleblind randomized trial. *Otolaryngol Head Neck Surg* 1983, 91: 550-555 (1983).
- 63. Martin, F. W. & Colman, B. H. Tinnitus: a double-blind crossover controlled trial to evaluate the use of lignocaine. *Clin Otolaryngol Allied Sci* 1980, 5: 3-11 (1980).
- 64. Shiomi, Y., *et al.* Tinnitus remission by lidocaine demonstrated by auditory-evoked magnetoencephalogram. A preliminary report. *Acta Otolaryngol* 1997, 117: 31-34 (1997).
- 65. Emmett, J. R. & Shea, J. J. Treatment of tinnitus with tocainide hydrochloride. *Otolaryngol Head Neck Surg* 1980, 88: 442-446 (1980).
- 66. Hulshof, J. H. & Vermeij, P. The effect of intra-venous lidocaine and several different doses oral tocainide HCl on tinnitus. A dose-finding study. *Acta Otolaryngol* 1984, 98: 231-238 (1984).
- 67. Hulshof, J. H. & Vermeij, P. The value of tocainide in the treatment of tinnitus. A double-blind controlled study. *Arch Otorhinolaryngol* 1985, 241: 279-283 (1985).
- 68. Donaldson, I. Tegretol: a double blind trial in tinnitus. *J Laryngol Otol* 1981, 95: 947-951 (1981).

- 69. Levine, R. A. Typewriter tinnitus: a carbamazepine-responsive syndrome related to auditory nerve vascular compression. *ORL J Otorhinolaryngol Relat Spec* 2006, 68: 43-46; discussion 46-47 (2006).
- 70. Mardini, M. K. Ear-clicking "tinnitus" responding to carbamazepine. *N Engl J Med* 1987, 317: 1542 (1987).
- 71. Nam, E. C., Handzel, O. & Levine, R. A. Carbamazepine responsive typewriter tinnitus from basilar invagination. *J Neurol Neurosurg Psychiatry* 2010, 81: 456-458 (2010).