Supporting Information

Freeman et al. 10.1073/pnas.1311724111

Fig. S1. (*A*) Representative traces from ab1 sensilla in control (w^{1118}) flies using 10^{-4} ethyl acetate in an airstream (*Upper*) or by placing it in the electrolyte of the recording electrode (*Lower*). Red dots indicate ab1A neuron spikes. (*B*) Mean responses of ab1C:Gr5a neurons to sensillum lymph ringer electrolyte before and immediately after recording with 100 mM trehalose. Each set of three recordings was taken from the same sensillum. Letters indicate statistical significance (P < 0.001; one-way ANOVA with Tukey's post hoc test; n = 8).

Fig. S2. Dose-dependent responses of ab1C:Gr64a neurons to indicated tastants (n = 6-12).

Fig. S4. A ligand-gustatory receptor (Gr) interaction map indicating relationships identified by mutant analysis and ectopic expression in the ab1C neuron.

Fig. S5. Protein alignment of DmGr43a and AgGr25 with identical amino acids highlighted in yellow. Image was generated with MacVector and Gonnet alignment.

Gr combination in						
ab3A neuron	Genotype	Gq	Stimulus	Mean	SEM	n
Gr64a+Gr64f	UAS–Gr64a/UAS–Gr64f;	+	Trehalose	3	1.15	3
	UAS–Gq/Or22a–GAL4		Sucrose	0.00	0.00	3
Gr5a+Gr64f	UAS–Gr5a/UAS–Gr64f-2;	+	Trehalose	1.33	0.33	3
			Melezitose	0.33	0.33	3
	UAS–Gq/Or22a–GAL4		<i>m</i> -glucoside	0.67	0.88	3
			Glucose	-1.00	0.00	3
Gr64a+Gr43a	UAS–Gr64a/UAS–Gr43a;	+	Sucrose	0.50	0.29	4
	UAS–Gq/Or22a–GAL4		Fructose	0.75	0.48	4
Gr64a+Gr64e	UAS–Gr64a/UAS–Gr64e;	+	Sucrose	0.25	0.25	4
	UAS–Gq/Or22a–GAL4		Glycerol	0.00	0.00	4
Gr64a+Gr64f+Gr64e	UAS–Gr64a/UAS–Gr64e;	_	Trehalose	0.83	0.17	3
	UAS–Gr64f/Or22a–GAL4		Melezitose	1.17	0.60	3
			<i>m</i> -glucoside	0.67	1.76	3
			Glucose	0.67	0.33	3
			Sucrose	0.33	0.33	3
Gr64a+Gr43a+Gr64e	UAS–Gr64a/UAS–Gr64e;	_	Sucrose	2.00	0.00	3
	UAS–Gr43a/Or22a–GAL4		Fructose	1.33	0.33	3
			Glycerol	-0.33	0.88	3
Gr64a+Gr21a+Gr63a	UAS–Gr64a/∆halo;	_	Sucrose	3.33	0.88	3
	UAS–Gr63a,UAS–Gr21a/Or22a–GAL4		Fructose	0.00	1.00	3
			Glycerol	2.00	0.58	3
Gr64a+Gr43a+Gr64e+Gr64f	UAS–Gr64a/UAS–Gr64e, UAS–Gr64f;	-	Sucrose	5.25	0.85	4
	UAS–Gr43a/Or22a–GAL4		Maltose	2.25	0.48	4
			Maltotriose	2.88	0.52	4
Gr64a+Gr21a+Gr63a+Gr43a	UAS–Gr64a/UAS–Gr43a;	-	Sucrose	3.38	0.90	4
	UAS–Gr63a,UAS–Gr21a/Or22a–GAL4		Maltose	1.75	0.48	4
			Maltotriose	0.88	0.59	4
Gr5a+Gr64e+Gr64f+Gr64e	UAS–Gr5a/UAS–Gr64e, UAS–Gr64f;	-	Trehalose	-1.00	0.91	4
	UAS–Gr64b/Or22a–GAL4		Melezitose	0.00	0.00	4
			<i>m</i> -glucoside	-0.50	0.74	4

Table S1. Gr combinations tested in ab3A neurons

PNAS PNAS

Table S2. Genotypes and sources of flies used in experiments

PNAS PNAS

Fly stocks	Genotype and/or source	Figures	References
Wild-type	w[1118]	3A; S3	
Gr21a–GAL4	Kristin Scott		1
Gr63a–GAL4 on III	BDSC (no. 9942)		2
Gr63a–GAL4 on II	BDSC (no. 9943)		2
∆Gr63a	BDSC (no. 9941)		2
UAS–Gr5a	A.D. laboratory		3
UAS–Gr61a	A.D. laboratory		3
UAS–Gr64a	A.D. laboratory		3
UAS–Gr64b	BDSC (no. 27324)		4
UAS–Gr64c	A.D. laboratory		
UAS–Gr64d	A.D. laboratory		
UAS–Gr64e	A.D. laboratory		3
UAS–Gr64f	A.D. laboratory		3
UAS–Gr59c	Carlson laboratory		5
$\Delta Gr 5a$	ΔΕΡ(X)-5	3 A. B. and C: S3	6
∆Gr64f	Gr64f[MB12243], BDSC (#27883)	3 A. B. and C: S3	
∆Gr64e	Gr64e[MB03533], BDSC (#23628)	3 A. B. and C: S3	7
ΔGr61a	Gr61a[1]	3 A, B, and C: S3	3
$\Delta Gr64a$	Gr64a[1]	3 A. B. and C: S3	3
ab1C:Gr5a-2x	UAS-Gr5a-8/UAS-Gr5a-8: Gr63a-GAL4/Gr63a-GAL4	1 B-D and F: 2 A and C:	
(same as ab1C:Gr5a)		3 B and C; S1	
ab1C:Gr5a-1x	UAS–Gr5a-8/+; Gr63a–GAL4/+	1 C and <i>E</i> ; 2 <i>B</i>	
Gr63a–GAL4	UAS–Gr5a-8/+; Gr63a–GAL4/+	1 C and <i>E</i>	
Gr21a–GAL4	Gr21a–GAL4/+; UAS–Gr5a-3/+	1 <i>E</i>	
+Gr63a	UAS–Gr5a-8/UAS–Gr5a-8; Gr63a–GAL4/Gr63a–GAL4	1 <i>F</i>	
–Gr63a	UAS–Gr5a-8/UAS–Gr5a-8; ∆Gr63a,Gr63a–GAL4/∆Gr63a, Gr63a–GAL4	1 <i>F</i>	
ab1C	w[1118]	2A; 4 A, C, and E; S1	
ab1C:Gr64f	UAS–Gr64f-2/UAS–Gr64f-2; Gr63a–GAL4/Gr63a–GAL4	2 A and C; 3 B and C	
ab1C:Gr64e	UAS–Gr64e-3/UAS–Gr64e-3; Gr63a–GAL4/Gr63a–GAL4	2 A and C; 3 B and C	
ab1C:Gr64b	UAS–Gr64b/Gr21a–GAL4; UAS–Gr64b-2/Gr63a–GAL4	2 A and C; 3 B and C	
ab1C:Gr61a	UAS-Gr61a-2/Gr21a-GAL4; Gr63a-GAL4/UAS-Gr61a-4	2 A and C; 3 B and C	
ab1C:Gr64a	UAS–Gr64a-4/UAS–Gr64a-4; Gr63a–GAL4/Gr63a–GAL4	2 A and C; 3 B and C; S2	
ab1C:Gr64c	Gr21a–GAL4/UAS–Gr64c-B: Gr63a–GAL4/UAS–Gr64c-2	2 A and C	
ab1C:Gr64d	Gr21a–GAL4/UAS–Gr64d-4; Gr63a–GAL4/UAS–Gr64d-3	2 A and C	
ab1C:Gr5a+Gr64f	Gr21a–GAL4/UAS–Gr5a-8: Gr63a–GAL4/UAS–Gr64f-3	2 <i>B</i>	
ab1C:Gr5a+Gr64e	Gr21a–GAL4/UAS–Gr5a-8: Gr63a–GAL4/UAS–Gr64e-2L	2 <i>B</i>	
ab1C:Gr5a+Gr64a	UAS-Gr5a-8/UAS-Gr64a-4: Gr63a-GAL4/Gr63a-GAL4	2 <i>B</i>	
ab1C:Gr5a+Gr61a	UAS-Gr5a-8/UAS-Gr61a-2: Gr63a-GAL4/Gr63a-GAL4	2B	
ab1C:Gr5a+Gr64b	Gr21a–GAL4/UAS–Gr5a-8: Gr63a–GAL4/UAS–Gr64b-2	2B	
ab1C:Gr5a+Gr64c	Gr21a–GAI 4/UAS–Gr5a-8: Gr63a–GAI 4/UAS–Gr64c-2	2B	
ab1C:Gr5a+Gr64d	UAS-Gr5a-8/UAS-Gr64d-4: Gr63a-GAI4/Gr63a-GAI4	2B	
ab1C·Gr59c	Gr21a-GAI 4/Gr63a-GAI 4/I/AS-59c-9d I/AS-Gr9c-9d	4 A-C	
+Gr63a	Gr21a-GAI 4/Gr63a-GAI 4/1/AS-59c-9d 1/AS-Gr9c-9d	40	
-Gr63a	$II\Delta S=Gr59c-14dIII\Delta S=Gr5c-14d\cdot \Lambda Gr63a Gr63a=G\Delta I 4/\Lambda Gr63a$	40	
0.000	Gr63a-GAL4		
ab1C:DmGr43a	UAS–Gr43a-8d/Gr21a–GAL4; Gr63a–GAL4/UAS–Gr43a-5d	4 D and E	
ab1C:AgGr25	Gr21a–GAL4/Gr63a–GAL4; UAS–AgGr25-3D/UAS–AgGr25-3L	4 <i>E</i>	
J			

BDSC, Bloomington Drosophila Stock Center.

1. Scott K, et al. (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104(5):661-673.

2. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445(7123):86-90.

3. Dahanukar A, Lei YT, Kwon JY, Carlson JR (2007) Two Gr genes underlie sugar reception in Drosophila. Neuron 56(3):503–516. 4. Jiao Y, Moon SJ, Montell C (2007) A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci USA

104(35):14110–1415.
5. Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in *Drosophila*. *Neuron* 69(2):258–272.

6. Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4(12): 1182–1186.

7. Wisotsky Z, Medina A, Freeman E, Dahanukar A (2011) Evolutionary differences in food preference rely on Gr64e, a receptor for glycerol. Nat Neurosci 14(12):1534–1541.