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1 Covariance between classifiers

Proof of Lemma 1. To prove the lemma we first compute the mean µi = E[fi(X)] and variance V ar[fi(X)]
of the i-th classifier. We then use these results to compute the entries of the population covariance matrix,
qij = E[(fi(X)− µi) · (fj(X)− µj)].

Under the assumption of independence between instances, the population mean of the i-th classifier is

E
[
fi(X)

]
= Pr[fi(X) = 1]− Pr[fi(X) = −1]
=

∑
y∈{−1,1} Pr[fi(X) = 1|Y = y] Pr[Y = y]−

∑
y∈{−1,1} Pr[fi(X) = −1|Y = y] Pr[Y = y].

Using the definitions of sensitivity ψi = Pr[fi(X) = 1|Y = 1], specificity ηi = Pr[fi(X) = −1|Y = −1], and class
imbalance b = Pr[Y = 1]− Pr[Y = −1], the equation above can be expressed as follows,

µi = E
[
fi(X)

]
= ψi

(
1+b
2

)
+ (1− ηi)

(
1−b
2

)
− (1− ψi)

(
1+b
2

)
− ηi

(
1−b
2

)
= ψi − ηi + b (ψi + ηi − 1) = 2δi + b(2πi − 1)

(1)

where πi = (ψi+ηi)/2 is the balanced accuracy of the i-th classifier and δi = (ψi−ηi)/2. Similarly, the population
variance of the i-th classifier is

Var
[
fi(X)

]
= E

[
fi(X)2

]
− E

[
fi(X)

]2
= 1− E

[
fi(X)

]2
= 1− (2δi + b(2πi − 1))

2
. (2)

Next, consider E[fi(X) · fj(X)] for i 6= j. Under the assumption of independence of errors between different
instances and between different classifiers,

E[fi(X) · fj(X)] = Pr[fi(X) = fj(X)]− Pr[fi(X) = −fj(X)]
=

(
1+b
2

)
ψiψj +

(
1+b
2

)
(1− ψi)(1− ψj) +

(
1−b
2

)
(1− ηi)(1− ηj) +

(
1−b
2

)
ηiηj

−
(
1+b
2

)
ψi(1− ψj)−

(
1+b
2

)
(1− ψi)ψj −

(
1−b
2

)
ηi(1− ηj)−

(
1−b
2

)
(1− ηi)ηj

(3)

Combining Eq. 1 and Eq. 3 yields that for i 6= j

E[fi(X) · fj(X)]− E[fi(X)] · E[fj(X)] = (1− b2)(ψi + ηi − 1)(ψj + ηj − 1) = (1− b2)(2πi − 1)(2πj − 1).

Thus, the entries qij of the M ×M covariance matrix of the M classifiers are

qij =

{
1− µ2

i i = j
(2πi − 1)(2πj − 1)

(
1− b2

)
i 6= j

(4)

�.

2 Rank-one Eigenvector Estimation

In this section we describe four approaches to estimate the eigenvector v of the rank one matrix R from the
sample covariance matrix Q̂. We term these methods (i) linear system approach; (ii) weighted linear system
approach; (iii) SDP approach; and (iv) direct eigendecomposition approach. In our simulations we found
that all four approaches gave comparable rankings, though the latter was slightly less accurate (Fig. S1). The
linear system approach (i) had computational complexity comparable to the fastest method of direct eigende-
composition, while providing a ranking of quality comparable to the much more computationally heavy SDP
method. Method (i) was also slightly faster to compute than its weighted counterpart, method (ii), so we chose
it for our benchmarks.

2.1 Linear system

As discussed in the main text, one approach to rank the M classifiers is to construct an estimator R̂ of the
rank-one matrix R, compute its leading eigenvector v̂ and rank the M classifiers by sorting its entries. Given
that E[Q̂] = Q, we estimate the off-diagonal entries of R̂ by those of Q̂, and only need a consistent method to
estimate the diagonal entries. To this end, note that upon the change of variables |rij | = eti · etj , it follows that
in the population setting, for all i 6= j,

log |rij | − ti − tj = log |qij | − ti − tj = 0.

In the finite sample setting, we replace the unknown qij by q̂ij and look for an M -dimensional vector t such that
the relation above holds approximately for all pairs i 6= j,

t̂ = arg min
∑
j>i

(log |q̂ij | − t̂i − t̂j)2. (5)
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Figure S1: Comparison of the four different approaches to estimate the eigenvector of the rank-one matrix R.
The simulated data was constructed as described in section 7.1. The reconstruction quality is measured by
Kendall’s τ correlation coefficient between the entries of the eigenvector estimated by each approach and the true
eigenvector of the rank-one matrix.

From the vector t we estimate the diagonal entries of R as r̂ii = exp(2 · t̂i).
As the functional in Eq. (5) is quadratic, the vector t̂ is efficiently found by solving a system of linear

equations with M unknowns. Since q̂ij → qij as sample size S → ∞, it follows that t̂ is an asymptotically
consistent estimate of t. Consequently the resulting v̂ is a consistent estimate of v, and asymptotically it yields
a perfectly correct ranking of the M classifiers, according to their balanced accuracies.

In practice, to avoid the singularity at zero of the logarithm function, we modify Eq. 5 by summing only over
indices i, j for which |q̂ij | > 2

√
V ar[q̂ij ], where V ar[q̂ij ] is a plug-in estimator of the true variance, given by Eq. 9

from the main text, and the factor 2 is arbitrary.

2.2 Weighted linear system

Similar to the linear system approach presented above, we can instead consider the following weighted least
square problem, where Var[q̂ij ] is given by Eq. 9 from the main text.

t̂ = arg min
∑
j>i

q̂2ij
Var[q̂ij ]

· (log(|q̂ij |)− t̂i − t̂j)2. (6)

The resulting estimator t̂ is also solved via a system of linear equations.

2.3 SDP approach

Here we look for a rank-one matrix R̂ = λ̂v̂v̂T , whose off-diagonal terms are closest to those of Q̂. While the
rank-one constraint is non-convex, its standard relaxation to a trace constraint yields

R̂ = arg min
∑
i 6=j

(q̂ij −Rij)2 + θTrace(R) (7)

subject to R = RT , R � 0 and where θ is a suitably chosen regularization parameter. This is a convex problem,
which can be solved via semi-definite programming [1]. We thus term it SDP approach. While in principle
SDP problems can be solved to arbitrary accuracy in polynomial time in M , this approach is significantly slower
than the two previous ones, which require solutions to systems of linear equations.

2.4 Direct eigendecomposition

Finally, an even simpler approach is to rank the classifiers by directly computing the leading eigenvector of Q̂.
For a finite number of classifiers M , it follows from Lemma 1 that as S →∞, this direct eigen-decomposition
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approach is generally not consistent. However, as the following lemma shows, if the rank one matrix R has a
large spectral gap, λ� 1, then this leading eigenvector is close to the true one.

Lemma S1. Let w be the leading unit-norm eigenvector of the population matrix Q, and let λ be given by Eq. 7
in the main text. Then, (

wTv
)2 ≥ 1− 2

λ
. (8)

Proof : Let λ(Q) be the leading eigenvalue of Q with corresponding unit-norm eigenvector w. Let λ be the
eigenvalue of the rank-one matrix R with corresponding unit-norm eigenvector v. First, note that

Q = R+D (9)

where D is a diagonal matrix with entries

dii = 1− µ2
i − (1− b2)(2πi − 1)2.

Hence ‖D‖2 = maxi |dii| ≤ 1. It thus readily follows from Weyl’s theorem that

|λ(Q)− λ| ≤ ‖D‖2 ≤ 1. (10)

Now, multiplying the eigenvector equation Qw = λ(Q)w from the left by wT , and inserting the relation (9) gives
that

λ(Q) = λ
(
wTv

)2
+ wTDw.

The lemma follows by combining Eq. 10 with the bound |wTDw| ≤ 1. �.

Note that if all classifiers in the ensemble have a balanced accuracy bounded away from 1/2, then λ = O(M)
and then for M � 1, the angle between v and w is small.

Finally, we note that this direct eigendecomposition approach is equivalent to ranking classifiers by a singular
value decomposition (SVD) of the S × M mean-centered matrix of predicted labels fi(xk). This approach,
although apparently without the mean-centering operation, was recently suggested in [2], which proposed the
j-th entry in the leading right singular vector as a proxy for the reliability of the j-th classifier. Our work provides
a probabilistic interpretation to this approach, as it shows that the entries of w, which is also the leading right
singular vector of the (mean-centered) matrix fi(xk), are approximately those of v, which in turn are proportional
to the balanced accuracies of the classifiers.

2.5 Asymptotic Eigenvector Stability

We now consider the asymptotic stability of the estimated eigenvector to small perturbations due to finite sample
fluctuations in our estimate Q̂. First note that for all i 6= j, q̂ij − qij = O(1/

√
S). It thus follows that upon

solving the linear system for the vector t, asymptotically its errors are also O(1/
√
S), and hence for all i 6= j, we

may assume that r̂ij − rij = O(1/
√
S).

To understand how these fluctuations affect the estimation of the leading eigenvector of the rank one matrix
R, we consider the one-parameter family of matrices R̂(ε) = R + εB where B =

√
S(R̂ − R) is a matrix whose

entries are all O(1). By definition, at ε = 1/
√
S we have that R̂(ε) = R̂. We thus view ε as a small parameter,

study the dependence of the leading eigenvector of R̂(ε) on ε, and eventually plug in ε = 1/
√
S.

Given that both R and B are symmetric, standard results from matrix perturbation theory [3] imply that
for sufficiently small ε the leading eigenvector and eigenvalue of R̂(ε) are analytic functions of ε. At ε = 0, these
resort to the eigenvector v and eigenvalue λ of the exact rank one matrix R. For small ε > 0 we may thus expand

λ̂(ε) = λ+ ελ(1) + ε2λ(2) + . . .

v̂(ε) = v + εv(1) + ε2v(2) + . . .

Inserting this expansion into the eigenvalue-eigenvector equation R̂(ε)v̂(ε) = λ̂(ε)v̂(ε), and equating powers of ε
gives that the O(ε) equation reads

Rv(1) +Bv = λv(1) + λ(1)v. (11)

Since the eigenvector v̂(ε) is defined only up to a normalization constant, we conveniently chose it to be that
vT v̂(ε) = 1 for all ε, which in particular implies that vTv(1) = 0.

Now multiplying Eq. 11 from the left by vT gives that λ(1) = vTBv and

v(1) =
1

λ
(I − vvT )†

(
B − vTBv

)
v (12)

where A† denotes the Moore-Penrose pseudo-inverse of A.
The key point from Eq. 12 is that for a given spectral gap of size λ of the rank-one matrix R, asymptotically

in S, the perturbation in the leading eigenvector estimate is v̂ − v = O( 1
λ

1√
S

).
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3 Spectral Meta-Learner

In this section we present the derivation of the Spectral Meta-Learner (SML) as a linearization of the maximum
likelihood estimator (MLE) of the vector of true class labels around (ψ∗, η∗) = (1/2, 1/2).

3.1 Maximum Likelihood Estimator (MLE)

Under the assumption of independence between classifier errors and between instances, given the specificities and
sensitivities of the M classifiers, the overall likelihood of the labels of all S instances is a product of the likelihood
of each individual instance label. Hence, for each instance xk its class label yk can be estimated independently

of the class labels of all other instances. The MLE ŷ
(ML)
k of yk is

ŷ
(ML)
k = argmax {log L(f1(xk), . . . , fM (xk); yk = 1), log L(f1(xk), . . . , fM (xk); yk = −1)}

= sign (log L(f1(xk), . . . , fM (xk); yk = 1)− log L(f1(xk), . . . , fM (xk); yk = −1))

= sign

 ∑
i|fi(xk)=1

logψi +
∑

i|fi(xk)=−1

log(1− ψi)−
∑

i|fi(xk)=1

log(1− ηi)−
∑

i|fi(xk)=−1

log ηi


= sign

( ∑
i|fi(xk)=1

(logψi − log(1− ηi)) +
∑

i|fi(xk)=−1

(log(1− ψi)− log ηi)

)

Next, note that the conditions fi(xk) = 1 and fi(xk) = −1 in the two sums above can be represented by the
following two indicator functions,

1 + fi(xk)

2
=

{
0 fi(xk) = −1
1 fi(xk) = 1

and
1− fi(xk)

2
=

{
1 fi(xk) = −1
0 fi(xk) = 1

.

Using these indicator functions allows to express the MLE as a function of ψi and ηi as follows

ŷ
(ML)
k = sign

(∑
i

1 + fi(xk)

2
(logψi − log(1− ηi)) +

∑
i

1− fi(xk)

2
(log(1− ψi)− log ηi)

)

= sign

(
M∑
i=1

fi(xk) logαi + log βi

)
(13)

where

αi =
ψiηi

(1− ψi)(1− ηi)
and βi =

ψi(1− ψi)
ηi(1− ηi)

. (14)

3.2 The SML: A first-order approximation of the MLE estimator

Combining Eqs. 13 and 14, the maximum likelihood estimate ŷ
(ML)
k of the label yk of the instance xk is

ŷ
(ML)
k = sign

(∑
i

fi(xk) log

(
ψiηi

(1− ψi)(1− ηi)

)
+ log

(
ψi(1− ψi)
ηi(1− ηi)

))
. (15)

A first-order Taylor expansion of the logarithms, around specificity and sensitivity values (ψ∗i , η
∗
i ) gives

M∑
i=1

fi(xk) logαi + log βi =
∑
i

fi(xk) log
( ψ∗i η

∗
i

(1− ψ∗i )(1− η∗i )

)
+ log

(ψ∗i (1− ψ∗i )

η∗i (1− η∗i )

)
+fi(xk)

(
ψi − ψ∗i
ψ∗i

+
ηi − η∗i
η∗i

+
ψi − ψ∗i
1− ψ∗i

+
ηi − η∗i
1− η∗i

)
+

(
ψi − ψ∗i
ψ∗i

− ηi − η∗i
η∗

− ψi − ψ∗i
1− ψ∗i

+
ηi − η∗i
1− η∗i

)
+O((ψi − ψ∗i )2, (ηi − η∗i )2, (ψi − ψ∗i ) · (ηi − η∗i ))

=
∑
i

fi(xk) log

(
ψ∗i η

∗
i

(1− ψ∗i )(1− η∗i )

)
+ log

(
ψ∗i (1− ψ∗i )

η∗i (1− η∗i )

)
+(ψi − ψ∗i )

fi(xk)− (2ψ∗i − 1)

ψ∗i (1− ψ∗i )
+ (ηi − η∗i )

fi(xk) + (2η∗i − 1)

η∗i (1− η∗i )

+O((ψi − ψ∗i )2, (ηi − η∗i )2, (ψi − ψ∗i ) · (ηi − η∗i ))
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At the specific values (ψ∗, η∗) = (1/2, 1/2), where 2ψ∗i − 1 = 2η∗i − 1 = 0, the Taylor expansion above simplifies
considerably. Inserting the resulting expression back into Eq. (15) yields

ŷ
(SML)
k = sign

(∑
i

fi(xk) (ψi + ηi − 1)

)
= sign

(∑
i

fi(xk) (2πi − 1)

)
= sign

(∑
i

fi(xk)vi

)
,

where v ∈ RM is the leading eigenvector of the rank-one matrix R, as described in the main text. We thus call
this unsupervised ensemble-classifier the Spectral Meta-Learner (SML).

4 Comparison between SML and Majority Voting

In the present section we provide insights into the potential advantages of SML over majority voting. To this end,
we study the performance of these two unsupervised ensemble learners in the specific case where all classifiers,
except one, have equal sensitivities and specificities. We prove that the resulting balanced accuracy of the
weighted voting scheme employed by SML is greater than or equal to the balanced accuracy of majority voting.
It is also greater than the balanced accuracy of the best algorithm in the ensemble, up to a small constant.

Lemma S2. Consider an ensemble of M conditionally independent classifiers such that the first classifier has
sensitivity and specificity ψ1 = η1 = π1, and the remaining M − 1 classifiers have all the same specificity and
sensitivity ψ = η = π. Let πVo be the resulting balanced accuracy of majority voting and let πSML be the balanced
accuracy of an (oracle) SML classifier, whose weights assume perfect knowledge of the values π1 and π. Then,
for any value of π1 and π (with π > 1/2),

(i) The balanced accuracy of SML is always greater than or equal to that of majority voting,

πSML ≥ πVo. (16)

(ii) The balanced accuracy of SML is always greater than or equal to that of the M − 1 classifiers,

πSML ≥ π. (17)

(iii) The balanced accuracy of SML is greater than or equal to that of the first classifier, up to a small constant,

πSML ≥ π1 − exp
(
−2ε2(M − 1)

)
, (18)

with ε =
(
1 + (M − 1)(2π − 1)2

)
/ (2(M − 1)(2π − 1)).

Remarks: Albeit for the specific case where π1 = π, this lemma yields five insights:
(i) The performance of SML is higher than that of majority voting. Intuitively, this is expected since SML,

being a Taylor approximation of the MLE, has weights closer to the optimal ones, in contrast to the equal weights
employed by majority voting.

(ii) The second insight is that SML is more accurate than most classifiers in the ensemble. This is not
necessarily true for majority voting. For example, in a challenging classification problem where most classifiers
in an ensemble are slightly better than random and one classifier is much worse than random, majority voting
can have a balanced accuracy smaller than 1/2.

(iii) Eq. 18 may seem disappointing at first sight, as it states that there may be cases where SML has a
lower accuracy than the best classifier in the ensemble. However, this is to be expected, since SML follows from
a Taylor expansion of the maximum likelihood solution at specificity and sensitivity values of 1/2 (e.g., close
to being totally random). Thus, SML is a conservative meta-classifier. For example, if the first classifier had
perfect balanced accuracy, π1 = 1, then its weight in the maximum likelihood solution would be infinite, with
effectively zero weights for all other classifiers, see Eq. 14. In contrast, SML gives finite and non-zero weights to
all classifiers, provided they are not totally random (π 6= 1/2). Hence, it may in general be worse than the best
classifier in the ensemble. Eq. 18 states, however, that even in this extreme case, the difference in performance
between SML and the best classifier is small and it decreases exponentially with the number of classifiers.

(iv) For simplicity we state and prove the lemma assuming that the exact values of π and π1 are provided
by an oracle. As discussed in Section 2.5, with a finite unlabeled dataset consisting of S samples, these values
can be estimated with accuracy O(1/

√
S). These estimation errors affect only the SML classifier (as majority

voting gives equal weights to all classifiers), and imply that claims (i), (ii) and (iii) hold, up to additional small
O(1/

√
S) terms.

(v) Both in the statement of the lemma and in its proof, when a weighted ensemble classifier of the form
sign(

∑
j ajfj(x)) gives a result of zero for the argument inside the sign, to output a ±1 class label, we flip a coin

at random with probability 1/2 and output its result.
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Proof: Under the assumptions of the lemma, it follows that for the corresponding majority voting classifier
πVo = ψVo = ηVo, and similarly, πSML = ψSML = ηSML. Hence, it suffices to show that claims (i), (ii) and (iii)
hold only for the respective sensitivities.

We start by proving claim (i). To this end, we first consider the case where π1 = π, or equivalently ψ1 = ψ.
In this case SML and majority voting yield the same classifier, whose sensitivity is given by the probability that
more than half of the classifiers make a correct prediction. This probability is given by the tail of the binomial
cumulative distribution function,

ψSML

∣∣∣
ψ1=ψ

= ψVo

∣∣∣
ψ1=ψ

= ψequal =

j≤M∑
j>bM/2c

ψj(1− ψ)M−j
(
M

j

)
= 1− F

(
M

2
;M,ψ

)
, (19)

where bM/2c denotes the floor (or integer truncation) operation and F (k;n, p) is the probability of at most bkc
successes in a Binomial distribution with n independent trials of success probability p,

F (k;n, p) =

bkc∑
i=0

(
n

i

)
pi(1− p)n−i. (20)

Next, we analyze the sensitivity of majority voting when ψ1 6= ψ. By conditioning on the outcome of the first
algorithm (giving either a correct or incorrect prediction), it follows from Eq. 19 that

ψVo = ψ1

[
1− F

(
M
2 − 1;M − 1, ψ

)]
+ (1− ψ1)

[
1− F

(
M
2 ;M − 1, ψ

)]
= 1− F

(
M
2 ;M − 1, ψ

)
+ ψ1

[
F
(
M
2 ;M − 1, ψ

)
− F

(
M
2 − 1;M − 1, ψ

)]
. (21)

Importantly, ψVo depends linearly on ψ1 and thus its partial derivative ∂ψVo/∂ψ1 is constant

∂ψVo

∂ψ1
= F

(
M
2 ;M − 1, ψ

)
− F

(
M
2 − 1;M − 1, ψ

)
= F (M−12 + 1

2 ;M − 1, ψ)− F (M−12 − 1
2 ;M − 1, ψ) (22)

Now we consider the sensitivity of the SML classifier. Recall that in SML the first classifier is weighted
differently from the other classifiers in the ensemble, proportionally to 2ψ1 − 1. We define its relative weight
as

θ =
2ψ1 − 1

2ψ − 1
. (23)

Again conditioning on the outcome of the first classifier, we have that

ψSML = ψ1

[
1− F (M−12 − θ

2 ;M − 1, ψ)
]

+ (1− ψ1)
[
1− F (M−12 + θ

2 ;M − 1, ψ)
]

(24)

Note that due to the floor operation in computing the stair-case cumulative distribution function F , ψSML is a
piecewise linear function of ψ1. It is thus not differentiable at values of ψ1 for which (M−1)/2±θ/2 is an integer.
In addition, some values of ψ1 for which (M − 1)/2 ± θ/2 is an integer correspond to isolated local minima in
the function of ψSML. These local minima can be effectively replaced by their left (or right) limit limθ→θ± ψSML,
thus obtaining a piecewise linear function without isolated points.

At any other value of ψ1, ψSML can be differentiated w.r.t. ψ1. Since the cumulative distribution is constant
for sufficiently small positive or negative changes in ψ1, it follows that

∂ψSML

∂ψ1
= F (M−12 + θ

2 ;M − 1, ψ)− F (M−12 − θ
2 ;M − 1, ψ) (25)

Comparing Eq. 25 to Eq. 22, we note that for ψ1 > ψ, for which θ > 1, we have that ∂ψSML

∂ψ1
≥ ∂ψVo

∂ψ1
, whereas for

ψ1 < ψ, for which θ < 1, it follows that ∂ψSML

∂ψ1
≤ ∂ψVo

∂ψ1
. Since at ψ1 = ψ, the two ensemble classifiers coincide, it

follows that claim (i) holds (see figure S2 for an illustrative example).
Now we turn to prove claim (ii), that ψSML ≥ ψ. To this end, note that when the first algorithm is random,

π1 = ψ1 = 1/2, according to Eq. 23 we have θ = 0, and thus, from Eq. 25 it follows that

∂ψSML

∂ψ1

∣∣∣
ψ1=1/2

= 0.

Furthermore, for ψ1 > 1/2 this derivative is positive, whereas for ψ1 < 1/2 the derivative is negative. We thus
conclude that ψ1 = 1/2 is a global minima of ψSML as a function of ψ1. Furthermore, when ψ1 = 1/2, the first
algorithm has no weight, and the sensitivity of the SML classifier is the same as that of majority voting, based
on M −1 conditionally independent classifiers, all with balanced accuracy equal to ψ. It thus readily follows that
claim (ii) holds.
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To finish the proof of the lemma, we now consider claim (iii). First, observe that if ψ > ψ1, then ψSML > ψ1.
We therefore focus on the case ψ1 > ψ. When ψ1 = 1, θ = 1/(2ψ − 1) and

ψSML

∣∣∣
ψ1=1

= 1− F
(
M−1

2 − 1
2

1
2ψ−1 ;M − 1, ψ

)
. (26)

As discussed in remark (iii) after the lemma, the value of ψSML can be strictly smaller than one in this case,
meaning that SML is not always as good as the best classifier in the ensemble.

However, we now show that if the M − 1 remaining classifiers have balanced accuracy better than random,
then SML has balanced accuracy close to π1. To prove Eq. 18 of claim (iii), first note that according to Eq. 25,
∂ψSML/∂ψ1 ∈ [0, 1] for all ψ1 ≥ ψ. Hence, as ψ1 is decreased from a value of 1, ψSML decreases slower than ψ1

itself. Thus, to prove the claim, it suffices to show that at the extreme case ψ1 = 1,

F
(
M−1

2 − 1
2

1
2ψ−1 ;M − 1, ψ

)
≤ exp(−2ε2(M − 1)).

To this end, we apply Hoeffding’s inequality for i.i.d. Bernoulli random variables (namely that for a random
variable X ∼ Bin(n, ψ), Pr[X ≤ n(ψ − ε)] = F (n(ψ − ε);n, ψ) ≤ exp(−2ε2n)). In our case, n = M − 1, and
comparing

M − 1

2
− 1

2

1

2ψ − 1
= (M − 1)(ψ − ε) (27)

gives ε =
(
1 + (M − 1)(2ψ − 1)2

)
/ (2(M − 1)(2ψ − 1)). Plugging this into Hoeffding’s inequality concludes the

proof. �.

5 Covariance between classifiers in presence of a cartel

Proof of Lemma 2. As in the proof of Lemma 1, for each classifier fi we first compute its mean and variance,
µi = E[fi(X)] and V ar[fi(X)], respectively. We then use these results to compute the entries of the population
covariance matrix, qij = E[(fi(X)− µi) · (fj(X)− µj)].

The mean and variance of honest classifiers with indices i ∈ P have already been computed in the proof of
Lemma 1. We now consider the mean and variance of classifiers i ∈ C that belong to the cartel. For brevity, we
denote by ψc, ηc and πc the specificity, sensitivity and balanced accuracy of the cartel target with respect to the
ground truth,

ψc = Pr[T = 1|Y = 1], ηc = Pr[T = −1|Y = −1], πc = 1
2 (ψc + ηc).

Furthermore, for each i ∈ C, we denote by pi and ni its specificity and sensitivity w.r.t. the cartel target,

pi = Pr[fi(X) = 1|T = 1], ni = Pr[fi(X) = −1|T = −1]. (28)

Under the assumption of independence between instances, the mean of a cartel member with i ∈ C is

E
[
fi(X)

]
= Pr[fi(X) = 1]− Pr[fi(X) = −1]
=

∑
t,y∈{−1,1} Pr[fi(X) = 1|T = t] Pr[T = t|Y = y] Pr[Y = y]

−
∑
t,y∈{−1,1} Pr[fi(X) = −1|T = t] Pr[T = t|Y = y] Pr[Y = y]

which, after simple algebraic manipulations, simplifies to

E
[
fi(X)

]
= b(1−ψc − ηc + ni(ψc + ηc − 1) + pi(ψc + ηc − 1)) + ni(ψc − ηc − 1) + pi(ψc − ηc + 1) + ηc −ψc (29)

Similarly, as in Lemma 1, the population variance of the i-th classifier is

Var
[
fi(X)

]
= E

[
fi(X)2

]
− E

[
fi(X)

]2
= 1− E

[
fi(X)

]2
. (30)

Next, we compute E[fi(X) · fj(X)]. The case i, j ∈ P was already considered in the proof of Lemma 1,
whereas the case i, j ∈ C can be deduced from it, with the truth replaced by the cartel’s target T . Thus,

E[fi(X) · fj(X)] =

{
(2πi − 1)(2πj − 1)(1− b2) i 6= j, i ∈ P, j ∈ P
(2ξi − 1)(2ξj − 1)(1− b2) i 6= j, i ∈ C, j ∈ C (31)

It thus remains to compute E[fi(X) · fj(X)] for the mixed case with i ∈ P and j ∈ C. Under the assumption of
independence of errors between different instances and between different classifiers,

E[fi(X) · fj(X)] = Pr[fi(X) = fj(X)]− Pr[fi(X) = −fj(X)]
= ((2ψi − 1)((1− 2nj)(1− ψc)− (1− 2pj)ψc))(1 + b)/2

+((2ηi − 1)((1− 2pj)(1− ηc)− (1− 2nj)f))(1− b)/2

8



Combining the three equations above yields that for i ∈ P, j ∈ C

E[fi(X) · fj(X)]− E[fi(X)] · E[fj(X)] = (1− b2)(ψi + ηi − 1)(ψc + ηc − 1)(nj + pj − 1)
= (1− b2)(2πi − 1)(2πc − 1)(2ξj − 1)

Thus, the entries qij of the M ×M covariance matrix between the M classifiers are

qij =


1− µ2

i i = j
(2πi − 1)(2πj − 1)

(
1− b2

)
i 6= j, i ∈ P, j ∈ P

(2πi − 1)(2πc − 1)(2ξj − 1)
(
1− b2

)
i ∈ P, j ∈ C

(2ξi − 1)(2ξj − 1)
(
1− b2

)
i 6= j, i ∈ C, j ∈ C

(32)

�.

6 Matrix rank and leading eigenvectors in presence of a cartel

Proof of Theorem 1. To simplify notation, we make the following convenient change of variables:

ρi = 2πi − 1, τi = 2ξi − 1, u = (1− b2), and ρc = 2πc − 1

where πc is the balanced accuracy of the cartel with respect to the truth. In this notation, for indices i ∈ P, j ∈ C
as an example, we have the compact representation qij = uρiτjρc.

Our proof of the theorem is constructive: we explicitly construct λ1, λ2 ∈ R and two orthonormal vectors
e1, e2 ∈ RM such that for all i 6= j

qij = λ1e1ie1j + λ2e2ie2j . (33)

Furthermore, as we prove below, these eigenvectors have in fact the following specific form√
λ1e1i =

{ √
u · a11ρi i ∈ P√
u · a21τi i ∈ C

√
λ2e2i =

{ √
u · a12ρi i ∈ P√
u · a22τi i ∈ C (34)

where a11, a12, a21, a22 are scalars yet to be determined.
The requirement that the eigenvectors e1, e2 are orthogonal, namely that

∑
i e1ie2i = 0, implies that

a11a12
∑
i∈P

ρ2i + a21a22
∑
j∈C

τ2j = 0. (35)

Next, comparing the exact values of qij , Eq. 32, with our assumed form above gives the following set of equations, uρiρj = u · a211ρiρj + u · a212ρiρj i ∈ P, j ∈ P
uρiρcτj = u · a11a21ρiτj + u · a12ρi · a22τj i ∈ P, j ∈ C
uτiτj = u · a21τi · a21τj + u · a22τi · a22τj i ∈ C, j ∈ C

(36)

Hence, for Eq. 33 to hold, a11, a12, a21 and a22 should satisfy the following set of equations
a211 + a212 = 1

a11a21 + a12a22 = ρc
a221 + a222 = 1

(a11a12)/(a21a22) = −
(∑

j∈C τ
2
j

)
/
(∑

i∈P ρ
2
i

)
= −λC/λP

, (37)

where λC = (1− b2)
∑
i∈C(2ξi − 1)2 and λP = (1− b2)

∑
i∈P (2πi − 1)2.

We now show that this set of equations indeed has a unique solution, up to the trivial sign ambiguities in the
definition of the two eigenvectors. To this end, note that the following change of variables, a11 = cosα, a12 =
sinα, a21 = sinβ, and a22 = cosβ, reduces the system in Eq. 37 to{

sin (α+ β) = k1
sin (2α) / sin (2β) = −k2

(38)

where k1 = ρc and k2 = λC/λP .
To solve this system, note that standard trigonometric equalities applied to the first equation above give that

sin 2(α+ β) = 2k1

√
1− k21 and cos 2(α+ β) = 1− 2k21. (39)

Next, rewrite the second equation as sin(2(α+ β)− 2β) + k2 sin(2β) = 0, and expand the first term. This gives

sin(2α) + k2 sin 2(α+ β) cos(2α)− k2 cos(2(α+ β)) sin(2α) = 0
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or equivalently,

tan(2α) = − k2 sin(2(α+ β))

1− k2 cos(2(α+ β))

Combining this with Eq. 39 gives

α =
1

2
arctan

(
k1k2

k2(1− 2k21)− 1

)
.

Similarly, writing the second equation as sin(2(α+ β)− 2β) + k2 sin(2β) = 0 and expanding gives

tan(2β) = − sin(2δ)

k2 − cos(2δ)

whose solution is

β =
1

2
arctan

(
2k1
√

1− k21
1− k2 − 2k21

)
.

Consistent with the sign ambiguity of the eigenvectors, these solutions for α and β are unique up to a
rotation with periodicity π

2 . The expressions for the eigenvectors and their respective eigenvalues readily follow
by back-substitution into Eq. 34. �

7 Simulations and benchmarks

The following section describes how we generated the simulated data and how we performed the benchmarks.
For each component of the simulation we also provide pseudo-code.

7.1 Simulated data: Ensembles of statistically independent predictions

We generated ensembles of statistically independent predictions using the random detector with fixed balanced
accuracy (RDFBA) algorithm [4]. A generic RDFBA predictor with pre-determined empirical balanced accuracy
π on a test set with T samples, is denoted as RDFBA(π). Given a test data with T samples, a collection of
RDFBAs is constructed such that any two classifiers are conditionally independent and such that their empirical
balanced accuracy on the test data is equal to π. Note that two RDFBAs with the same balanced accuracy π
may nonetheless have different sensitivity ψ and specificity η.

To briefly describe the construction we use the following standard notation: Let P be the number of positives,
i.e. the number of instances whose true class label is +1; N is the number of negatives, where T = P + N; FP
is the number of false positives, i.e. the number of negatives that have been mistakenly predicted as positives;
FN is the number of false negatives. An RDFBA(π) classifier is constructed from the ground truth vector y as
follows:

1. Initialize the entries of the prediction vector f(x) with the corresponding entries in the ground truth y.

2. Under the constraint that FN = (2− 2π−FP/N) ·P is an integer, draw a random integer FP with uniform
probability from [0,N].

3. FP randomly chosen instances in f(x), whose true label is −1, are assigned the wrong class label, +1.

4. FN randomly chosen instances in f(x), whose true label is +1, are assigned the wrong class label, −1.

In our simulations, we used π ∼ U(0.3, 0.8) and a total of T = 10000 samples, from which we randomly
sampled 300 positive and 300 negative instances, to form our test data D of size S = 600 samples. Hence, the
empirical balanced accuracy of the RDFBA classifiers on the test data D may be slighly higher than 0.8 or lower
than 0.3.

7.2 Simulated data: Ensembles of independent predictors with one cartel present

To generate datasets of conditionally independent predictors which include a cartel with r ·M predictors, we
applied the following steps: First, we generated an ensemble P of (1− r)M independent predictions as described
above for the ground truth vector y. Then, using another RDFBA predictor, we constructed the cartel’s target
vector c, such that it had an empirical balanced accuracy πc with respect to the ground truth. Next, using this
vector c we constructed an ensemble C of independent predictions, as in the procedure described above, with
the only difference that the balanced accuracies of all members of the cartel relative to the cartel’s target were
set to be equal to 0.7. The dataset is obtained by the union of the two ensembles of predictions, P and C. In
our simulations we used πc = 0.5 thus obtaining a cartel’s target that is orthogonal to the ground truth.
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7.3 Real data: Ensembles of predictions from standard machine-learning classifiers

To generate ensemble of predictions from standard machine-learning classifiers on real data, we trained the
classifiers on partially overlapping training data and collected their predictions obtained on the same test data,
which was independent from all the training data. In detail, from each dataset we sampled 600 instances (or all
the instances if less than 600 were available), half of which (up to 300) were used for testing. Independently for
each classifier, we selected a random subset comprising of 90% of the instances reserved for training and used this
subset as a ”private” training set. The purpose of this procedure was to produce training data that was slightly
different between the different classifiers, while at the same time allowing to have a significantly large number of
training samples even in the smaller datasets. We chose to use at most 600 instances to reduce computational
time. To determine the empirical distribution of performances of each classifier and of the ensemble approaches
discussed in the manuscript, for each dataset we repeated this procedure 1000 times, unless otherwise specified
in the figure caption.

7.4 Custom Real datasets: Ensembles of predictions from standard machine-learning classifiers

To generate ensemble of predictions from standard machine-learning classifiers on custom datasets from big-data
repositories, we trained the classifiers on non-overlapping training data and collected their predictions obtained
on the same testing data, which was independent from all the training data. In detail, from each dataset we
sampled 50,000 instances (or half of the instances if less than 50,000 were available), and, independently for each
classifier, we selected a random subset comprising of 500 instances for training. The purpose of this procedure
was to produce training data that had the potential to be markedly different between the different classifiers. We
chose to use at most 500 instances to reduce the computational time and memory usage required for training. To
determine the empirical distribution of performances of each classifier and of the ensemble approaches discussed
in the manuscript, for each dataset we repeated this procedure 30 times, unless otherwise specified in the figure
caption.

8 Custom datasets

In addition to eight standard machine learning datasets from the UCI repository, which are described in the
first part of Table S1, we created nine additional datasets from publicly available data in the fields of economics,
sociology, geography, semantics, ecology, and finance (see second part of this table).

As these datasets are not readily available, we provide scripts to generate the corresponding matrices of
features and class labels. These matrices can be used to train the set of 33 standard machine learning algorithms
described in Table S2 and subsequently apply the SML and iMLE approaches described in the main text.

The scripts are available at http://sourceforge.net/projects/klugerlab/files/SML customdatasets

8.1 ACS

This dataset was constructed from surveys conducted by the American Community Survey in 2009. The data
provides information about a geographical area, including education levels, household income, demographics,
household size, gender statistics and age groups. The classification task was to predict the geographical location
of an area based on sociological and economical parameters of the region. The class label was equal to 1 if the
center of the geographical unit had a decimal latitude above 39.09916, which corresponds to the latitude of the
16th Circuit Court of Jackson County in Missouri, USA.

8.2 AMEX

The dataset was constructed from the daily opening, closing, high and low prices, as well as traded volumes, for
stocks at the American Stock Exchange between 1970 and 2010. For each stock, we divided the time series into
segments of 10 days. The task was to identify whether the highest price at the tenth day had a 5% increase over
the highest price at the ninth day, using only information from day 1 to day 9. A class label of one indicated
that

highday10 − highday9
highday9

> 1.05

8.3 ENRON

This dataset was constructed based on the email exchanges from employees at ENRON. The collection contains
emails from about 150 users, mostly senior management of Enron, made public and posted to the web by the
Federal Energy Regulatory Commission during its investigation. For each email we constructed a feature space
corresponding to the histogram of occurrences of manually selected keywords. The task was to predict whether
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an email included email addresses from a domain that is different from enron.com. A class label of 1 indicated
that at least one of the addresses in the To, CC or BCC fields of the email contained a different domain than
enron.com

8.4 GEO

The dataset was constructed from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the Indicators of
Coastal Water Quality Collection, originally collected to determine concentrations of chlorophyll-a in the coastal
water. The data consists of gridded satellite measurements of chlorophyll-a concentrations (in nanogram/cubic
meter) in a band extending between 10 and 100 km from the shoreline [14]. The grids are annual composites
at a resolution of 5 arc-minutes (approximately 9 x 9 km at the equator). The gridding was done by the
Columbia University Center for International Earth Science Information Network (CIESIN). In our dataset,
features correspond to measurements from previous years for the same geographical unit, as well as convolution
of yearly measurements, the latest being in 2007, using different random kernels of increasing size. The task
was to predict whether coastal chlorophyll-a increased in 2008 relative to 2007. A class label of 1 indicated that
chlorophyll-a indeed increased in 2008 relative to 2007.

8.5 LASTFM

The dataset was constructed from tags assigned by listeners to songs broadcast by the online service Last.FM
in 2007 ( http://musicmachinery.com/2010/11/10/lastfm-artisttags2007/ ). We selected the most common 995
tags in the entire dataset and described each song as the histogram of counts for these 995 tags. The task was to
identify whether a song was ever tagged, at least once, with a tag containing the word ”favorite”. A class label
of 1 indicated that the song had at least one user assigning a tag containing the word ”favorite”.

8.6 NASDAQ

The dataset was constructed from the daily opening, closing, high and low prices, as well as traded volumes, for
stocks at the National Association of Securities Dealers Automated Quotations Stock Exchange between 1970
and 2010. For each stock, we divided the time series into segments of 10 days. The task was to identify whether
the opening price at the tenth day was higher than the closing price at the ninth day, using only information
from day 1 to day 9. A class label of one indicated that

openday10 > closeday9

8.7 NYSE

The dataset was constructed from the daily opening, closing, high and low prices, as well as traded volumes, for
stocks at the New York Stock Exchange between 1970 and 2010. For each stock, we divided the time series into
segments of 10 days. The task was to identify whether the highest price at the tenth day had a 5% increase over
the highest price at the ninth day, using only information from day 1 to day 9. A class label of one indicated
that

highday10 − highday9
highday9

> 1.05

8.8 PNS

The dataset was constructed from a list of common place names. The task was to determine whether the first
letter of a place is a vowel, excluding the letter y, based on the histogram of the letters composing the rest of the
place name. A class label of 1 indicated that the letter was a vowel. PNS is an acronym for Place Name Strings.

8.9 SP500

The dataset was constructed from the daily opening, closing, high and low prices, as well as traded volumes, for
S&P 500 stocks. For each stock, we divided the time series into segments of 8 days. The task was to identify
whether the opening price at the eighth day had an increase over the closing price at the seventh day, using only
information from day 1 to day 7. A class label of one indicated that

openday8 > closeday7
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9 Supplemental Tables

Table S1: Summary of the datasets.

Datasets from the UCI repository [5]
Dataset Instances Features Class Reference
AD (Abalone data) 4,177 8 male/female [12]
ID (Ionosphere data) 351 34 good return/bad return [10]
MGT (MAGIC Gamma Telescope) 19,020 11 signal/background [9]
MM (Mammographic masses) 961 6 disease severity (2 classes) [11]
PD (Parkinson data) 197 23 affected/unaffected [8]
SD (Spambase data) 4,601 57 spam/not spam [5]
WBC (Wisconsin breast cancer data) 699 10 benign/malignant [7]
YBC (Yale breast cancer data) 650 6 nodal status [6]

Custom datasets
Dataset Instances Features Field Reference
ACS 321,583 53 sociology/economy/geography [15]
AMEX 190,769 45 finance [16]
ENRON 517,424 64 text analysis [17]
GEO 494,268 45 ecology/geography [14]
LASTFM 20,908 995 recommendation systems [18]
NASDAQ 847,427 45 finance [19]
NYSE 919,792 45 finance [20]
PNS 10,196 27 text analysis [21]
SP500 15,028 35 finance [22]
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Table S2: Summary of the machine learning classifiers from Weka [13].

classifier/meta-learner Weka class Description
KNN (k=1, odd) lazy/IBk k-nearest neighbor classifier with k=1
KNN (k=2, even) lazy/IBk k-nearest neighbor classifier with k=2
KNN (k=5) lazy/IBk k-nearest neighbor classifier with k=5
k-Star lazy/KStar Instance-based learner using entropy-based distance
DecisionStump trees/DecisionStump One-level decision tree
J48 trees/J48 Decision tree with pruning
REPTree trees/REPTree Decision tree using information gain
JRip Rules/JRip Propositional rule learner
LMT trees/LMT Logistic model trees
LWL lazy/LWL Locally weighted learning algorithm
Logistic regression functions/SimpleLogistic Logistic regression
Regularized Logistic regression functions/Logistic Regularized logistic regression
Sequential Minimal Optimization function/SMO Sequential minimal optimization for SVM
NaiveBayes bayes/NaiveBayes Näıve Bayes classifier
M5P rules/M5P M5 Model trees and rules
OneR rules/OneR Minimum-error attribute classifier
PART rules/PART Partial decision trees classifier
RandomForest (n=10 trees) trees/RandomForest Random Forest classifier with n=10
RandomForest (n=20 trees) trees/RandomForest Random Forest classifier with n=20
Multilayer Perceptron functions/MultilayerPerceptron Multilayer neural network using backpropagation
Voted Perceptron functions/VotedPerceptron Voted perceptron classifier
SGD functions/SGD Stochastic gradient descent
Voting meta/Vote Majority voting of an ensemble of J48 classifiers
Stacking meta/Stacking Stacking of an ensemble of J48 classifiers
AdaBoost + NaiveBayes meta/AdaBoostM1 AdaBoost of an ensemble of Näıve Bayes classifiers
AdaBoost + Logistic Regression meta/AdaBoostM1 AdaBoost of an ensemble of logistic regressions
AdaBoost + J48 meta/AdaBoostM AdaBoost of an ensemble of J48 classifiers
Bagging + REPTree meta/Bagging Bagging of an ensemble of REPTrees
Bagging + RandomTree meta/Bagging Bagging of an ensemble of Random Trees
Bagging + RandomForest meta/Bagging Bagging of an ensemble of Random Forests
LogitBoost + ZeroR meta/LogitBoost ZeroR classifiers use the mode as prediction
LogitBoost + KNN meta/LogitBoost LogitBoost of an ensemble of KNN classifiers
LogitBoost + DecisionStump meta/LogitBoost LogitBoost of an ensemble of Decision Stumps
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Table S3: Characteristics of the ensemble of predictions for the real world datasets. The deviation
from the assumption of conditional independence is expressed as the absolute value of the difference ∆ between
the two sides of Eq. 3 in the main text. With the exception of the median true rank of the best inferred predictor,
noted as rbest, all quantities are averages over all runs.

Dataset |∆| λ1/
∑
λ (%) λ2/

∑
λ (%) rbest

ACS 0.0067 70.0 9.0 1
AD 0.0082 37.4 12.8 8
AMEX 0.0001 59.0 14.2 1
ENRON 0.0035 47.2 12.7 2
GEO 0.0034 37.1 15.7 2
ID 0.0158 75.9 4.2 2
LASTFM 0.0063 78.1 5.4 3
MGT 0.0107 70.4 6.3 4
MM 0.0138 80.4 5.2 3
NASDAQ 0.0015 50.4 13 1
NYSE 0.0001 57.3 17.3 2
PD 0.0101 51.4 9.8 5
PNS 0.0150 57.9 23.1 2
SD 0.0059 79.8 3.5 2
SP500 0.0016 38.8 15.7 3
WBC 0.0033 92.8 1.4 2
YBC 0.0209 50.0 10.2 4

15



10 Supplemental Figures
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Figure S2: Performance of the first algorithm, majority voting and SML as a function of the balanced accuracy
of the first algorithm when all other algorithms in the ensemble have identical sensitivities π = 0.6. In this
illustrative example, M = 9. The performance of majority voting (in red) changes linearly with π1, albeit with
partial derivative smaller than 1. The balanced accuracy of SML (in black) is a piecewise linear function of π1.
The jumps in the balanced accuracy of SML occur when the value (M − 1)/2− 1/2 · 1/(2π − 1) is an integer.
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Figure S3: The heatmap shows the absolute value of the angle between the truth and the eigenvector e1, on
which the SML prediction is based. The dark area between the two red lines graphically shows the relationship
between k1 and k2 such that |α| ≤ 6◦. The figure shows that SML is robust to cartels: when α ≈ 0, the honest
classifiers lie approximatively on the eigenvector e1.
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Figure S4: The largest entry in the leading eigenvector often corresponds to the best classifier in the ensemble.
In the plots, each bar represents the empirical probability that the entry in the leading eigenvector corresponding
to best classifier attained a specific rank.
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Figure S5: SML is more robust to cartels than majority voting (left panel). iMLE using SML estimates as
starting point is also more robust to cartels than iMLE using majority voting as the starting condition (right
panel). For each meta-learner prediction the average balanced accuracy is shown (filled lines) together with the
standard error (dotted lines, n=500 runs for each cartel’s fraction).
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Figure S6: Comparison of several classifiers on real-world datasets where our conditions are nearly satisfied. The
median balanced accuracy of all classifiers in the ensemble is shown in black.
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Figure S7: Comparison of several classifiers on real-world datasets, where predictors have structure similar to
that of cartels. The median balanced accuracy of all classifiers in the ensemble is shown in black.
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Figure S8: Comparison of several classifiers on the ENRON dataset, characterized by a sparse feature space. The
median balanced accuracy of all classifiers in the ensemble is shown in black.
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