Supplementary Appendix

A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in *Helicobacter pylori*

Sandy R. Pernitzsch, Stephan M. Tirier, Dagmar Beier, and Cynthia M. Sharma

This supplement contains:

Supplementary Methods Figures S1 to S8 Tables S1 to S8 Supplementary References

Supplementary Methods

Helicobacter growth conditions. *Helicobacter* strains were grown on GC-agar (Oxoid) plates supplemented with 10% (vol/vol) donor horse serum (Biochrom AG), 1% (vol/vol) vitamin mix, 10 µg/ml vancoymcin, 5 µg/ml trimethoprim, and 1 µg/ml nystatin. For transformant selection and growth of mutant strains, 20 µg/ml kanamycin, 16 µg/ml chloramphenicol or 10 µg/ml erythromycin were added. For liquid cultures, 15 or 50 ml Brain Heart Infusion medium (BHI, Becton, Dickinson and Company) supplemented with 10% (vol/vol) FBS (Biochrom AG) and 10 µg/ml vancoymcin, 5 µg/ml trimethoprim, and 1 µg/ml nystatin were inoculated with *Helicobacter* from plate to a final OD_{600 nm} of 0.02 – 0.05 and grown under agitation at 140 rpm in 25 cm³ or 75 cm³ cell culture flasks (PAA). Bacteria were grown at 37 °C in a HERAcell 150i incubator (Thermo scientific) in a microaerophilic environment (10% CO₂, 5% O₂, and 85% N₂).

Construction of Helicobacter mutants. All generated mutant strains are listed in Table S3 and were cloned by homologous recombination and natural transformation of PCR-amplified constructs carrying either the *aphA*-3 kanamycin (1), the *catGC* chloramphenicol (2) or *rpsL-erm* erythromycin resistance cassette (3) flanked by ~500 bp homology regions up- and downstream of the respective genomic locus as previously described (4). Briefly, *H. pylori*, grown from frozen stocks until passage two, was streaked in small circles on a fresh plate and grown for 6-8 h at 37 °C under microaerophilic conditions. For transformation, 500 ng to 1 µg purified PCR product was added to the cells. After incubation for 14-16 h at 37 °C, cells were re-streaked on selective plates with indicated antibiotics. Genomic DNA (gDNA) of mutants was isolated using the NucleoSpin Plasmid kit (Macherey & Nagel) and mutants were checked by PCR and sequencing.

Complementation of the $\Delta repG$ **mutant with different RepG sRNA variants.** To construct RepG complementation strains, the intergenic region of HP1043 and HP1044 including the *repG* gene under control of its own promoter together with the *catGC* resistance cassette (2) was inserted into the *rdxA* locus, which is frequently used for complementation in *H. pylori* (5). A *rdxA*(500up)-*catGC-repG-rdxA*(500down) complementation construct was amplified from gDNA of a RepG complementation strain (kindly provided by F. Darfeuille and J. Reignier, University of Bordeaux, France; for sequence details see Figure S8) using oligos CSO-0017/-0018. The amplified ~2.3 kbp PCR product was transformed into the $\Delta repG$ mutant (strain JVS-7014, ref. (6)). The obtained strain CSS-0046 (C_{RepG}) was verified by PCR using oligos CSO-0205/-0207. Furthermore, the *Xhol/Xbal* digested ~2.3 kbp PCR fragment was cloned into plasmid pJV752.1 (7), resulting in plasmid pSP39-3, which was used for further mutant generation of RepG.

The second stem-loop mutant of RepG (SL 2, Figure 2A) was constructed by PCR amplification of pSP39-3 using oligos CSO-0080/-0081. Upon *DpnI* digestion, the PCR product

was gel-purified, self-ligated, and transformed into *E. coli* Top 10 cells. Positive clones were selected on plates with 100 µg/ml ampicillin and confirmed by colony PCR using oligos pZE-A and CSO-0205. The resulting plasmid pSP42-1 was validated by sequencing with CSO-0206. Afterwards, a PCR product amplified from pSP42-1 using oligos CSO-0017/-0018 was used for complementation of the *H. pylori* Δ *repG* mutant, resulting in strain CSS-0747 (SL 2). To construct the other RepG variants, Δ CU, 3xG and 1xG*, overlap extension PCR was performed as previously described (8). First, PCR fragments were amplified from pSP39-3 using oligos CSO-0017/-0139 and CSO-0018/-0138 for RepG Δ CU, CSO-0017/-0143 and CSO-0018/-0142 for RepG 3xG as well as CSO-0017/-0141 and CSO-0018/-0140 for RepG 1xG*. Next, the corresponding PCR-fragments were mixed in an equimolar ratio and used as templates for overlap extension PCR reactions using CSO-0017/-0018. Afterwards, gel-purified PCR reactions were transformed into the *H. pylori* Δ *repG* mutant (JVS-7014). All *H. pylori* complementation mutants were verified by PCR using oligos JVO-5069/-5257 and CSO-0207/-0205 on gDNA as template. All clones were checked by sequencing with CSO-0206.

Construction of $\Delta tlpB$ and tlpB::3xFLAG strains. The tlpB gene (HP0103) was deleted from strain CSS-0004 (*H. pylori* 26695 wild-type) by insertion of the *rpsL-erm* cassette, which confers dominant streptomycin susceptibility and erythromycin resistance (3). A construct containing the *rpsL-erm* cassette flanked by 500 nt up- and downstream of the *tlpB* open reading frame was generated by overlap extension PCR. PCR products corresponding to 500 nt upstream of *tlpB* (CSO-0040/-0037 on gDNA of CSS-0004), 500 nt downstream of the *tlpB* stop codon (CSO-0038/-0039 on gDNA of CSS-0004), and the rpsL-erm cassette (CSO-0035/-0036 on gDNA of H. pylori 26695 carrying a chromosomal rpsL-erm cassette; kindly provided from D. E. Berg, University of California, San Diego, La Jolla, CA/Washington University Medical School, St. Louis, MO; (3)) were mixed in an equimolar ratio and used as templates for overlap extension PCR with CSO-0040/-0039. The resulting gel-purified PCR product was used for natural transformation in H. pylori 26695. Positive erythromycin-resistant clones were checked by PCR on gDNA using CS0-0051/CS0NIH-0033, resulting in strain CSS-0163 ($\Delta tlpB$). For the construction of a double deletion mutant $\Delta tlpB/\Delta repG$, the $\Delta repG$ deletion construct (*aphA-3* flanked by 500 nt up- and downstream of *repG*) was amplified by PCR using JV0-5070 x JV0-5072 and gDNA from strain JVS-7014 (6). The purified PCR product was transformed into strain CSS-0163 ($\Delta tlpB$). The double deletion strain CSS-0164 ($\Delta tlpB/\Delta repG$) was verified by PCR using JVO-5069/-5257.

To construct a *tlpB::*3xFLAG-tagged strain (CSS-0190), a plasmid (pSP57-4) containing the 3xFLAG and the *rpsL-erm* cassette flanked by 500 nt up- and downstream of the *tlpB* stop codon was cloned into *E. coli*. First, 500 nt up- and downstream of the *tlpB* stop codon were amplified from gDNA of strain CSS-0004 using CSO-0208/-0211. The resulting PCR product was *XbaI/XhoI* digested and introduced into likewise digested pJV752-1. Next, this plasmid was used

as template for a PCR with CSO-0245 and CSO-0210 to fuse the 3xFLAG-tag to *tlpB* and to introduce the *rpsL-erm* cassette using an *EcoRI* restriction site. In parallel, an overlap extension PCR with PCR fragments of the 3xFLAG-tag (CSO-0065/-0046 on gDNA of JVS-7033; (9)) and the rpsL-erm cassette (CSO-0045/-0209 on gDNA of a H. pylori 26695 strain carrying the rpsL-erm cassette) was performed and the resulting 3xFLAG::rpsL-erm construct was digested with EcoRI. Both *EcoRI*-digested PCR products (plasmid with *tlpB* up- and downstream region and 3xFLAG::rpsL-erm) were ligated and transformed into E. coli, resulting in pSP57-4. Insertion of the rpsL-erm cassette was verified by colony PCR (pZE-A/CSONIH-0033) and in-frame fusion of *tlpB*::3xFLAG by sequencing with CSO-0208, respectively. A PCR product amplified from pSP57-4 with CSO-0208/-0211 was transformed into H. pylori strains 26695 (CSS-0004) and G27 (CSS-0010). Positive erythromycin-resistant mutants were confirmed by PCR on gDNA (CSO-0050/-0046) and sequencing with CSO-0208, resulting in CSS-0190 (26695 tlpB::3xFLAG) and CSS-0196 (G27 *tlpB*::3xFLAG). Deletion mutants of *repG* in CSS-0190 and CSS-0196 were constructed as described above, resulting in strains CSS-0215 (26695 tlpB::3xFLAG/ $\Delta repG$) and CSS-0197 (G27 *tlpB*:: $3xFLAG/\Delta repG$). Strains CSS-0215 and CSS-0197 were complemented with RepG from *H. pylori* 26695 in the *rdxA*-locus by transformation of a PCR product amplified from gDNA of CSS-0046 (C_{RepG}) using CSO-0017/-0018. The resulting strains are CSS-0285 (26695 $tlpB::3xFLAG/\Delta repG/C_{RepG}$ and CSS-0283 (G27 $tlpB::3xFLAG/\Delta repG/C_{RepG}$).

Deletion of *repG* **in diverse** *Helicobacter* **strains.** To delete *repG* in diverse *H. pylori* strains, the sRNA deletion construct was amplified from JVS-7014 (6) using oligos JVO-5070/-5072 and transformed into *H. pylori* strains J99 (CSS-0001), B8 (CSS-0213), India7 (CSS-0099), Shi470 (CSS-0173), Lithuania75 (CSS-0101), Cuz20 (CSS-0097), and G27 (CSS-0010). Deletion of *repG* was verified by PCR using JVO-5069/-5257 on gDNA, resulting in strains CSS-0732 (J99 Δ *repG*), CSS-0733 (B8 Δ *repG*), CSS-0734 (India7 Δ *repG*), CSS-0735 (Shi470 Δ *repG*), CSS-0737 (Cuz20 Δ *repG*), and CSS-0169 (G27 Δ *repG*).

Generation of compensatory base-pair exchanges in the *tlpB* **5' UTR.** To delete the G-repeat (Δ G) or introduce compensatory base-pair exchanges (3xC and 1xC*) in the *tlpB* 5' UTR, a plasmid (pSP60-2) containing 500 nt up- and downstream of the *tlpB* transcriptional start site (TSS) and the *rpsL-erm* resistance cassette was constructed. First, 500 nt up- and downstream of the TSS of *tlpB* were amplified with CSO-0291/-0040 from gDNA of *H. pylori* 26695 (CSS-0004). The resulting PCR product was inserted into pJV752-1 using *Xhol/Xbal* restriction sites, resulting in pSP58-5. Next, the *rpsL-erm* cassette was inserted upstream of the *tlpB* promoter (P_{*tlpB*}) by ligation of *EcoRI/BamHI* digested PCR products based on pSP58-5 (CSO-0294/-0295) and an *rpsL-erm* cassette (CSO-0308/-0309 on gDNA of CSS-0163), resulting in pSP60-2. Afterwards, site-directed mutagenesis by Quick change PCR was performed with pSP60-2 as

template to delete the G-repeat (CSO-0318/-0319) or introduce triple (CSO-0316/-0317) or single G to C (CSO-0314/-0315) nucleotide exchanges, resulting in pSP64-1 (Δ G), pSP66-4 (3xC), and pSP65-4 (1xC*), respectively. All plasmids were checked by sequencing using CSO-0291. PCR fragments based on pSP60-2, pSP64-1, pSP65-4, and pSP66-4 were amplified with CSO-0291/-0040 and used for direct transformation in *H. pylori* 26695 (CSO-0004). Positive *H. pylori* clones were selected on erythromycin plates and confirmed by PCR using CSO-0051/CSONIH-0033 and sequencing of the corresponding gDNA with CSO-0291 or CSONIH-0033, which led to CSS-0384 (P_{tlpB}), CSS-0385 (*tlpB* Δ G), CSS-0386 (*tlpB* 3xC), and CSS-0387 (*tlpB* 1xC*).

Cloning of the *tlpB* **promoter exchange.** To exchange the *tlpB* promoter, the *cagA* promoter region was amplified with CSO-0306/-0431 from gDNA of *H. pylori* 26695 (CSS-0004) and a PCR on plasmid pSP60-2 was performed with CSO-0430/-308. Both PCR products were *BamHI* digested and ligated, resulting in pSP91-3. The plasmid was verified by colony PCR with CSO-0306/pZE-A and checked by sequencing with CSONIH-0033. PCR fragments amplified with CSO-0291/-0040 from pSP91-3 were transformed into *H. pylori* 26695. Cloness were selected on erythromycin plates and verified by PCR with CSO-0051/-0308 on gDNA and sequencing with CSONIH-0033, resulting in strain CSS-0657 (P_{cagA}). The *repG* gene was deleted in strain CSS-0657 as previously described, resulting in strain CSS-0658 ($P_{cagA} / \Delta repG$). As a control, the *rpsl-erm* resistance cassette alone was inserted upstream of the *tlpB* promoter, resulting in strains CSS-0384 (P_{tlpB}) and CSS-388($P_{tlpB} / \Delta repG$) (for construction details see above).

Cloning of translational reporter fusions to gfpmut3. To generate a translational reporter fusion, we fused the regions corresponding to the promoters, 5' UTRs, and a fraction of the Nterminal coding region of *tlpB* or *cagA* to *gfpmut3* (10) and introduced them together with the catGC resistance cassette (2) into the rdxA locus of H. pylori G27. First, a transcriptional ureA::gfpmut3 fusion was inserted into plasmid pSP39-3 (amplified with CSO-0442/-0443) using a PCR product amplified with CSO-0440/-0441 on plasmid p463 (*ureA*::*gfpmut3* based on pTM117; kindly provided by D. S. Merrell, USU, Bethesda, MD). The PCR products were digested with Sall/Notl and ligated, resulting in pPT3-1 (ureA::gfpmut3) which served as backbone for the generation of the translational fusions of *tlpB* and *cagA* to *gfpmut3*. The *tlpB* promoter region and its 5' UTR including the first five amino acids of the *tlpB* coding region (regarding the annotated ATG) were amplified from gDNA of H. pylori 26695 (CSS-0004) using CSO-0581/-0126. Similarly, the *cagA* promoter, its 5' UTR and the first 28 amino acids of the *cagA* coding region were amplified with CSO-0284/-0590 from gDNA of H. pylori G27 (CSS-0010). The purified PCR products were digested with *ClaI/NheI* and ligated with a likewise digested PCR product, which was amplified from pPT3-1 using CSO-0146/-0683, resulting in pSP109-6 (*tlpB*-5th::*gfpmut3*) and pMA5-2 (*cagA*-28th::*gfpmut3*). These plasmids were checked by colony PCR

using CSO-0581/pZE-XbaI for pSP109-6 and CSO-0590/pZE-XbaI for pMA5-2, respectively, and in-frame fusions to *gfpmut3* were validated by sequencing with CSO-0206 and/or JVO-0155. PCR products amplified with CSO-0017/-0018 from pPT3-1, pMA5-2, and pSP109-6 were transformed into *H. pylori* G27 wild-type (CSS-0010) and/or $\Delta repG$ (CSS-0169) strains. Positive transformants were checked by PCR with CSO-0205 and CSO-0207 and the in-frame fusion of *tlpB* or *cagA* to *gfpmut3* was verified by sequencing with CSO-0206 and/or JVO-0155. The corresponding *H. pylori* G27 strains are CSS-0748 (*tlpB*-5th::*gfpmut3*), CSS-0751 (*tlpB*-5th::*gfpmut3*/\Delta*repG*), CSS-0804 (*cagA*-28th::*gfpmut3*), and CSS-0805 (*cagA*-28th::*gfpmut3*/\Delta*repG*).

Construction of markerless *tlpB*::3xFLAG* strains. Markerless *tlpB*::3xFLAG* strains were constructed as described in (3) by using a contraselectable streptomycin susceptibility determinant. For this purpose, a streptomycin resistant H. pylori 26695 strain (26695 Str^R, CSS-0024) was generated by introduction of two point mutations in the *rpsL* gene (K43R and K88R). A PCR product amplified from genomic DNA of *H. pylori* 26695 with JVO-5702/-5703 was used for mutagenesis. Transformants were selected on plates containing 10 μ g/ml streptomycin and positive clones were checked by sequencing of gDNA using JVO-5704. For the construction of a markerless *tlpB*::3xFLAG* strain, a PCR product amplified from pSP57-4 with CSO-0208/-0211 was transformed into *H. pylori* 26695 Str^R (CSS-0024) and clones were selected on erythromycin plates. The 3xFLAG-tagging of *tlpB* was confirmed as described above. Furthermore, we constructed pSP70-1, which contains 500 nt up- and downstream of the *tlpB* stop codon including a 3xFLAG tag. To construct this plasmid, cycle PCR with CSO-0428/-0429 on pSP57-4 was performed and the resulting PCR product was digested with *DpnI* and transformed into *E*. *coli*. Loss of the *rpsL-erm* resistance cassette was verified by PCR using pZE-A/CSONIH-0033 and in-frame fusion of *tlpB::*3xFLAG was checked by sequencing with CSO-0208. A PCR product amplified from pSP70-1 with CSO-0208/-0211 was used for transformation and removal of the *rpsL-erm* resistance cassette from CSS-0461 (26695 Str^R *tlpB*::3xFLAG). Positive *H. pylori* mutants were selected on plates containing 10 μ g/ml streptomycin and removal of the *rpsL-erm* resistance cassette was checked by plating of streptomycin resistant mutants on plates containing 10 µg/ml erythromycin. The markerless *tlpB*::3xFLAG* tagged 26695 strain (CSS-0464, 26695 Str^R tlpB::3xFLAG*) was checked by PCR on gDNA with CSO-0050/-0046 or CSO-0050/CSONIH-0033 and sequencing with CSO-0208. The *repG* gene was deleted in CSS-0464 as described before resulting in strain CSS-0467.

Variation of the G-repeat length in the *tlpB* **5' UTR of** *H. pylori* **26695.** *H. pylori* 26695 strains with varying G-repeat length of 6-16 Gs were generated by cycle-PCR on pSP64-1 with CSO-0318/-0448 to -0457 (see Tables S4 and S6). The obtained PCR products were DpnI digested, self-ligated and transformed into *E. coli*. The resulting plasmids pSP73-1 to pSP82-1 (Table S5),

pSP64-1 (Δ G), and pSP60-2 (represents the 26695 wild-type 5' UTR of *tlpB* with 12 Gs) were sequenced with CSONIH-0033. Afterwards, these plasmids were used as templates for PCR with CSO-0040/-0291. The PCR products with different G-repeat lengths were transformed into CSS-0464 (wild-type background) and CSO-0467 (Δ *repG*). Positive clones were checked by colony PCR on gDNA with CSO-0051/CSONIH-0033 and sequencing with CSONIH-0033/CSO-0277, resulting in strains CSS-0471 to CSS-0493 (see Table S3).

Primer extension of RepG. 10 µg DNase I treated RNA from *H. pylori* strains 26695 and G27 was used for primer extension. For the sequencing ladder, 1.5 pmol labeled oligo JVO-5126 and ~100 ng PCR product, which was amplified from gDNA of *H. pylori* strains 26695 and G27 using JVO-5126/CSO-0083, were used in sequencing reactions with the SequiTherm EXCELTM II DNA Sequencing Kit. Primer extension was performed in 10 µl reactions. After denaturation at 80 °C, 10 µg RNA and 0.5 pmol labeled JVO-5126 were annealed by gradual cooling of the reaction to 42 °C. Reverse transcription was performed in 1x AMV reaction buffer (50 mM Tris-HCl, 75 mM potassium, 8 mM magnesium, 10 mM DTT, pH 8.3) by addition of 10 mM dNTPs and AMV Reverse Transcriptase (NEB, #M0277). After incubation for 1 h at 42 °C, the reaction was stopped by addition of 10 µl RNA loading buffer. 10 µl of the primer extension reactions and 2 µl of the ladder with 8 µl loading buffer were separated on 6% (vol/vol) PAA/7M urea sequencing gels. Afterwards, gels were dried and analyzed using a PhosphoImager (FLA-3000 Series, Fuji).

Gel-shifts, in vitro structure probing, and in-line probing assays. DNA templates that contain the T7 promoter sequence were generated by PCR using oligos and DNA templates listed in Table S7. T7 transcription was carried out using the MEGAscript[®] T7 kit (Ambion) and sequences of the resulting T7 transcripts are listed in Table S8. For *tlpB* mRNA leader variants (6G-16G) see also Table S6. In vitro transcribed RNAs were quality checked and 5' end labeled (γ^{32} P) as previously described (11, 12).

Gel-shift assays were performed with ~0.04 pmol 5'-end labeled RNA (4 nM final concentration) and increasing amounts of unlabeled RNA in 10 µl reactions. After denaturation (1 min at 95 °C), labeled RNAs were cooled for 5 min on ice and 1 µg yeast RNA and 10 x RNA structure buffer (Ambion) were added. Increasing concentrations of unlabeled RNA were added to final concentrations of 8 nM, 16 nM, 62.5 nM, 125 nM, 250 nM, 500 nM, and 1000 nM. For gel-shift assays with ³²P-labeled RepG and *tlpB* mRNA leader variants, ~0.04 pmol ³²P-labeled RepG was incubated with 1000 nM of unlabeled *tlpB* leader that either lacks the G-repeat (Δ G) or comprises different G-repeat lengths (6-16G). After incubation for 15 min at 37 °C, samples were immediately loaded after addition of 3 µl 5x native loading dye (0.5 x TBE, 50 % (vol/vol) glycerol, 0.2 % (wt/vol) xylene cyanol and 0.2 % (wt/vol) bromophenol blue) to a native 6 % (vol/vol) PAA gel. Gel electrophoresis was done in 0.5 x TBE buffer at 300 V. Afterwards, gels

were dried and analyzed using a PhosphoImager (FLA-3000 Series, Fuji) and AIDA software (Raytest, Germany).

For structure probing and footprinting assays, ~0.1 pmol 5' end labeled RNA was subjected in absence or presence of unlabeled target mRNA or sRNA to RNase T1 (Ambion, #AM2283), lead(II)-acetate (Fluka, #15319) or RNase III (NEB #M0245S) treatment in 10 µl reactions as previously described (7). In brief, ~ 0.1 pmol 5' end labeled RNA was denatured for 1 min at 95 °C and chilled on ice for 5 min. Next, 1 μ g yeast competitor RNA and 10 x RNA structure buffer were added (provided together with RNase T1, Ambion). Unlabeled wild-type or mutant RepG/tlpB mRNA leader RNAs were added at 10- or 100-fold excess (see Figure legends). After incubation for 10 min at 37 °C, 2 µl RNase T1 (0.01 U/µl) or 2 µl freshly prepared lead(II)-acetate solution (25 mM) were added and reactions were incubated for 3 min or 90 sec, respectively. RNase III cleavage reactions were performed for 6 min at 37 °C in 1 x structure buffer containing 1 mM DTT and 1.3 U/ μ l enzyme. For RNase T1 ladders, ~0.2 pmol labeled RNA were denatured in 1x structure buffer for 1 min at 95 °C and afterwards incubated with 0.1 U/µl RNase T1 for 5 min. OH ladders were generated by the incubation of ~0.2 pmol labeled RNA in 1x alkaline hydrolysis buffer (Ambion) for 5 min at 95 °C. All reactions were stopped by addition of 12 µl RNA loading buffer (95% (vol/vol) formamide, 18 mM EDTA, and 0.025% (wt/vol) SDS, xylene cyanol, and bromophenol blue) on ice. Ladders and samples were denatured 3 min at 95 °C and separated on 6% (vol/vol) PAA/7M urea gels in 1 x TBE buffer. Afterwards, gels were dried and analyzed using a PhosphoImager (FLA-3000 Series, Fuji) and AIDA software (Raytest, Germany).

For in-line probing assays (13), ~0.2 pmol labeled RNA (20 nM final concentration) was incubated in absence or presence of 20 nM or 200 nM unlabeled sRNA or mRNA leader for 40 hrs at room temperature in 1x in-line probing buffer (50 mM Tris-HCl, pH 8.3 at 20 °C, 20 mM MgCl₂, and 100 mM KCl). For RNase T1 ladders, ~ 0.2 pmol labeled RNA was incubated in 0.25 M sodium citrate buffer (pH 5.0 at 23 °C) with 1 U/µl RNase T1 for 5 min at 55 °C. For alkaline ladders, ~0.2 pmol labeled RNA was denatured for 5 min at 95 °C in Na₂CO₃ buffer (0.5 M Na₂CO₃, pH 9.0 at 23 °C and 10 mM EDTA). All reactions were stopped by adding 10 µl colorless gel-loading solution (10 M urea, 1.5 mM EDTA, pH 8.0 at 23 °C) on ice. Cleavage products were analyzed on 8 or 10 % (vol/vol) PAA gels under denaturing conditions and visualized as described above.

Rifampicin assays and determination of *tlpB* **mRNA half-life by qRT-PCR.** To determine the half-life of *tlpB* mRNA in *H. pylori* 26695 wild-type, $\Delta repG$, and RepG complementation (C_{RepG}) strains, cells were grown to an OD_{600nm} of 1.0 and treated with rifampicin (final concentration 500 µg/ml). RNA samples were harvested at indicated time points (0, 1, 2, 4, 8, 16, and 32 min) and RNA decay was analyzed by quantitative real-time PCR (qRT) as previously described (6, 12,

14). All qRT-PCR experiments were carried out in triplicates on a CFX96 system (Biorad) using Power SYBR Green RNA-to- C_T^{TM} 1-Step Kit (Applied Biosystems) according to the manufactures' instructions. The specific oligo sets are JVO-5267/-5268 for *tlpB* mRNA and CSO-1173/-1174 for 6S RNA, which served as internal standard.

Antibodies and antisera. To detect the four chemotaxis receptors TlpA, B, C, and D, a polyclonal rabbit TlpA22-antiserum (1:2000 in 3% (wt/vol) BSA/TBS-T) that recognizes a conserved cytosolic domain (kindly provided by K. Ottemann, University of California, Santa Cruz, CA) and secondary anti-rabbit IgG (GE-Healthcare) were used. TlpB::3xFLAG was detected by a monoclonal anti-FLAG antibody (1:1000 in 3% (wt/vol) BSA/TBS-T; Sigma-Aldrich, #F1804-1MG) and secondary anti-mouse IgG (GE-Healthcare). GroEL, was visualized by monoclonal anti-GroEL antibody (1:10,000 in 3% (wt/vol) BSA/TBS-T; Sigma-Aldrich, # G6532-5ML) and anti-rabbit IgG (GE-Healthcare). CagA was visualized using an anti-cagA antibody (1:3000 in 3% (wt/vol) BSA/TBS-T; kindly provided by R. Haas, Max von Pettenkofer Institute, LMU Munich) and anti-rabbit IgG.

In vitro translation assays. Translation reactions were carried out with PureSystem (Cosmo Bio, PGM-PURE2048C) according to the manufactures' instructions. In brief, 1 pmol of in vitro transcribed mRNAs (*tlpB*-5th::*gfpmut3*, *cagA*-28th::*gfpmut3*, *tlpB*::3xFLAG, *tlpB* ΔG::3xFLAG, *tlpB* 10G::3xFLAG, *tlpB* 11G::3xFLAG, *tlpB* 13G::3xFLAG, and *tlpB* 14G::3xFLAG) were denatured in the absence or presence of 1, 10, 50, and 100 pmol of RepG or RepG mutants (ΔCU, 3xG, 1xG; see also Figure legends) for 1 min at 95 °C and chilled on ice for 5 min. The mRNA and sRNA were pre-incubated for 10 min at 37 °C before addition of PureSystem mix, and translation was performed at 37 °C for 30 min. Reactions were stopped by addition of 60 µl acetone, chilled for 15 min on ice and proteins were collected by centrifugation for 10 min at 10,000 g and 4 °C. In vitro translated TlpB or CagA was quantified by Western blot analysis using monoclonal anti-FLAG or anti-GFP and anti-mouse IgG (GE-Healthcare) antibody, (1:10,000, kindly provided by M. Springer, IBPC Paris, France) and anti-rabbit secondary antibody (GE-Healthcare).

Determination of the G-repeat length in the *tlpB* **leaders from sequential** *H. pylori* **isolates.** The lengths of the G-repeat in the 5' UTR of the *tlpB* mRNA from different *H. pylori* strains that are listed in Table S1 were extracted from NCBI database (if available) or from the literature. Furthermore, *tlpB* 5' UTR sequences of sequential *H. pylori* isolates with available 454 genome sequences from the study of Kennemann *et al.* (2011) (15) were re-sequenced using Sanger sequencing. The genomic DNA of these strains was kindly provided by S. Suerbaum and C. Josenhans, Medizinische Hochschule Hannover, Germany.

Supplementary Figures

Genomic context and sequence alignment of *repG* **homologs from different** *H. pylori* **strains**, *H. acinonychis*, **and** *H. mustelae*. **(A)** The *repG* (red) gene is encoded between HP1043 (dark green) and HP1044 (light green), which encode for an orphan response regulator and a hypothetical protein, respectively. Homologs in different *H. pylori* strains as well as *H. acinonychis* (Hac) are illustrated by the same colors, whereas unrelated genes are indicated in white for *H. mustelae* (Hmu). Gene insertions or deletions are marked by dotted lines. A potential open reading frame (dotted line gray arrow) is annotated next to *repG* in *H. pylori* strains PeCan4 and Gambia94/24. **(B)** Arrows below the *repG* alignment indicate the predicted stem-loop structures SL 1 and SL 2 of RepG. The C/U-rich *tlpB* binding site in SL 2 is indicated by a blue bar.

Determination of the 5' end of RepG sRNA using primer extension in *H. pylori* strains 26695 and G27 and expression analysis of RepG during growth in H. pylori G27. (A) Total RNA was isolated from *H. pylori* strains 26695 (*left panel*) and G27 (*right panel*) that were grown to exponential growth phase (OD_{600} of ~0.8). After DNase I treatment, 10 µg of total RNA was used in primer extension assays with ³²P-end labeled oligo JVO-5126. A sequencing ladder corresponding to the repG upstream region served as reference (lanes G, A, T, C). Primer extension revealed that the different bands in *H. pylori* strain 26695 (Figure 1B and C) correspond to RepG versions that vary at their 5'-end (87, 85, and 84-nt long). The identified transcriptional start sites of RepG (TSS, +1) are indicated by arrows and bold nucleotides. The "A" of the +1 TSS of 26695 corresponds to the TSS that was previously determined by differential RNA-seq (6). (B) Expression of *repG* was analyzed in *H. pylori* strain G27 by Northern blot analysis with 5 µg of total RNA and hybridization with ³²P-labeled CSO-0003 (RepG). 5S rRNA was used as loading control (JVO-0485). RNA samples were taken during growth at different optical densities at 600 nm (OD_{600}), which are indicated in the growth curves of H. pylori strains 26695 (black) and G27 (gray) from liquid culture shown in the lower panel. Both strains change their morphology from spiral to coccoid shape after approximately 60 hours of growth (EE – early exponential, ME – mid exponential, LE - late exponential, and ST – stationary growth phase).

Validation of a direct interaction between RepG and the *tlpB* leader using gel-shift assays. (A) (Left upper panel) About 0.04 pmol (4 nM final concentration) in vitro transcribed and 5' end ³²P-labeled *tlpB* mRNA leader was incubated without or with increasing concentrations (final concentrations of 8, 16, 62.5, 125, 250, and 1000 nM) of unlabeled RepG, RepG without the *tlpB* binding site (Δ CU), RepG 3xG, and RepG 1xG* variants (triple or single* C to G nucleotide exchange(s) in *tlpB* interaction site) for 15 min at 37 °C. RNA-RNA complex formation was investigated by direct loading of the samples on a native 6% (vol/vol) PAA gel in 0.5 x TBE running buffer. (Left lower panel): In a reciprocal experiment, ~0.04 pmol labeled RepG was incubated for 15 min at 37 °C with wild-type *tlpB* leader or *tlpB* leader variants that either lack the G-repeat (*tlpB* Δ G) or contain triple or single* G to C nucleotide exchange(s) (*tlpB* 3xC, *tlpB* 1xC*) in the G-repeat. (Right panel) RepG sRNA base-pairs with its C/U-rich terminator loop with a homopolymeric G-repeat in the *tlpB* mRNA leader. Triple and single* nucleotide exchanges in the *tlpB* binding site of RepG (C to G exchange(s)) are indicated in red and compensatory base-pair exchanges in the *tlpB* G-repeat (G to C substitution(s)) are marked in blue. (B) For in vitro analyses of the compensatory base-pair exchanges, labeled *tlpB* mRNA leader variants (3xC; 1xC*) were incubated with RepG wild-type (RepG) or RepG variants with corresponding nucleotide mutations (3xG; 1xG*). (C) Vice versa gel-shift assays, in which RNA-RNA complex formation between RepG 3xG or RepG 1xG* variants and the wild-type or *tlpB* mRNA leader variants with compensatory mutations (3xC; 1xC*) was examined.

1 2 3 4 5 6 7 8 9 10 11 12 13 lane

In vitro structure mapping of RepG and the *tlpB* mRNA leader and their interaction site. (A) About 0.1 pmol (10 nM final concentration) in vitro transcribed and ³²P-labeled RepG* was treated in the absence (lanes 4, 7, and 10) or presence of 100 nM (lanes 5, 8, and 11) or 1000 nM (lanes 6, 9, and 12) unlabeled *tlpB* mRNA leader with RNase T1, lead (II)-acetate and RNase III. Protection from lead (II)-acetate in the predicted *tlpB* interaction site (blue bar) of RepG is indicated in red. Lane C: untreated RNA; Lane T1: RNase T1 ladder of hydrolyzed and denatured RNA; Lane OH: Alkaline ladder of denatured RNA. (B) Structure probing of ~0.1 pmol (10 nM final concentration) radioactively labeled *tlpB* mRNA leader in the absence (lanes 4 and 9) or presence of 100 nM (lanes 5 and 10), 1000 nM of RepG (lanea 6 and 11) or 1000 nM of RepG that either lacks the *tlpB* interaction site (Δ CU; lanes 7 and 12) or harbors a triple C to G exchanges (3xG; lanes 8 and 13). Regions that are protected from RNase T1 cleavage upon addition of RepG are indicated by dark blue bars.

Putative secondary structures of RepG (A) and the *tlpB* mRNA leader (B) based on in vitro structure mapping, in-line probing and bioinformatics-based predictions. Arrows indicate RNase T1, lead (II)-acetate, and RNase III cleavage sites according to the cleavage patterns from structure probing assays (see Figures 3 and S4). Spontaneous cleavages of nucleotides in single-stranded RNA regions from in-line probing experiments (Figure 3) are encircled in gray. The terminator loop of RepG (SL 2) harbors the C/U-rich *tlpB* binding site (marked in blue). The homopolymeric G-repeat (red) in the *tlpB* mRNA leader was protected from RNase T1 cleavage, indicating the formation of an inter- or intramolecular structure (highlighted by a box). Secondary structures were predicted based on the structure probing data in combination with bioinformatics-based secondary structure predictions (16).

Strains with different lengths of the homopolymeric G-repeat in the *tlpB* leader show variations in RepG-mediated regulation. (A) Sequence alignment of *tlpB* leaders, promoter regions, and the first nucleotides of the open reading frames from diverse *H. pylori* strains and *H. acinonychis* (Hac). The -10 promoter boxes as well as the conserved ribosome binding sites (RBS) and annotated start codons (ATG) of *tlpB* are highlighted in yellow and light green, respectively. The *tlpB* transcriptional start site (+1) is indicated in bold and the RepG interaction site according to strain 26695 is boxed in gray. (B) Western blot (*upper panel*) and Northern blot (*lower panel*) analyses of diverse *H. pylori* wild-type and $\Delta repG$ mutants grown to exponential growth phase. Protein samples corresponding to an OD₆₀₀ of 0.01 were loaded on a 10% (vol/vol) SDS-PAA gel, blotted to PVDF membrane, and chemotaxis receptors were detected with a polyclonal rabbit anti-TlpA22 antiserum (1:2000). RepG was probed with ³²P-labeled CSO-0003. 5S rRNA (JVO-0485) was used as loading control.

Analysis of the interaction between *tlpB* leader variants with different G-repeat length and RepG using gel-shift assays. (A) About 0.04 pmol (4 nM final concentration) in vitro transcribed and ³²P-labeled *tlpB* mRNA leaders that comprise a 10G-, 13G- or 14G-long homopolymeric repeat were incubated without or with increasing concentrations of unlabeled RepG (final concentrations of 8, 16, 62.5, 125, 250, and 1000 nM) for 15 min at 37 °C. RNA-RNA complex formation (indicated by arrows) was investigated by direct loading of the samples on a native 6% (vol/vol) PAA gel in 0.5 x TBE running buffer. The results of a representative experiment (out of two) are shown. (B) Quantification of the labeled *tlpB* mRNA leader fraction that was shifted when incubated with increasing concentrations of RepG based on the gel-shift assays in panel A, Figure 3, and S3 (*tlpB* leader with 12Gs). Averages and standard deviations were calculated from at least two independent experiments.

RepG complementation construct: *rdxA*(500 nt up)-*catGC-repG-rdxA*(500 nt down)

CSO-0017

tctagaGATCAGCCTGCCTTTAGGGTATGTTTTTGGGAGGATTGGGAATTTTTTAAACCAGGAGCTTGTGGGAAG
AATTGTCCCCAAAGACAGCCATTTAGGGCAAATCATAGGCATTATGGTGGATAATGAGTTGCGTTATCCCAGCCA
ATTGATTGAAGCGTTTTTAGAGGGGGTTATCGTGTTTTTAATGGTAATGTGGGCTAAAAAACACACCAAAACGCA
TGGGTTGCTGATTGTGGTTTATGGTTTGGGGTATTCCTTGATGCGCTTTATTGCGGAATTTTACAGAGAGCCGGA
CAGCCAAATGGGGGTTTATTTTTTAAATTTGAGCATGGGGCAGATTTTAAGCTTATTTAT
AGGGATTTTATTGTATGCTACAAAAAATTCTAAAAAAATAAAGGAAAATCAATGAAATTTTTGGATCAAGAAAAA
AGAAGACAATTATTAAACGAGCGCCATTCTTGCAAGATGTTTGATAGCCATTATGAGTTTTCTAGCACAGAATTA
GAAGAAATCGCTG ctagagatccgccatattgtgttgaaacaccgcccggaacccga TATAAT ccgcccttcaac
a gatccg a gattttcagg a gcta A G G A A G G A A A A A A A A
CCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAG
GGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGC
${\tt CCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCA}$
${\tt CCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCG}$
${\tt GCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTAT$
TGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGA
CAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGAT
TCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGA
${\tt GTGGCAGGGGGGGGGGGGGGAA} {\tt ttttttaaggcagttattggtgcccttaaacgcctggttgctacgcctgaataag}$
${\tt tgataataagcggatgaatggcagaaattcggatcttccatacctacc$
gata caatta a agg ct ccttttg gag ccttttttttg gag atttt caacg tg gat ct ga att cg ag atg cat caacg tg gat ct ga att cg ag atg cat caacg tg gat ct ga att cg ag atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg gat ct ga at tc ga gat ga atg cat caacg tg ga atg caacg tg ga atg caacg tg ga atg cat caacg tg ga atg caa
$a \verb"gcccttgattattggttgtaa aa aatgcctttgagcgtttttatggataatttttaa aatcatttgctaa aa at$
caccattttattg TATAAT tacaaATCCAACCATTCCTTATGGTTGGCACCGCTAAGATTGAAGGGTCAC
eq:ctccccccccccccccccccccccccccccccccccc
ccGTATGCTCTTTAAGACCCAGCGAGTTGTTACCACACGGCCACTACATGCAAAATCTCTATCCGGAGTCTTATA
AAGTTAGAGTGATCCCCTCTTTTGCTCAAATGCTTGGCGTGAGATTCAACCACAGCATGCAAAGATTAGAAAGCT
ATATTTTAGAGCAATGCTATATCGCTGTGGGGCAAATTTGCATGGGCGTGAGCTTAATGGGATTGGATAGTTGCA
TTATTGGAGGCTTTGATCCTTTAAAGGTGGGCGAAGTTTTAGAAGAGCGTATCAATAAGCCTAAAATCGCATGCT
TGATCGCTTTGGGCAAGAGGGTGGCAGAAGCGAGTCAAAAATCAAGAAAATCAAAAGTTGATGCGATTACTTGGT
TGTGATTAAACAAAATCAAAAACTTTTTAACTATAATCAAACCTAAATTAAAGTTCAAGGAGTGGCATTTTGTTT
AAAAGAATGGTTTTAATCGCTCTTTTAGGGGTGTTTTCAAGCGTTTCATTAAGCGCTAAGctcgag
CSO-0018
rdxA 500 nt upstream: 1014605 - 1014074

catGC cassette Intergenic region of HP1043 and HP1044 with repG under control of its native promoter rdxA 500 nt down: 1013930 - 1013423

Sequence of the RepG complementation construct in the *rdxA* **locus.** The intergenic region of HP1043 and HP1044 (highlighted in light red) with the *repG* gene (red letters) was introduced into pSP39-3, which harbors 500 nt up- (light green) and downstream (dark green) of the *rdxA* locus of strain 26695 as well as the *catGC* resistance cassette (blue). The -10 promoter regions of *repG* and the *catGC* resistance cassette as well as its RBS are highlighted in bold. The sequences corresponding to oligos CSO-0017 and CSO-0018, which were used for amplification of the *rdxA*(500up)-*catGC*-*repG*-*rdxA*(500down) complementation construct, are underlined.

Supplementary Tables

Table S1: G-repeat lengths in the *tlpB* 5' **UTRs of sequential** *H. pylori* from human or after **re-isolation from animals.** Lines frame *H. pylori* isolates that were obtained from the same patient or that were re-isolated after mice/gerbil infection studies. The lengths of the G-repeats in the *tlpB* 5' UTRs of isolates from Narino, Colombia, from the study of Kennemann et al. (2011) (Ref. 15) were re-sequenced by Sanger sequencing.

Strain	NCBI	Time	G-repeat length	G-repeat	Origin/Comment	Reference
	Acc. No	scale		variation		
908	NC_017357		17G-TGGTTTT-17G		West African duodenal ulcer disease patient in France	(17)
2017	NC_017374	10 yrs	15G	yes	Re-isolate from antrum	(18)
2018	NC_017381	10 yrs	13G	yes	Re-isolate from corpus	
NQ367	NZ_CADL00000000		15/16G°		Isolates from Narino, Colombia	(15)
NQ1671 NQ4191	NZ_CADM00000000	3 yrs 16 yrs	13G 13G	yes		
NQ392	NZ_CADI00000000		13G°		Isolates from Narino, Colombia	(15)
NQ1707 NQ4060	NZ_CADJ0000000 NZ_CADK00000000	3 yrs 16 yrs	14G 15/16G°	yes yes		
NQ315	NZ_CADE00000000		12G		Isolates from Narino, Colombia	(15)
NQ1712	NZ_CADF00000000	3 yrs	13G	yes		
NQ352	NZ_CADG00000000		12G°		Isolates from Narino, Colombia	(15)
NQ1701	NZ_CADH00000000	3 yrs	14G°	no		
Hp141			12G-TGC#		Women with gastritis in Poitiers, France	(19)
Hp141*		150 days	10G-C#	yes	Re-isolate from female C57BL/6 inbred mice	
Hp145			10G		Women with prepyloric ulcer in Poitiers, France	(19)
Hp145*		150 days	10G	no	Re-isolate from female C57BL/6 inbred mice	
HP87			13G		Original human isolate	(20)
HP87 P7*			16/17/18G	yes	Gerbil adapted strain	
HP87 P7 tlpD			16/17/18G		<i>tlpD</i> mutant of gerbil adapted strain	(20)
HP87 P7 <i>tlpD</i> RI		6 weeks	16/17/18G	no	Re-isolate from gerbil antrum	

° The G-repeat length determined by Sanger sequencing differed from the genome sequence determined by 454 sequencing.

* *H. pylori* isolates that were re-isolated from C57BL/6 inbred mice or gerbils.

Additional nucleotide variations that were identified in the flanking region of the G-repeat.

Table S2: Location of simple sequence repeats in *H. pylori* and *C. jejuni*. Homopolymeric simple sequence repeats (SSRs) in *H. pylori* 26695 and *C. jejuni* NCTC11168 were extracted from previous studies (21-26) and classified regarding their location within promoter regions, 5' untranslated regions (5' UTR) or coding regions of annotated genes. Transcriptional start sites (TSS) from global transcriptome studies of *H. pylori* 26695 (6) and *C. jejuni* NCTC11168 (27) were used for the definition of promoters and 5' UTRs. Gene Cj0565 has two alternative promoters (primary and secondary TSS) which lead to two possible locations for the SSR.

H. pylori 26695			C. jejuni NCTC11168			
Promoter	5' UTR	Coding	Promoter	5' UTR	Coding	
		sequence			sequence	
HP0009 (A14) HP0025 (T15) HP0227 (T14) HP0228 (A14) HP0349 (T15) HP0350 (A15) HP0547 (A14) HP0629 (T15) HP0651 (A7) HP0722 (T15) HP0725 (T14) HP0733 (T13) HP0896 (A14) HP0912 (T13) HP1342 (A14)	HP0103 (G12) HP0208 (A11) HP0211 (T7) HP0335 (G9) HP0585 (A8) HP0876 (T16) HP1400 (A16)	HP0058 (C15) HP0093-94 (C14) HP0143 (A7) HP0211 (A7) HP0217 (G12) HP0298 (T9) HP0379 (C13) HP0379 (C13) HP0464 (C15) HP0464 (C15) HP0499 (G8) HP0580 (C8) HP0580 (C8) HP0619 (C13) HP0642 (G6) HP0655 (G8) HP0657 (G7) HP0684-85 (C9) HP0687 (G8) HP0752 (G6) HP0753 (G7) HP0767 (G11) HP0839 (G7) HP0767 (G11) HP0839 (G7) HP0908 (C8) HP0919 (G9) HP1206 (A10) HP1353-54 (C15) HP1366 (A6) HP1471 (G14) HP1522 (G12)	Cj0565* (G12) Cj0628-29 (T5)	Cj0565# (G12) Cj0618 (G9) Cj0628-29 (G10) Cj0676 (G9) Cj1321 (G10)	Cj0031-32 (G10) Cj0045c (C10) Cj0045c (C10) Cj0046 (G11) Cj0170 (G9) Cj0208 (G6) Cj0279 (G6) Cj0275 (G8) Cj0348 (G6) Cj0506 (G6) Cj0506 (G6) Cj0685c (C9) Cj0685c (C9) Cj0735 (G6) Cj0685c (C9) Cj0735 (G6) Cj1061c (G6) Cj1130c (G6) Cj1130c (G6) Cj1238 (G6) Cj1295 (G9) Cj1295 (G9) Cj1305c (G9) Cj1305c (G9) Cj1305c (G9) Cj1316 (G11) Cj1325-26 (G10) Cj1335-36 (G9) Cj1342c (G9) Cj1421c (G9) Cj1420c (G10) Cj1429 (G10) Cj1437c (G9) Cj1443c (G5) Cj1643 (G6) Cj1643 (G6)	

* considering primary TSS

considering secondary TSS

Table S3: Bacterial strains

Name	ame Description		H. pylori	Resistance
WT / 26695	Wild-type (NCBI Acc-no. NC_000915), kindly provided by T. F. Meyer (MPI-IB, Berlin, Germany); Ref. (24)	CSS-0004	26695	
ΔrepG	repG::aphA-3		26695	Kan ^R
C _{RepG}	repG::aphA-3, rdxA::repG::catGC	CSS-0046	26695	Kan ^R Cm ^R
SL 2	repG::aphA-3, rdxA::repG-SL 2::catGC	CSS-0747	26695	Kan ^R Cm ^R
ΔCU	repG::aphA-3, rdxA::repG-ΔCU::catGC	CSS-0157	26695	Kan ^R Cm ^R
3xG	repG::aphA-3, rdxA::repG-3xG::catGC	CSS-0158	26695	Kan ^R Cm ^R
1xG*	repG::aphA-3, rdxA::repG-1xG*::catGC	CSS-0159	26695	Kan ^R Cm ^R
∆tlpB	tlpB::rpsL-erm	CSO-0163	26695	Erm ^R
ΔtlpB/ΔrepG	tlpB::rpsL-erm, repG::aphA-3	CSO-0164	26695	Erm ^R Kan ^R
tlpB::3xFLAG	tlpB-3xFLAG::rpsL-erm	CSO-0190	26695	Erm ^R
tlpB::3xFLAG/ ∆repG	tlpB-3xFLAG::rpsL-erm, repG::aphA-3	CSS-0215	26695	Erm ^R Kan ^R
<i>tlpB</i> ::3xFLAG/ ΔrepG/C _{RepG}	tlpB-3xFLAG::rpsL-erm, repG::aphA-3, rdxA::repG::catGC	CSS-0285	26695	Erm ^R Kan ^R Cm ^R
P _{tlpB}	rpsL-erm::tlpB WT	CSS-0384	26695	Erm ^R
P _{tipB} /ΔrepG	rpsL-erm::tlpB WT, repG::aphA-3;	CSS-0388	26695	Erm ^R Kan ^R
tlpB ∆G	rpsL-erm::tlpB ∆G	CSS-0385	26695	Erm ^R
tlpB 3xC	rpsL-erm ::tlpB 3xC	CSS-0386	26695	Erm ^R
tlpB 1xC*	rpsL-erm::tlpB 1xC*	CSS-0387	26695	Erm ^R
PcagA	rpsL-erm::P _{cagA} -tlpB	CSS-0657	26695	Erm ^R
P _{cagA} /∆repG	rpsL-erm::P _{cagA} -tlpB	CSS-0658	26695	Erm ^R Kan ^R
tlpB-5 th ::gfpmut3	rdxA::tlpB-5 th -gfpmut3::catGC	CSS-0748	G27	Cm ^R
tlpB-5 th ::gfpmut3/∆repG	repG::aphA-3; rdxA::tlpB-5 th -gfpmut3::catGC	CSS-0751	G27	Cm ^R Kan ^R
cagA-28 th ::gfpmut3	rdxA::cagA-28 th -gfpmut3::catGC	CSS-0804	G27	Cm ^R
cagA-28 th ∷-gfpmut3/ ∆repG	repG::aphA-3; rdxA::cagA-28 th -gfpmut3::catGC	CSS-0805	G27	Cm ^R Kan ^R
26695 Str ^R	rpsL-str ^R , streptomycin-resistant 26695 based on CSS-0004	CSS-0024	26695 Str ^R	Str ^R
26695 ^R <i>tlpB::</i> 3xFLAG	rpsL-str ^R , tlpB-3xFLAG::rpsL-erm; tlpB::3xFLAG tagged background strain for markerless exchange	CSS-0461	26695 Str ^R	Str ^R Erm ^R
26695 ^R <i>tlpB</i> ::3xFLAG*	rpsL-str [#] , tlpB-3xFLAG*, markerless tlpB::3xFLAG tagged background strain	CSS-0464	26695 Str ^R	Str ^R
tlpB::3xFLAG*/ tlpB ΔG	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB ΔG	CSS-0471	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 6G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 6G	CSS-0472	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 7G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 7G	CSS-0473	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 8G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 8G	CSS-0474	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 9G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 9G	CSS-0475	26695 Str ^R	
tipB-3xFLAG*/ tipB 10G	rpsL-str [*] , tipB-3xFLAG [*] , rpsL-erm::tipB 10G	CSS-0476	20095 Str	
tipB::3xFLAG*/ tipB 11G	rpsL-str ^x , tlpB-3xFLAG*, rpsL-erm::tlpB 11G	CSS-0477	26695 Str ^R	Str ^K Erm ^K
tlpB::3xFLAG*/ tlpB WT (12G)	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 12G	CSS-0470	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 13G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 13G	CSS-0478	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 14G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 14G	CSS-0479	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 15G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 15G	CSS-0480	26695 Str ^R	Str ^R Erm ^R
tlpB::3xFLAG*/ tlpB 16G	rpsL-str ^R , tlpB-3xFLAG*, rpsL-erm::tlpB 16G	CSS-0481	26695 Str ^R	Str ^R Erm ^R
26695 ^R tlpB::3xFLAG*/ ΔrepG	rpsL-str ^R .tlpB-3xFLAG*, repG::aphA-3	CSS-0467	26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB ΔG	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB AG	CSS-0483	26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB 6G	tlpB::3xFLAG*/ ΔrepG/tlpB 6G rpsL-etr ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-etr ^R : tlpB 6G		26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB 7G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 7G	CSS-0485	26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB 8G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 8G	CSS-0486	26695 Str ^R	Str ^R Erm ^R Kan ^R

tlpB::3xFLAG*/ ΔrepG/tlpB 9G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 9G	CSS-0487	26695 Str ^R	Str ^R Erm ^R Kan ^R
<i>tlpB</i> ::3xFLAG*/ ΔrepG/tlpB 10G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 10G	CSS-0488	26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB 11G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 11G	CSS-0489	26695 Str ^R	Str ^R Erm ^R Kan ^R
<i>tlpB</i> ::3xFLAG*/ Δ <i>repG/tlpB</i> WT (12G)	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 12G	CSS-0482	26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB 13G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, zpsL-erm::tlpB 13G	CSS-0490	26695 Str ^R	Str ^R Erm ^R Kan ^R
<i>tlpB</i> ::3xFLAG*/ ΔrepG/tlpB 14G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 14G	CSS-0491	26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB 15G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 15G	CSS-0492	26695 Str ^R	Str ^R Erm ^R Kan ^R
tlpB::3xFLAG*/ ΔrepG/tlpB 16G	rpsL-str ^R , tlpB-3xFLAG*, repG::aphA-3, rpsL-erm::tlpB 16G	CSS-0493	26695 Str ^R	Str ^R Erm ^R Kan ^R
G27	Wild-type (NCBI Acc-no. NC_011333), kindly provided by T. F. Meyer; Ref. (28)	CSS-0010	G27	
G27 ∆repG	repG::aphA-3	CSS-0169	G27	Kan ^R
G27 ΔtlpB	tlpB::rpsL-erm	CSO-0167	G27	Erm ^R
G27 tlpB::3xFLAG	tlpB-3xFLAG::rpsL-erm	CSS-0196	G27	Erm ^R
G27 tlpB::3xFLAG/ ΔrepG	tlpB-3xFLAG::rpsL-erm, repG::aphA-3	CSS-0197	G27	Erm ^R Kan ^R
G27 <i>tlpB</i> ::3xFLAG/ Δ <i>repG</i> /C _{RepG}	tlpB-3xFLAG::rpsL-erm, repG::aphA-3, rdxA::repG::catGC	CSS-0283	G27	Erm ^R Kan ^R Cm ^R
RepG complementation	repG::aphA-3, rdxA::repG::catGC; complementation of repG deficient mutant with RepG in rdxA under its native promoter; gDNA of the complementation strain was kindly provided by F. Darfeuille, University of Bordeaux, France, unpublished.		26695	Kan ^R Cm ^R
J99	Wild-type (NCBI Acc-no. NC_000921), kindly provided by T. F. Meyer, MPI-IB, Berlin, Germany; Ref. (23)	CSS-0001	J99	
Ј99 ∆repG	repG::aphA-3	CSS-0732	J99	Kan ^R
P12	Wild-type (NCBI Acc-no. NC_011498), kindly provided by T. F. Meyer, MPI-IB, Berlin, Germany; Ref. (29)	CSS-0003	P12	
PeCan4	Wild-type (NCBI Acc-no. NC_014555), kindly provided by Douglas E. Berg, Washington University, St. Louis, MO/University of California, San Diego, La Jolla, CA	CSS-0096	PeCan4	
Cuz20	Wild-type (NCBI Acc-no. NC_017358), kindly provided by D. E. Berg, Washington University, St. Louis, MO/ University of California, San Diego, La Jolla, CA	CSS-0097	Cuz20	
Cuz20 ∆repG	repG::aphA-3	CSS-0737	Cuz20	Kan ^R
Sat464	Wild-type (NCBI Acc-no. NC_017359), kindly provided by D. E. Berg, Washington University, St. Louis, MO/ University of California, San Diego, La Jolla, CA	CSS-0098	Sat464	
India7	Wild-type (NCBI Acc-no. NC_017372), kindly provided by D. E. Berg, Washington University, St. Louis, MO/ University of California, San Diego, La Jolla, CA	CSS-0099	India7	
India7 ∆ <i>repG</i>	repG::aphA-3	CSS-0734	India7	Kan ^R
Lithuania75	Wild-type (NCBI Acc-no. NC_017362), kindly provided by D. E. Berg, Washington University, St. Louis, MO/ University of California, San Diego, La Jolla, CA	CSS-0101	Lithuania75	
Lithuania ∆ <i>repG</i>	repG::aphA-3	CSS-0736	Lithuania75	Kan ^R
Shi470	Wild-type (NCBI Acc-no. NC_010698), kindly provided by D. E. Berg, Washington University, St. Louis, MO/ University of California, San Diego, La Jolla, CA; Ref. (30)	CSS-0173	Shi470	
Shi470 ΔrepG	repG::aphA-3	CSS-0735	Shi470	Kan ^R

SJM180	Wild-type (NCBI Acc-no. NC_014560), kindly provided by D. E. Berg, Washington University, St. Louis, MO/ University of California, San Diego, La Jolla, CA	CSS-0174	SJM180	
B8	Wild-type (NCBI Acc-no. NC_014256), kindly provided by R. Haas, Max von Pettenkofer Institute, Munich, Germany; Ref. (31)	CSS-0213	B8	
B8 ∆repG	repG::aphA-3	CSS-0733	B8	Kan ^R
HP1334::3x-FLAG	tlpB::tlpB-3xFLAG: aphA-3	JVS-7033	26695	Kan ^R
Hmu	Wild-type of <i>Helicobacter mustelae</i> , kindly provided by T. F. Meyer, MPI-IB, Berlin, Germany	CSS-0007		
Нас	Wild-type of <i>Helicobacter acinonychis</i> (NCBI Acc-no. NC_008229), kindly provided by T. F. Meyer, MPI-IB, Berlin, Germany; Ref. (32)	CSS-0008		
TOP 10	mcrA Δ(mrr-hsdRMS-mcrBC) Φ80/acZ Δ M15 Δ /acX74 deoR recA1 araD139 Δ (ara-leu)7697 ga/U ga/K rpsL endA1 nupG from Invitrogen	CSO-0296	E. coli	

Str^R: streptomycin resistant; Kan^R: kanamycin resistant; Cm^R: chloramphenicol resistant; Erm^R: erythromycin resistant

Table S4: DNA oligodesoxynucleotides

Name	Sequence 5' \rightarrow 3'	Description
CSO-0003	GAAAGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Northern blot probe for RepG
CSO-0017	GTTTTTTCTAGAGATCAGCCTGCCTTTAGG	RepG cloning
CSO-0018	GTTTTTCTCGAGCTTAGCGCTTAATGAAACGC	RepG cloning
CSO-0035	GGTGTTCTATAATTTCAGCTTGTATGCTTTATAACTATGGATTAA ACACTTTT	Cloning of <i>tlpB</i>
CSO-0036	CTTTTTTAATAAACTCCCCCTGATTACTTATTAAATAATTTATAG CTATTGAAAAGAG	Cloning of <i>tlpB</i>
CSO-0037	TTTAATCCATAGTTATAAAGCATACAAGCTGAAATTATAGAACAC CC	Cloning of <i>tlpB</i>
CSO-0038	GCTATAAATTATTTAATAAGTAATCAGGGGGAGTTTATTAAAAAA G	Cloning of <i>tlpB</i>
CSO-0039	GTTTTTCTCGAGTCTCAAAATCCGCTGAAATCT	Cloning of tlpB
CSO-0040	GTTTTTTCTAGATCAGTTGCAACCAGGAGATT	Cloning of tlpB
CSO-0045	AAGATGACGACGATAAATAGTAAATGCTTTATAACTATGGATTA AACACTTTT	Cloning of <i>tlpB</i> ::3xFLAG
CSO-0046	TTTAATCCATAGTTATAAAGCATTTACTATTTATCGTCGTCATCT TTGT	Cloning of <i>tlpB</i> ::3xFLAG
CSO-0050	GCATGAAAGATTCCTCAACCAC	Verification of <i>tlpB</i> ::3xFLAG
CSO-0051	TGTCACTTATATTTACAAGTTCGCT	Verification of <i>tlpB</i> deletion
CSO-0053	ACTGCCAGGTTCGGAATGG	Northern blot probe for <i>Helicobacter mustelae</i> 5S rRNA
CSO-0065	P~GACTACAAAGACCATGACGGT	Cloning of <i>tlpB</i> ::3xFLAG
CSO-0080		RepG SL 2 cloning
CSO-0081		RepG SL 2 cloning
CSO-0083		Primer extension
CSO-0126		GFP fusion cioning
CSO-0138		RepG ACU cloning
CSO 0139		RepG 200 cioning
CSO-0140		RepG 1xG cloning
CSO-0141	TIGAAGGTCACGTCCCCCTGCTTTCCCTTGCTTGCC	RepG 1xG cloning
CSO-0143		RepG 3xG cloning
CSO-0146	GTTTTTATCGATGTATGCTCTTTAAGACCCAGC	GEP fusion cloning
CSO-0205	AATTACAACAGTACTGCGATGAGT	RepG cloning
CSO-0206	AATCTCACGCCAAGCATTT	RepG cloning
CSO-0207	AGTTCTGATTTCATGCCCTT	RepG cloning, verification
CSO-0208	GTTTTTCTCGAGGCGCGCACACTGAAGA	Cloning of tlpB::3xFLAG
CSO-0209	GTTTTTGAATTCTTACTTATTAAATAATTTATAGCTATTGAAAAGA G	Cloning of <i>tlpB</i> ::3xFLAG
CSO-0210	GTTTTTGAATTCAGGGGGAGTTTATTAAAAAAG	Cloning of <i>tlpB</i> ::3xFLAG
CSO-0211	GTTTTTTCTAGATCTCAAAATCCGCTGAAATCT	Cloning of <i>tlpB</i> ::3xFLAG
CSO-0245	P~AGTTTTAAACAAATTCACTTGTTTGTC	Cloning of <i>tlpB</i> ::3xFLAG
CSO-0277	TTTATCCACCACCATATAAA	Cloning of <i>tlpB</i>
CSO-0278	GTTTTTTTTAATACGACTCACTATAGGTTCAAAGACATGAATTGA TTACTC	In vitro transcription
CSO-0284	GTTTTTTGCTAGCAGCCACTTGAAGATTATTGATAAAT	Cloning of <i>tlpB</i>
CSO-0291	GTTTTTCTCGAGTTAGGCATTTTATAATAAGTGTAGCCT	Cloning of <i>tlpB</i>
CSO-0294	GTTTTTGGATCCTTTATTATTTTATCTTTAAGCCTAACTTAA	Cloning of <i>tlpB</i>
CSO-0295	GTTTTTGAATTCTAAAAAATTTTATTTAACTTCACTCTCTT	Cloning of <i>tlpB</i>
CSO-0306	GTTTTTGGATCCGATCGGGCTTTTTTCAATATT	Cloning of <i>tlpB</i>
CSO-0308		Cloning of <i>tlpB</i>
CSO-0309		Cloning of <i>tlpB</i>
CSO-0314	AAAATTAGGG	Cloning of <i>tlpB</i> ; compensatory base-pair exchange
CSO-0315	TTCTAAATGCACCCCCGCCCCCGAAAAATGAGTGGCACAAA	Cloning of <i>tlpB</i> ; compensatory base-pair exchange
CSO-0316	CTCATTITTCGGCGGGCGGGCGTGCATTTAGAAGCTAAACTCT AAAATTAGGG	Cloning of <i>tlpB</i> ; compensatory base-pair exchange
CSO-0317	TTCTAAATGCACGCCCGCCGCCGAAAAATGAGTGGCACAAA	Cloning of <i>tlpB</i> ; compensatory base-pair exchange
CSO-0318	P~TGCATTTAGAAGCTAAACTCTAAAATTAG	Cloning of <i>tlpB</i>
CSO-0319	GAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0428	P~TTACTATTTATCGTCGTCATCTTT	Cloning of <i>tlpB</i> ::3xFLAG

Sequences are given in 5' \rightarrow 3' direction; P~ denotes a 5' monophosphate.

ES0-0430 P-TIGTITGTTCTTTGTTCGTTT Claning of tipB CS0-0431 ATTCTTATTACAACAATATCAACGATT Claning of tipB CS0-0440 GTTTTTTGCGACCTGGCGTATAACATAGTATCGA GFP kuson claning CS0-0441 GTTTTTTGCGACCGTGGCGTATAACATAGTATCGA GFP kuson claning CS0-0442 GTTTTTGCGACCGTCGATTGCATGCACGATCCACGT GFP kuson claning CS0-0443 CCCCCCCGAAAATGAGTGGCACAAAAC Claning of tipB CS0-0444 CCCCCCCCGAAAATGAGTGGCACAAAAC Claning of tipB CS0-0445 CCCCCCCCCGAAAATGAGTGGCACAAAAC Claning of tipB CS0-0451 CCCCCCCCCCGAAAATGAGTGGCACAAAAC Claning of tipB CS0-0452 CCCCCCCCCCCGAAAATGAGTGGCACAAAAC Claning of tipB CS0-0453 CCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Claning of tipB CS0-0454 CCCCCCCCCCCCCCCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Claning of tipB CS0-0457 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Claning of tipB CS0-0458 CCCTTTTATGATATTTTTATAGTGGCACAAAAC Claning of tipB CS0-0459 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CSO-0429	TCAGGGGGAGTTTATTAAAAAAG	Cloning of tlpB::3xFLAG
ES0-0431 ATTCITATIATIACAACAATIACAAGCATT Cloning of tipB CS0-0440 GTITTITTGCAACGTAGCGTATAACATAGATAGATAGCA GFP Jusion cloning CS0-0441 GTITTITGCGACGGCGGCAGTAACCTCGCAGGT GFP Jusion cloning CS0-0442 GTITTITGCGACGGCGCACAAAC Cloning of tipB CS0-0443 CCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0448 CCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0449 CCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0449 CCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0451 CCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0452 CCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0453 CCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0454 CCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0455 CCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0456 CCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0457 CCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CS0-0458 CCCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB	CSO-0430	P~TTGTTTGTTCTTTTGTTTCGTTTT	Cloning of tlpB
ES0-0440 GTTTITTGCGACGTGGCGATAACATAGTATGCAA GFP Auson cloning CS0-0441 GTTTITGCGACGTAGACTGAACTCAAGCACGC GFP Auson cloning CS0-0442 GTTTITGCGGCGCGGGAGACAAAC Cloning of the CS0-0448 CCCCCCCGAAAATGAGTGGCACAAAC Cloning of the CS0-0448 CCCCCCCGAAAATGAGTGGCACAAAC Cloning of the CS0-0449 CCCCCCCCGAAAATGAGTGGCACAAAC Cloning of the CS0-0449 CCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of the CS0-0451 CCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of the CS0-0452 CCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of the CS0-0453 CCCCCCCCCCCCGGAAAATGAGTGGCACAAAAC Cloning of the CS0-0454 CCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of the CS0-0455 CCCCCCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of the CS0-0456 CCCCCCCCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of the CS0-0457 CCCCCCCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of the CS0-0458 GTTTTATCGTATGGGCACAAAAC Cloning of the CS0-0450 CCCCCCCCCCCCCCCCCCCCCCCAAAATGAGTGGCACAAACC Cloning of the <td< th=""><th>CSO-0431</th><th>ATTCTTATTATACAACAATATCAAGCATT</th><th>Cloning of tlpB</th></td<>	CSO-0431	ATTCTTATTATACAACAATATCAAGCATT	Cloning of tlpB
ES0-0441 GTTTITTGCGGCGCGGGAGTTAACTCCAGGTCTG GFP Husion cloning CS0-0442 GTTTITTGCGGCGCCCCGAATTCAGATCCAGGT GFP Husion cloning CS0-0443 GTTTITTGCGGCGCCCCGAAATCAGATGGCACAAAAC Cloning of tlpB CCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tlpB CCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tlpB CCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tlpB CS0-0443 CCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tlpB CCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tlpB CCCCCCCCCCGAAAATGAGTGGCACAAAAC CC0o451 CCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tlpB CS0-0453 CCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Cloning of tlpB CS0-0454 CCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC CS0-0455 CCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Cloning of tlpB CCCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC CS0-0456 CCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Cloning of tlpB CCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC CS0-0457 CCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Cloning of tlpB CCCCCCCCCCCCCCAAAATGAGTGGCACAAAAC CS0-0458 GTTTTTACGATTATCATTAGAGCTACAAATTAA GFP husion cloning CS0-0455 CCCCCCCCCCCCCCCCAAAATGAGTGC	CSO-0440	GTTTTTTGTCGACGTTGGCGTATAACATAGTATCGA	GFP fusion cloning
ES0-0442 GTTITTGCGACGTATGCTCTTTAGACCCAGC GFP fusion cloning CS0-0443 GTTITTGCGACGTATGACATCAGATCCACGTT GFP fusion cloning CS0-0443 CCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0449 CCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0450 CCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0450 CCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0450 CCCCCCCCCCGAAAATGAGTGGCACAAAC Cloning of flpB CS0-0452 CCCCCCCCCCCGAAAATGAGTGGCACAAAC Cloning of flpB CS0-0455 CCCCCCCCCCCGAAAATGAGTGGCACAAAC Cloning of flpB CS0-0455 CCCCCCCCCCCCGAAAATGAGTGGCACAAAC Cloning of flpB CS0-0455 CCCCCCCCCCCCAAAATGAGTGGCACAAAC Cloning of flpB CS0-0456 CCCCCCCCCCCCAAAATGAGTGGCACAAAC Cloning of flpB CS0-0457 CCCCCCCCCCCCAAAATGAGTGGCACAAAC Cloning of flpB CS0-0457 CCCCCCCCCCCAAAATGAGTGGCACAAAC Cloning of flpB CS0-04581 GTTTTATGCATTATATTAT GFP fusion cloning CS0-0457 CCCCCCCCCCCCAAAATGAGTGGCCTAAATG Cloning of flpB CS0-04583 </th <th>CSO-0441</th> <th>GTTTTTTGCGGCCGCGGGAGTTAACTGCAGGTCTG</th> <th>GFP fusion cloning</th>	CSO-0441	GTTTTTTGCGGCCGCGGGAGTTAACTGCAGGTCTG	GFP fusion cloning
CS0-0443 GTTTITGCGGCCGCTCGAATTCAGATCACGGT GFP fusion cloning CS0-0449 CCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0449 CCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0449 CCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0452 CCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0451 CCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0452 CCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0455 CCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0456 CCCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0457 CCCCCCCCCCCCCCGGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0458 GTTCTTCGAGCATTAAGGTGGCACAAAAC Cloning of flpB CS0-0459 GTTTTTATCGAGCATAAGGGAGAAAATTAATTGGTGGCACAAAAC Cloning of flpB CS0-0451 GTCCCCCCCCCCCCGCGAAAATGAGTGGCACAAAAC Cloning of flpB CS0-0453 GTTTTTTGCGAGCATAAGGTGGCACAAAC Cloning of flpB CS0-0451 GTTTTTTCGAGCAGTAAGGGCACAAAAC Cloning of flpB CS0-0452 GTTTTTTTCGGAGGAGAAAGACTTTTTCATTGGGCACTAACCGGGGGGGTTTTGCTTTTTTTT	CSO-0442	GTTTTTGTCGACGTATGCTCTTTAAGACCCAGC	GFP fusion cloning
CSO-0448 CCCCCCCAMAATCAGTGGCACAAAC Cloning of tipB CSO-0450 CCCCCCCCCGAAAATCAGTGGCACAAAAC Cloning of tipB CSO-0450 CCCCCCCCCGAAAATCAGTGGCACAAAAC Cloning of tipB CSO-0450 CCCCCCCCCGAAAATCAGTGGCACAAAAC Cloning of tipB CSO-0450 CCCCCCCCCCGAAAATCAGTGGCACAAAAC Cloning of tipB CSO-0452 CCCCCCCCCCCGAAAATCAGTGGCACAAAC Cloning of tipB CSO-0455 CCCCCCCCCCCCCAAAATCAGTGGCACAAAC Cloning of tipB CSO-0455 CCCCCCCCCCCCCCCCCAAAATCAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCCCCAAAATCAGTGGCACAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCCCAAAATCAGTGGCACAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCCCAAAATCAGTGGCACAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCCAAAATCAGTGGCACAAAC Cloning of tipB CSO-04581 GTITITTACGATTATATTTTTACGTTAA GFP tision cloning CSO-0450 GTITITTACGATTATAGGTGGCACAAAC Cloning of tipB CSO-0451 CCCCCCCCCCCCCCCCCCAAAATCAGTGGCACAAAC Cloning of tipB CSO-0450 GTITTTTACGATTATATTTTTAGCCTTACTTA GFP tision cloning	CSO-0443	GTTTTTGCGGCCGCCTCGAATTCAGATCCACGTT	GFP fusion cloning
CSO-6449 CCCCCCCCCAAAAATGAGTGCCACAAAC Cloning of tipB CSO-0450 CCCCCCCCCCCAAAAATGAGTGCCACAAAC Cloning of tipB CSO-0451 CCCCCCCCCCCCCAAAAATGAGTGCCACAAAC Cloning of tipB CSO-0452 CCCCCCCCCCCCAAAAATGAGTGCCACAAAC Cloning of tipB CSO-0453 CCCCCCCCCCCCCAAAAATGAGTGCCACAAAC Cloning of tipB CSO-0454 CCCCCCCCCCCCCCAAAAATGAGTGCCACAAAC Cloning of tipB CSO-0455 CCCCCCCCCCCCCCCAAAAATGAGTGCCACAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCAAAATGAGTGCCACAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCAAAATGAGTGCCACAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCAAAATGAGTGCACAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCGAAAATGAGTGCACAAAC Cloning of tipB CSO-0450 GTITTTATCGATTATCGTGGCCTTACTTACATTA GFP fusion cloning CSO-0451 GTITTTATCGATTACGGGGTAGTTCCT Quantitative RT-PCR (6S RNA) CSO-0453 CCCAGTAGTAACTGGGTAGTTCCT Northen blo probe for RepG JVO-0455 CCGTAGTAACTGGTAGTTGCAT Northen blo probe for RepG JVO-5050 GATAAGGTTAACTGGGTAGTTCCT Northen blo probe for Re	CSO-0448	CCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0450 CCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0451 CCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0452 CCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0453 CCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0454 CCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0455 CCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCCAGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0458 GTTITTATCGATTATTATTTTTTTATATTTTTTACTTTTACACTGGG CFP tipB ion cloning CSO-0457 CCCCCCCCCCCCCCAAGAAGAACTTTACACTGGG Quantitative RT-PCR (6S RNA) CSO-0457 CCCAGATGACGTAGTTATACTT Verification oligo for Helicobacter pylori SS rRNA JVO-0458 TCCAGACCTT	CSO-0449	CCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0451 CCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0452 CCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0453 CCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0454 CCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0455 CCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCGAAAAATGAGTGGCACCAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCGAAAAATGAGTGGCACCAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCCCAGAAAATGAGTGGCACCAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCCAGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0451 GTTTTTGCATGACATAAAGGGGAGAGGAAGACTTTTACT GPF fusion cloning CSO-0451 GTTTTTGCATGACAGTAAAGGGAGAGGAAGACTTTTCACTGGA Quantitative RT-PCR (6S RNA) CSO-1173 GGTAGTGGCACACACTTC Verification oligo for insertion of <i>rpsL-erm</i> cassette JVO-0485 TCGAAATGAGGTGTGGCATTACT Verification oligo for insertion of <i>rpsL-erm</i> cassette JVO-0485 TCGAATGCAGTAATATCCT Northern blot probe for Helicobacter pylori Ss rRNA JVO-0485 TCGAACGCATAAGGATGGTTGGAT Northern blot probe for Helicobac	CSO-0450	CCCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0452 CCCCCCCCCCGAAAATGAGTGGCACAAAC Cloning of tipB CSO-0453 CCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0454 CCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0455 CCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCGGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0459 GTITTITATGATTATTIATTTITTITTITTTTTTACGACACACAAC Cloning of tipB CSO-0459 GTITTTATGATAGGATGAAGACGTTTACATTA GFP fusion cloning CSO-0450 GTITTTATGGATGAGTGATATAG GFP fusion cloning CSO-0451 GGTAGTGACACACCATCATTATAGG Quantitative RT-PCR (6S RNA) CSO-1173 GGTAGTGACACACCTTC Verlication oligo for insertion of rpsL-erm cassette JVO-0455 CCGAATGGTAAGGTGTAATCGT Northem blot probe for Nel/Cobacter pylori SS RNA JVO-0455 CCGTAAGGATAGTGTAATA Verlication of repG deletion mutant JVO-5059 CTCAAGCACGCTTAATA Verlication of repG deletion mutant JVO-5126 <t< th=""><th>CSO-0451</th><th>CCCCCCCCGAAAAATGAGTGGCACAAAAC</th><th>Cloning of <i>tlpB</i></th></t<>	CSO-0451	CCCCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0453 CCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0455 CCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0456 CCCCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0458 CCCCCCCCCCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCCCCCCCCCAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0458 GTTITTACCATTATATATTATTATTATAGGCTAACTTAA GFP fusion cloning CSO-0453 GTTITTTCGATGAGTAAGGAGAAGACATTITCACTGGA Quantitative RT-PCR (65 RNA) CSO-0453 GTAGTGGTTATTGGGATGATGGGTGGTACTTCT Verification oligo for insertion of <i>rpsL-erm</i> cassette JVO-0415 CCGAATGGATGCTGGATGGTGGATGCTTCCT Northern blot probe for RepG Northern blot probe for RepG JVO-2134 AAACCATAAGGATGATGGTTGAAT Verification of rpsG deletion mutant JVO-2134 JVO-2134 AAACCATAGGATGATGGATCAACTTCCT Northern blot probe for RepG Seree cloning JVO-2135 GTTTACCAGTGTAATGGGTGATCACCTT RepG cloning In vitro transcription <th>CSO-0452</th> <th>CCCCCCCCGAAAAATGAGTGGCACAAAAC</th> <th>Cloning of <i>tlpB</i></th>	CSO-0452	CCCCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-1454 CCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tlpB CSO-0456 CCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tlpB CSO-0456 CCCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tlpB CSO-0456 CCCCCCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Cloning of tlpB CSO-0456 CCCCCCCCCCCCCCCCCCCCAAAAATGAGTGGCACAAAAC Cloning of tlpB CSO-0581 GTITITATGATATTATTATTATTATTATTATTATTATTATTATTA	CSO-0453	CCCCCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0455 CCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of t/pB CSO-0456 CCCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of t/pB CSO-0457 CCCCCCCCCCCCCCCGAAAATGAGTGGCACAAAAC Cloning of t/pB CSO-0457 CCCCCCCCCCCCCCCCCCCAAAATGCAGTGGCACAAAAC Cloning of t/pB CSO-0581 GTITITACGATGACGGTTITITCAATAT GFP fusion cloning CSO-0583 GTITITTCCATACGGACTITITITCAATAT GFP fusion cloning CSO-0583 GTITITTCCATGACGTAAAGGAGAAGACATTITCACTGGA Quantitative RT-PCR (65 RNA) CSO-01173 GGTAGTGGTTAACTGACTTACACT Verification oligo for insertion of <i>rpsL-erm</i> cassette CSO-01174 CCAGATGACTACACTTC Cloning of FP fusion (33) VO-0155 CCGTATGTAGCATGACTTC Verification oligo for insertion of <i>rpsL-erm</i> cassette VV0-0485 TCGGAATGAGTAGTGAT Northern blot probe for RepG JV0-0485 TCGCACCCCCTGTAAATA Verification oligo for insertion of <i>rpsL-erm</i> cassette JV0-0485 CGTTTCAGCACTAAATGAGTGTGAT Northern blot probe for RepG JV0-0485 TCGCACATAAGGATGATCTT RepG cloning JV0-5069 GTTTTTTTAATACGACTCACATATAGGATCCAACCATTCCT RepG cloning JV0-507	CSO-0454	CCCCCCCCCCGAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0456 CCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0457 CCCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0451 CCCCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tipB CSO-0581 GTITITATCGATTATITITACTITAAGCTTAACTTA GFP fusion cloning CSO-0583 GTITITGGATCGTTATATITAACCTACTACA GFP fusion cloning CSO-1173 GCTAGTGGTTITTGGTGATGG Quanitative RT-PCR (6S RNA) CSO-1174 CCAGATGACCCCTACTTTACA Quanitative RT-PCR (6S RNA) CSO-1175 CCGTATGTAGCATCACCTTC Cloning of GFP fusion cloning JVO-0155 CCGTATGTAGCATCACCTTC Northem blot probe for RepC JVO-0485 TCCGGAATGGTTAACTGGGTAGTTGAT Northem blot probe for RepG JVO-30569 CTTCACGCCCCTGTAATA Verification of repG deletion mutant JVO-3125 GTITTTTAGACCCACTATATGGT RepG cloning JVO-3126 AAAACAACACCGCCAAGACA In vitro transcription JVO-3127 GTITTTTAGACCGCCTATATGGTGGTTTGTCTTTTGTTT In vitro transcription JVO-3128 TTACGTGATTGTTGAAT Quanitative RT-PCR (tipB) JVO-3513 TTACTATTAACGACTCACTATAGGTGTTTGTCTTTTGTTT	CSO-0455	CCCCCCCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0457 CCCCCCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC Cloning of tip B CSO-0581 GTTITTATGGATTATCGGCGCTTITATCATTTA GFP fusion cloning CSO-0583 GTITITTACGATATCGGGCTTITTCAATAT GFP fusion cloning CSO-0584 GTITTTACGATGATCGGGCTTITTCAATAT GFP fusion cloning CSO-1173 GGTAGTGGTTITGTGTGATGG Quantitative RT-PCR (6S RNA) CSO-1174 CCAAAGCCCCCTCATTTACA Quantitative RT-PCR (6S RNA) CSO-1175 CCGGTATGGTAACTTACTT Verification oligo for insertion of <i>rpsL-erm</i> cassette JVO-0155 CCGTATGGTAACTGGGTAGTTCCT Northern blot probe for <i>RepG</i> deletion mutant JVO-0495 CCGCCCTGTAAATA Northern blot probe for RepG JVO-0495 CTCACACCCCCTGTAAATA Verification of <i>rpgG</i> deletion mutant JVO-0495 CTCACCCCCCCTGTAATATA Verification of <i>rpgG</i> deletion mutant JVO-0495 GTTTTTACCGATTATCGGT TAATCGT RepG cloning JVO-5072 CGTTTCTGACACCTACCTAAGGATCCAACCATTCCTTAIG In vitro transcription JVO-5126 AAAACAACCGCCCAAGACA In vitro transcription JVO-5131 TIACTATTACGATCACTTTT Quantitative RT-PCR (<i>tlpB</i>) JVO-5143	CSO-0456	CCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of <i>tlpB</i>
CSO-0521 Control Control Control Control CSO-0521 GTITITATCGATCGATCGGCTITITAGGCTAACTTAA GFP fusion cloning CSO-0532 GTITITATCGATCGATCGGCGCTITITTCAATAT GFP fusion cloning CSO-0533 GTITITTGCTAACGATCGGCCTITITTCAATAT GFP fusion cloning CSO-0173 GGTAGTGGTTATGTGTGATCGGCCTACTTTACA Quantitative RT-PCR (6S RNA) CSO-0173 TCCAAGCCCCATAGTAAGGATGTTACTT Verification oligo for insertion of <i>rpsL-erm</i> cassette JVO-0155 CCGTATGTAGCATCACCTTC Cloning of GFP fusion (33) JVO-0485 TCCGGAATGGTTAACTGGGTAGTTCCT Northern blot probe for <i>Pelicobacter pylori</i> 5S rRNA JVO-0485 TCCACGCCCCTTGTAAATA Verification of <i>rpgC</i> deletion mutant JVO-0155 GTITCTGGACACGCTAATATGGT RepG cloning JVO-5070 GATAAGGTTTAACGACTCACTATAGGATCCACACCATCCTTATG RepG cloning JVO-5125 GTITTTTTATACGACCGCCCAAGACA In vitro transcription JVO-5126 AAACAACCGCCCCAGAGAA In vitro transcription JVO-5127 GTITTTTCACACCGCCAAGCA In vitro transcription JVO-5288 AAGGTAGCCTACTTTT Quantitative RT-PCR (<i>tlpB</i>) JVO-5287	CSO-0457	CCCCCCCCCCCCCGAAAAATGAGTGGCACAAAAC	Cloning of the
SO-0500 GTTITTATCGATGATCGGGCTTITTTCAATAT GrP fusion cloning CS0-0503 GTTITTATCGATGATCGGGCTTAAGGAGAAGAACTTTTCACTGGA GFP fusion cloning CS0-0173 GGTAGTGATGGCGCTAAGGAGAAGAACTTTTCACTGGA GFP fusion cloning CS0-0173 GGTAGTGATGGCGCTAAGGAGAAGAACTTTTCACTGGA Quantitative RT-PCR (6S RNA) CS0-1174 CCAGATGACCGCTAGTAAGTCATTACT Verification oligo for insertion of <i>rpsL-erm</i> cassette JV0-0185 CCGGATGGTAGCACCACCTTC Cloning of GFP fusion (33) JV0-0485 TCGGAATGGTTAACTGGGGTAGTTCCT Northern blot probe for <i>Helicobacter pylori</i> 5S rRNA JV0-0485 TCGGAATGGTTAACTGGGATATCGT Northern blot probe for <i>Helicobacter pylori</i> 5S rRNA JV0-5070 GATAAGGTTTAACGAGCTCAATATG Verification of <i>repG</i> deletion mutant JV0-5072 CGTTTCTGCACAGCACTAATGGATCCACACCATTCCTTATG In vitro transcription JV0-5126 AAAACAACCGCCACAGACA In vitro transcription JV0-5127 GTTTTTACGACCACCATATAGGATCCACACATTGCTTTGTTCTTTGTTT In vitro transcription JV0-5288 AAGTGTAGCTCACCATATAGGATCCTACCCCCCCCCCCT In vitro transcription JV0-5267 CCCTAACCCTAAAGGAGGG In vitro transcription JV0-5267 CC	CSO-0581	GTTTTTATCGATTTATTATTATCTTTAAGCCTAACTTAA	GFP fusion cloning
CSO-0683CTTITTGCTAGCAGTAAAGGAGAAGAACTTTTCACTGGACIT Busion cloningCSO-1173GGTAGTGGTTTTTGTGATGGQuantitative RT-PCR (6S RNA)CSO-1174CCAGATGACCCCTACTTTACAQuantitative RT-PCR (6S RNA)CSO-0174CCAGATGACCCCTACTTTACTTVerfication oligo for insertion of <i>psL-erm</i> cassetteJVO-0155CCGTATGTAGCATCACCTTCCloning GFP fusion (33)JVO-0485TCGGAATGGTTAACTGGTGGATNorthern blot probe for <i>Helicobacter pylori</i> 5S rRNAJVO-05069CTTCACGCCCCTTGTAAATAVerfication oligo for insertion of <i>transcription</i> JVO-50509CGTTCACGCCCCTTGTAAATAVerfication oligo for insertion of <i>transcription</i> JVO-5125GTTTTTGACACGCCCACTATAGGATCCAACCATTCCTTATG GTTRepG cloningJVO-5126GTTTTTTTTACCGCCCCACACATAGGTGTTTGTTCTTTTGTTTC GTTIn vitro transcriptionJVO-5127GTTTTTTACCGCCCCACACATAGGTGTTTGTTTTIn vitro transcriptionJVO-5287ACCGGGGTGGTATGTTGTGTGTTGTQuantitative RT-PCR (<i>tlpB</i>)JVO-5287TACGGGGTGGTAAATCCCTAACCCTACCCCCCCCCGVerfication of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ⁴ allele in primer rpsL1 and the Lys8Arg mutation (AAC263AGG) str ⁴ allele in rpsL 2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 2689, P12 and G27 Colony PCR and sequencing of pZE12-luc derived plasmids	CSO-0590	GTTTTTATCGATGATCGGGCTTTTTTCAATAT	GFP fusion cloning
CSO-1173GGTAGTGGTTTTTGTGTGATGGQuantitative RT-PCR (6S RNA)CSO-1174CCAGATGACCGCTACTTTTACAQuantitative RT-PCR (6S RNA)CSONIH-0033TCAAAGCCACTAGTAATCACTTACTTVerification oligo for insertion of rpsL-rem cassetteJVO-0153CCGTATGTAGCATCACCTTCCloning of GFP fusion (33)JVO-0485TCGGAATGGTTAACTGGTAGTTCCTNorthem blot probe for Helicobacter pylori 5S rRNAJVO-2134AAACCATAAGGAATGGTTGAATAVerification of rpgG deletion mutantJVO-5070GATAAGGATTGGTAAATAVerification of rpgG deletion mutantJVO-5071CGTTTCTCACGCCCTTGTAAATAVerification of rpgG deletion mutantJVO-5072GTTTTTTTTTTAACACACCGCTAATAGGATCCAACCATTCCTTATGIn vitro transcriptionJVO-5125GTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CSO-0683	GTTTTTTGCTAGCAGTAAAGGAGAAGAACTTTTCACTGGA	GEP fusion cloning
CSO-1174 CCAGATGACCGCTACTTTACA Quantitative RT-PCR (6S RNA) CSONIH-0033 TCCAAGCCATAGTAGTGTTACTT Verification oligo for insertion of <i>rps1-erm</i> cassette JVO-0155 CCGTATGTAGCACTACCTTCC Cloning of GFP fusion (3) JVO-488 TCGGCAATGGTTACTGGTAGTTCCT Northerm blot probe for <i>Helicobacter pylori</i> 5S rRNA JVO-2134 AAACCATAAGGATGGTTGGAT Northerm blot probe for RepG JVO-5069 CTTCACGCCCCTTGTAAATA Verification of <i>rpsG</i> deletion mutant JVO-5070 CATAAGGTTTACCGATGTAATCGT RepG cloning JVO-5072 CGTTTTTGACACGCCTAATTA Verification of <i>rpsG</i> deletion mutant JVO-5072 GTTTTTTTAACAGAGCTCACTATAGGATCCAACCATTCCTTATG In vitro transcription JVO-5125 GTTTTTTTAACGGACGACAACAACCACTCCTTATG In vitro transcription JVO-5126 AAAACAACACCGCCAAGACA In vitro transcription JVO-5127 GTTTTTTTATCGTCGTCATCTTT In vitro transcription JVO-5143 TTACTATTATCGTCGTCATCTTT Quantitative RT-PCR (<i>ltpB</i>) JVO-5567 ACGGGGTGTATGCTCCCCCTTT Quantitative RT-PCR (<i>ltpB</i>) JVO-55702 GTATTTCACACCGGGTAAATCCCTAACCCCTACCCCCACG Verification of <i>rpsL</i> (<i>ltpB</i>)	CSO-1173	GGTAGTGGTTTTTGTGTGTGATGG	Quantitative RT-PCR (6S RNA)
CSONIH-0033 TCAAAGCCACTAGTAAGTCTTACTT Verification oligo for insertion of <i>rpsL-erm</i> cassette JV0-0155 CCGTATGTAGCATCACCTTC Cloning of GFP fusion (33) JV0-0485 TCGGAATGGTAACTGGGTAGTTCCT Northern blot probe for RepG JV0-2134 AAACCATAAGGAATGGTTGGAT Northern blot probe for RepG JV0-5069 CTTCACGCCCCTTGTAAATA Verification of <i>repG</i> deletion mutant JV0-5070 GATAAGGTTTAGCGATCAACTGT RepG cloning JV0-5125 GTTTTTTGTGACACGCTAATCGA In vitro transcription GTTTTTTTTAACACGCCCAAGACA In vitro transcription In vitro transcription JV0-5126 AAAACAACCGCCAAGACA In vitro transcription In vitro transcription JV0-5127 GTTTTTTTAATACGACTCACTATAGGTGTTGTTCTTTTGTTT In vitro transcription Jvo-5143 JV0-5126 AAACAACCGCCAAGACACTTT Uauntitative RT-PCR (<i>tlpB</i>) Jvo-5267 JV0-5268 AAGTGTAAGCTTGCTGCATCTTT Quantitative RT-PCR (<i>tlpB</i>) Jvo-5268 JV0-5930 CCCTAAACCTAAAGAGCGGG In vitro transcription In vitro transcription JV0-5702 GTATTTCACACCGGGGTAAATCCCTAACCCTACCCCCACG Verification of <i>rpsL</i> fagment containing the Lys43A	CSO-1174	CCAGATGACCGCTACTTTTACA	Quantitative RT-PCR (6S RNA)
JVO-0155CCGTATGTAGCATCACCTTCCloning of GFP fusion (33)JVO-0485TCGGAATGGTTACTGGGTGAGTTCCTNorthern blot probe for Helicobacter pylori 5S rRNAJVO-2134AAACCATAAGGAATGGTTGGATNorthern blot probe for RepGJVO-5069CTTCACGCCCCTTGTAAATAVerification of repG deletion mutantJVO-5070GATAAGGTTTAGCGATGTAATCGTRepG cloningJVO-5072CGTTTCTTGACACGCCTAATTRepG cloningJVO-5125GTTTTTTTAATACGACTCACTATAGGATCCAACCATTCCTTATGIn vitro transcriptionJVO-5126AAAACAACCGGCCAAGACAIn vitro transcriptionJVO-5127GTTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTTGTTTCIn vitro transcriptionJVO-5143TTACTATTTACGACTCACTATAGGTGTTTGTTCTTTTGTTCIn vitro transcriptionJVO-5267ACCGGGGTGGTATTGTTTGATQuantitative RT-PCR (<i>ltpB</i>)JVO-5268AAACCTAAAAGAGCGGIn vitro transcriptionJVO-5267TATAGGTTTTCATTTCCCCACVerification of <i>repG</i> deletion mutantJVO-5257TATAGGTTTTCATTTCCCCACVerification of <i>repL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer psL1 and the Lys8BArg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGAColony PCR and sequencing of pZE12-luc derived plasmids	CSONIH-0033	TCAAAGCCACTAGTAAGTCTTACTT	Verification oligo for insertion of <i>rpsI</i> -erm cassette
JVO-0485TCGGAATGGTTAACTGGGTAGTTCCTNorthern blot probe for Helicobacter pylori 5S rRNAJVO-2134AAACCATAAGGAATGGTTGGATNorthern blot probe for RepGJVO-5069CTTCACGCCCCTTGTAAATAVerification of repG deletion mutantJVO-5070GATAAGGTTTACGGATGTAATCGTRepG cloningJVO-5125GTTTCTTGACACGCCTACTATAGGATCCAACCATTCCTTATGIn vitro transcriptionJVO-5126AAAACAACCGCCCAAGACAIn vitro transcriptionJVO-5127GTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTTGTTCCIn vitro transcriptionJVO-5128AAAACAACCGCCCAAGACAIn vitro transcriptionJVO-5129GTTTTTTTACGTCGTCATCTTTIn vitro transcriptionJVO-5129GTTTTTTTTACGTCGTCATCTTTUauntitative RT-PCR (tlpB)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (tlpB)JVO-5267ACGGGGTGGTATTGTTGCCCCCCCCTTTQuantitative RT-PCR (tlpB)JVO-5268AAGTGTAGCCTCAAAAGGCGGIn vitro transcriptionJVO-5267TATAGGTTTTCACTTTTCCCCACVerification of <i>rpgL</i> deletion mutantJVO-5702GTATTTCACACCGGGGTAAATCCCTAACCCTACCCCACGVerification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense pilmer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> 1 and the Lys8Arg mutation (AAC263AGG) strR allele in rpsL2 in 26695, P12 and G27 (2) <th>JVO-0155</th> <th>CCGTATGTAGCATCACCTTC</th> <th>Cloning of GEP fusion (33)</th>	JVO-0155	CCGTATGTAGCATCACCTTC	Cloning of GEP fusion (33)
JVO-2134AAACCATAAGGAATGGTTGGATNorthern blot probe for RepGJVO-5069CTTCACGCCCCTTGTAAATAVerification of repG deletion mutantJVO-5070GATAAGGTTTAGCGATGTAATCGTRepG cloningJVO-5072CGTTTCTTGACACGCTTAATTRepG cloningJVO-5125GTTTTTTAACGACGCTAATAGGATCCAACCATCCTTATG GTTIn vitro transcriptionJVO-5126AAAACAACCGCCAAGACAIn vitro transcriptionJVO-5127GTTTTTTTATAGGACTCACTATAGGATGTTTGTTCTTTGTTC GTTIn vitro transcriptionJVO-5128GTTTTTTTTATAGGACTCACTATAGGTGTTTGTTCTTTGTTC GTTIn vitro transcriptionJVO-5143TTACTATTATCGTCGTCATCTTTIn vitro transcriptionJVO-5267ACGGGGTGATTGTTGATQuantitative RT-PCR (<i>ltpB</i>)JVO-5257TATAGGTTTCATTTTCCCCACVerification of repG deletion mutant Antisense oligo for rapG deletion mutantJVO-5702GTATTTCACACCGGGGTAAATCCCTAACCCTACCCCACGNotification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAC263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense pile for verification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAC263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of rpsL (HP1197) mutation in 2695, P12 and G27 in 2695, P12 and G27JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of rpsL (HP1197) mutation in 2695, P12 and G27	JVO-0485	TCGGAATGGTTAACTGGGTAGTTCCT	Northern blot probe for <i>Helicobacter pylori</i> 5S rRNA
JVO-5069CTTCACCGCCCTTGTAAATAVerification of repG deletion mutantJVO-5070GATAAGGTTTAGCGATGTAATCGTRepG cloningJVO-5072CGTTTCTTGACACGCTAATTRepG cloningJVO-5125GTTTTTTTAATACGACTCACTATAGGATCCAACCATTCCTTATG GTTIn vitro transcriptionJVO-5126AAAACAACCGCCAAGACAIn vitro transcriptionJVO-5127GTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTTGTTC GTTIn vitro transcriptionJVO-5128AAAACAACCGCCAAGACAIn vitro transcriptionJVO-5129GTTTTTTTAATACGACTCACTATAGGTGTTGTTCTTTGTTC GTTIn vitro transcriptionJVO-5267ACGGGGTGGTATTGTTGAT Quantitative RT-PCR (<i>tlpB</i>)JVO-5268AAGTGTAGCCTCCCCTTTTQuantitative RT-PCR (<i>tlpB</i>)JVO-5257TATAGGTTTCATAAAGAGCGGIn vitro transcriptionJVO-5702GTATTTCACACCGGGTAAATCCCTAACCTAACCCTACCCCACGVerification of <i>repG</i> deletion mutant Antisense oligo for amplification of <i>ApsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 (2)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>psL</i> (HP1197) mutation in 26695, P12 and G27JVO-5704AGAAGCCACGTATCGCTATGASense oligo for verification of <i>psL</i> (HP1197) mutation in 26695, P12 and G27	JVO-2134	AAACCATAAGGAATGGTTGGAT	Northern blot probe for RepG
JVO-5070GATAAGGTTTAGCGATGTAATCGTRepG cloningJVO-5072CGTTTCTTGACACGCTTAATTRepG cloningJVO-5125GTTTTTTTAATACGACTCACTATAGGATCCAACCATTCCTTATG GTTIn vitro transcriptionJVO-5126AAAACAACCGCCAAGACAIn vitro transcriptionJVO-5127GTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTGTTTC GTTIn vitro transcriptionJVO-5128AAAACAACCGGCGTGTATTGTTTGATQuantitative RT-PCR (tlpB)JVO-5267ACGGGGTGGTATTGTTTGATQuantitative RT-PCR (tlpB)JVO-5258AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (tlpB)JVO-5257TATAGGTTTCATTTCCCCACVerification of <i>rpSL</i> fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27pZE-AGTGCCACCTGACGTCTAAGAColony PCR and sequencing of pZE12-luc derived plasmids	JVO-5069	CTTCACGCCCCTTGTAAATA	Verification of <i>repG</i> deletion mutant
JVO-5072CGTTTCTTGACACGCTTAATTRepG cloningJVO-5125GTTTTTTTAATACGACTCACTATAGGATCCAACCATTCCTTATG GTTIn vitro transcriptionJVO-5126AAAACAACCGCCAAGACAIn vitro transcriptionJVO-5127GTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTTGTTC GTTIn vitro transcriptionJVO-5127GTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTTGTTC GTTIn vitro transcriptionJVO-5128AAGGTAGCCTCCCCTATTGATQuantitative RT-PCR (ttpB)JVO-5267ACGGGGTGGTATTGTTGATQuantitative RT-PCR (ttpB)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (ttpB)JVO-5257TATAGGTTTCATTTTCCCCACVerification of <i>repG</i> deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCACGAntisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense primer for amplification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27pZE-AGTGCCACCTGACGTCTAAGAColony PCR and sequencing of pZE12-luc derived plasmids	JVO-5070	GATAAGGTTTAGCGATGTAATCGT	RepG cloning
JVO-5125 GTTTTTTTAATACGACTCACTATAGGATCCAACCATTCCTTATG GTT In vitro transcription JVO-5126 AAAACAACCGCCAAGACA In vitro transcription JVO-5127 GTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTGTTTC GTT In vitro transcription JVO-5128 AAACAACCGCCAAGACA In vitro transcription JVO-5143 TTACTATTTACGTCGTCACTATTGTTGTTCTTT In vitro transcription JVO-5267 ACGGGGTGGTATTGTTGAT Quantitative RT-PCR (<i>ltpB</i>) JVO-5268 AAGTGTAGCCTCCCCCTTTT Quantitative RT-PCR (<i>ltpB</i>) JVO-5257 TATAGGTTTCATAAGAGCGG In vitro transcription JVO-5257 TATAGGTTTCACACCGGGGTAAATCCCTAACCCTACCCCCACC Verification of <i>rpSL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL in 26695, P12 and G27 (3) JVO-5703 CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG Sense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3) JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids	JVO-5072	CGTTTCTTGACACGCTTAATT	RepG cloning
JVO-5125GTTIn vitro transcriptionJVO-5126AAAACAACCGCCAAGACAIn vitro transcriptionJVO-5127GTTTTITTAATACGACTCACTATAGGTGTTTGTTCTTTGTTTC GTTIn vitro transcriptionJVO-5143TTACTATTTATCGTCGTCATCTTTIn vitro transcriptionJVO-5267ACGGGGTGGTATTGTTGATQuantitative RT-PCR (tlpB)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (tlpB)JVO-5269ACGGGTTTTCATTTCACCCCCCCCCIn vitro transcriptionJVO-5267ACGGGTTTCATTTCATTTCCCCACVerification of <i>rpC</i> deletion mutantJVO-5268AAGTGTAGCCTCCCCCCTTTQuantitative RT-PCR (tlpB)JVO-5257TATAGGTTTCATTTCTCCCACVerification of <i>rpC</i> deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCCACGVerification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer psL1 and the Lys8Arg mutation (AAG263AGG) str ^R allele in primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer psL1 and the Lys8Arg mutation (AAG263AGG) str ^R allele in primer psL1 and the Lys8Arg mutation (AAG263AGG) str ^R allele in primer psL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27pZE-AGTGCCACCTGACGTCTAAGAColony PCR and sequencing of pZE12-luc derived plasmids	11/0 5405	GTTTTTTTAATACGACTCACTATAGGATCCAACCATTCCTTATG	
JVO-5126AAAACAACCGCCAAGACAIn vitro transcriptionJVO-5127GTTTTTTTATACGACTCACTATAGGTGTTTGTTCTTTGTTC GTTIn vitro transcriptionJVO-5143TTACTATTTATCGTCGTCATCTTTIn vitro transcriptionJVO-5267ACGGGGTGGTATTGTTTGATQuantitative RT-PCR (<i>tlpB</i>)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (<i>tlpB</i>)JVO-5953CCCTAAACCTAAAGAGCGGIn vitro transcriptionJVO-5257TATAGGTTTCATTTCTCCCACVerification of <i>repG</i> deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCACGAntisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 2695, P12 and G27pZE-AGTGCCACCTGACGTCTAAGAColony PCR and sequencing of pZE12-luc derived plasmids	JVO-5125	GTT	In vitro transcription
JVO-5127GTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTGTTTC GTTIn vitro transcriptionJVO-5143TTACTATTTATCGTCGTCATCTTTIn vitro transcriptionJVO-5267ACGGGGTGGTATTGTTGATQuantitative RT-PCR (<i>tlpB</i>)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (<i>tlpB</i>)JVO-5269CCCTAAACCTAAAAGAGCGGIn vitro transcriptionJVO-5257TATAGGTTTCATTTTCTCCCACVerification of <i>repG</i> deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCACGAntisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27pZE-AGTGCCACCTGACGTCTAAGAColony PCR and sequencing of pZE12- <i>luc</i> derived plasmids	JVO-5126	AAAACAACCGCCAAGACA	In vitro transcription
JVO-5121GTTIn vito transcriptionJVO-5143TTACTATTTATCGTCGTCATCTTTIn vitro transcriptionJVO-5267ACGGGGTGGTATTGTTTGATQuantitative RT-PCR (<i>tlpB</i>)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (<i>tlpB</i>)JVO-5953CCCTAAACCTAAAAGAGCGGIn vitro transcriptionJVO-5257TATAGGTTTTCATTTTCTCCCACVerification of <i>repG</i> deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCACGAntisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27pZE-AGTGCCACCTGACGTCTAAGAColony PCR and sequencing of pZE12- <i>luc</i> derived plasmids	IVO 5127	GTTTTTTTTAATACGACTCACTATAGGTGTTTGTTCTTTTGTTTC	In vitro transcription
JVO-5143TTACTATTTATCGTCGTCATCTTTIn vitro transcriptionJVO-5267ACGGGGTGGTATTGTTTGATQuantitative RT-PCR (<i>tlpB</i>)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (<i>tlpB</i>)JVO-5953CCCTAAACCTAAAAGAGCGGIn vitro transcriptionJVO-5257TATAGGTTTTCATTTTCTCCCACVerification of <i>repG</i> deletion mutantAntisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer to ramplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 Colony PCR and sequencing of pZE12-luc derived plasmids	340-3127	GTT	
JVO-5267ACGGGGTGGTATTGTTGATQuantitative RT-PCR (<i>tlpB</i>)JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (<i>tlpB</i>)JVO-5953CCCTAAACCTAAAGAGCGGIn vitro transcriptionJVO-5257TATAGGTTTTCATTTCCCCACVerification of <i>repG</i> deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCCACGAntisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>strR</i> allele in primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>strR</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 Colony PCR and sequencing of pZE12- <i>luc</i> derived plasmids	JVO-5143	TTACTATTTATCGTCGTCATCTTT	In vitro transcription
JVO-5268AAGTGTAGCCTCCCCCTTTTQuantitative RT-PCR (tlpB)JVO-5953CCCTAAACCTAAAAGAGCGGIn vitro transcriptionJVO-5257TATAGGTTTTCATTTTCTCCCACVerification of repG deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCCACGAntisense oligo for amplification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in rpsL in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) strR allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) strR allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) strR allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) strR allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of rpsL (HP1197) mutation in 26695, P12 and G27 Colony PCR and sequencing of pZE12-luc derived plasmids	JVO-5267	ACGGGGTGGTATTGTTTGAT	Quantitative RT-PCR (<i>tlpB</i>)
JVO-5953CCCTAAACCTAAAAGAGCGGIn vitro transcriptionJVO-5257TATAGGTTTTCATTTTCTCCCACVerification of repG deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCACGAntisense oligo for amplification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of rpsL (HP1197) mutation in 26695, P12 and G27 (3)JVO-5704AGAAGCCACTGACGTCTAAGAColony PCR and sequencing of pZE12-luc derived plasmids	JVO-5268	AAGTGTAGCCTCCCCCTTTT	Quantitative RT-PCR (<i>tlpB</i>)
JVO-5257TATAGGTTTTCATTTTCTCCCACVerification of <i>repG</i> deletion mutantJVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCACGAntisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 Colony PCR and sequencing of pZE12-luc derived plasmids	JVO-5953	CCCTAAACCTAAAAGAGCGG	In vitro transcription
JVO-5702Antisense oligo for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 Colony PCR and sequencing of pZE12- <i>luc</i> derived plasmids	JVO-5257	TATAGGTTTTCATTTTCTCCCAC	Verification of <i>repG</i> deletion mutant
JVO-5702GTATTTCACACCGGGTAAATCCCTAACCCTACCCCACGcontaining the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5703CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCGSense primer for amplification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) StrR allele in primer rpsL1 and the Lys8Arg mutation (AAG263AGG) strR allele in rpsL2 in 26695, P12 and G27 (3)JVO-5704AGAAGCCAGTATCGCTATGASense oligo for verification of rpsL (HP1197) mutation in 26695, P12 and G27pZE-AGTGCCACCTGACGTCTAAGAColony PCR and sequencing of pZE12-luc derived plasmids			Antisense oligo for amplification of <i>rpsL</i> fragment
JVO-5702 GTATTTCACACCGGGTAAATCCCTAACCCTACCCCCACG allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) str ^R allele in rpsL2 in 26695, P12 and G27 (3) JVO-5703 CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG Sense primer for amplification of rpsL fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) str ^R allele in rpsL2 in 26695, P12 and G27 (3) JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of rpsL (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids			containing the Lys43Arg mutation (AAA129AGA) Str ^R
JVO-5703 CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG Sense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3) JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12- <i>luc</i> derived plasmids	JVO-5702	GTATTTCACACCGGGTAAATCC C TAACC C TACCCCCACG	allele in primer rpsL1 and the Lys88Arg mutation
JVO-5703 G27 (3) Sense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in primer rpsL2 in 26695, P12 and G27 (3) JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA			(AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and
JVO-5703 CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG Sense primer for amplification of <i>rpsL</i> fragment containing the Lys43Arg mutation (AAA129AGA) Str ^R allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) <i>str^R</i> allele in rpsL2 in 26695, P12 and G27 (3) JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids			G27 (3)
JVO-5703 CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG containing the Lys43Arg mutation (AAA129AGA) Str ^R JVO-5704 CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) str ^R allele in rpsL2 in 26695, P12 and G27 (3) JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids			Sense primer for amplification of <i>rpsL</i> fragment
JVO-5703 CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG allele in primer rpsL1 and the Lys88Arg mutation (AAG263AGG) str ^R allele in rpsL2 in 26695, P12 and G27 (3) JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of rpsL (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids			containing the Lys43Arg mutation (AAA129AGA) Str
JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids	JVO-5703	CTAGGGTTTATACGACTACCCCTAGAAAGCCTAACTCG	allele in primer rpsL1 and the Lys88Arg mutation
JVO-5704 AGAAGCCAGTATCGCTATGA Sense oligo for verification of <i>rpsL</i> (HP1197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids			
JVO-5704 Series digo for ventication of <i>pSL</i> (HPT197) mutation in 26695, P12 and G27 pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids			Sansa aliga for varification of real (UD1107) mutation
pZE-A GTGCCACCTGACGTCTAAGA Colony PCR and sequencing of pZE12-luc derived plasmids	JVO-5704	AGAGUUAGIAIUGUIAIGA	in 26605 P12 and G27
pZE-A GTGCCACCTGACGTCTAAGA plasmids			Colony PCR and sequencing of p7F12-luc derived
pidonido	pZE-A	GTGCCACCTGACGTCTAAGA	plasmids
pZE-Xbal I COLONY PCR and sequencing of pZE derived plasmids	pZE-Xbal	TCGTTTTATTTGATGCCTCTAGA	Colony PCR and sequencing of pZF derived plasmids

Table S5: Plasmids

Name	Description/Generation	Origin / marker	Reference
pJV752.1	Cloning vector, pZE12-luc with modified p15A origin	p15A/ Amp ^R	(7)
pTM117	Cloning vector carrying a <i>H. pylori</i> origin of replication, <i>aphA-3</i> resistance cassette and a multiple cloning site upstream of the promoterless <i>gfpmut3</i> gene	oriV/ pHP666/ Kan ^R	(10)
p463	GFP-expression vector carring the promoter of <i>ureA</i> fused to the promoterless <i>gfpmut3</i> gene	oriV/ pHP666/ Kan ^R	Kindly provided by D. S. Merrell, USU, Bethesda, MD
pPT3-1	Plasmid for introduction of transcriptional fusion of the <i>ureA</i> promoter to <i>gfpmut3</i> into the <i>rdxA</i> locus	p15A/ Amp ^R	This study
рМА5-2	Plasmid for introduction of translational fusion of the <i>cagA</i> -5' UTR including the 28 th amino acid to <i>gfpmut3</i> into the <i>rdxA</i> locus	p15A/ Amp ^R	This study
pSP39-3	Plasmid for complementation of <i>repG</i> deletion with RepG in <i>H. pylori</i> strain 26695	p15A/ Amp ^R	This study
pSP42-1	Plasmid for complementation of <i>repG</i> deletion mutant with RepG SL 2 (30-87 nt) in <i>H. pylori</i> strain 26695	p15A/ Amp ^R	This study
pSP57-4	Plasmid for FLAG-tagging of HP0103 (<i>tlpB</i>) based on pJV752.1 500 nt up- and downstream of <i>tlpB</i> stop codon, 3xFLAG, <i>rpsL-erm</i> cassette	p15A/ Amp ^R	This study
pSP58-5	Intermediary plasmid for construction of pSP60	p15A/ Amp ^R	This study
pSP60-2	Backbone plasmid for deletion or nucleotide exchange in G-repeat in the 5' UTR of <i>tlpB</i>	p15A/ Amp ^R	This study
pSP64-1	Plasmid for deletion of G-repeat in the <i>tlpB</i> 5' UTR; based on pSP60-2	p15A/ Amp ^R	This study
pSP65-4	Backbone plasmid for compensatory base-pair exchange in the G-repeat in the <i>tlpB</i> 5' UTR; based on pSP60, 1xC*	p15A/ Amp ^R	This study
pSP66-4	Backbone plasmid for compensatory base-pair exchange in the G-repeat in the <i>tlpB</i> 5' UTR; based on pSP60, 3xC	p15A/ Amp ^R	This study
pSP70-1	Backbone plasmid for <i>tlpB</i> ::3xFLAG based on pSP57, for markerless exchange	p15A/ Amp ^R	This study
pSP73-1	Plasmid for variation of G-repeat length, 6G	p15A/ Amp ^R	This study
pSP74-1	Plasmid for variation of G-repeat length, 7G	p15A/ Amp ^R	This study
pSP75-1	Plasmid for variation of G-repeat length, 8G	p15A/ Amp ^R	This study
pSP76-1	Plasmid for variation of G-repeat length, 9G	p15A/ Amp ^R	This study
pSP77-1	Plasmid for variation of G-repeat length, 10G	p15A/ Amp ^R	This study
pSP78-1	Plasmid for variation of G-repeat length, 11G	p15A/ Amp ^R	This study
pSP79-4	Plasmid for variation of G-repeat length, 13G	p15A/ Amp ^R	This study
pSP80-1	Plasmid for variation of G-repeat length, 14G	p15A/ Amp ^R	This study
pSP81-5	Plasmid for variation of G-repeat length, 15G	p15A/ Amp ^R	This study
pSP82-1	Plasmid for variation of G-repeat length, 16G	p15A/ Amp ^R	This study
pSP91-3	Plasmid for <i>tlpB</i> promoter exchange (<i>cagA</i> instead of <i>tlpB</i> promoter)	p15A/ Amp ^R	This study
pSP109-6	Plasmid for introduction of translational fusion of the <i>tlpB</i> -5' UTR including the 5^{th} amino acid to <i>gfpmut3</i> into the <i>rdxA</i> locus	p15A/ Amp ^R	This study

Table S6: Sequences of *tlpB* **leader mutants of** *H. pylori* **strain 26695.** The length variable homopolymeric G-repeat in the 5' UTR of *tlpB* mRNA is shown in red and the RBS as well as start codon (ATG) are marked in light green. The gDNAs of *tlpB* leader mutants were used for the generation of DNA templates for T7 in vitro transcription assays (see also Table S7).

Name	Sequence 5' \rightarrow 3'	Strain number
tlpB WT	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</mark>	CSS-0470/ CSS-0482
tlpB ∆G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTCTGCATTTAGAAGCTAAACTCTAAAATTAGGGTTTGACTTAAAAATGATTTAT <mark>AG</mark> GAGATAAATG	CSS-0471/ CSS-0483
tlpB 6G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTG	CSS-0472/ CSS-0484
tlpB 7G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGG</mark> TGCATTTAGAAGCTAAACTCTAAAATTAGGGTTTGACTTAAAAATGA TTTAT <mark>AGGAG</mark> ATAAATG	CSS-0473/ CSS-0485
tlpB 8G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGG</mark> TGCATTTAGAAGCTAAACTCTAAAAATTAGGGTTTGACTTAAAAATG ATTTAT <mark>AGGAG</mark> ATAAATG	CSS-0474/ CSS-0486
tlpB 9G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGG</mark> TGCATTTAGAAGCTAAACTCTAAAATTAGGGTTTGACTTAAAAAT GATTTATAGGAGATAAATG	CSS-0475/ CSS-0487
tlpB 10G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGGG</mark> TGCATTTAGAAGCTAAACTCTAAAATTAGGGTTTGACTTAAAAA TGATTTATAGGAGATAAATG	CSS-0476/ CSS-0488
tlpB 11G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGGGGGG</mark> TGCATTTAGAAGCTAAACTCTAAAATTAGGGTTTGACTTAAAA ATGATTTAT <mark>AGGAG</mark> ATAA <mark>ATG</mark>	CSS-0477/ CSS-0489
tlpB 13G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</mark>	CSS-0478/ CSS-0490
tlpB 14G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</mark>	CSS-0479/ CSS-0491
tlpB 15G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</mark>	CSS-0480/ CSS-0492
tlpB 16G	T GTTTGTTCTTTTGTTTCGTTTTCAAACAACCGGGTTTTAATTTTGTTTTGTGCCACTCA TTTTTC <mark>GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</mark>	CSS-0481/ CSS-0493

Table S7: Details of RNAs used for in vitro we	ork.
--	------

RepG / <i>tlpB</i> mRNA leader	DNA template (plasmid or gDNA of <i>H.</i> <i>pylori</i> strain number)	Oligonucleotides	For mRNAs: 5' part to ATG [nt]	For mRNAs: 3' part from ATG [nt]	Size of the T7- transcripts [nt]
RepG	CSS-0004	JVO-5125/JVO-5126	-	-	87
RepG ∆CU	CSS-0157	JVO-5125/JVO-5126	-	-	58
RepG 3xG	CSS-0158	JVO-5125/JVO-5126	-	-	87
RepG 1xG	CSS-0159	JVO-5125/JVO-5126	-	-	87
<i>tlpB</i> leader	CSS-0004	JVO-5127/JVO-5953	-139	+78	217
<i>tlpB</i> ΔG leader	CSS-0385	JVO-5127/JVO-5953	-139	+78	205
tlpB 3xC leader	CSS-0386	JVO-5127/JVO-5953	-139	+78	217
tlpB 1xC* leader	CSS-0385	JVO-5127/JVO-5953	-139	+78	217
tlpB 6G leader	CSS-0472	JVO-5127/JVO-5953	-139	+78	211
tlpB 7G leader	CSS-0473	JVO-5127/JVO-5953	-139	+78	212
tlpB 8G leader	CSS-0474	JVO-5127/JVO-5953	-139	+78	213
tlpB 9G leader	CSS-0475	JVO-5127/JVO-5953	-139	+78	214
tlpB 10G leader	CSS-0476	JVO-5127/JVO-5953	-139	+78	215
tlpB 11G leader	CSS-0477	JVO-5127/JVO-5953	-139	+78	216
tlpB 13G leader	CSS-0478	JVO-5127/JVO-5953	-139	+78	218
tlpB 14G leader	CSS-0479	JVO-5127/JVO-5953	-139	+78	219
tlpB 15G leader	CSS-0480	JVO-5127/JVO-5953	-139	+78	220
<i>tlpB</i> 16G leader	CSS-0481	JVO-5127/JVO-5953	-139	+78	221
<i>tlpB-5th::gfpmut</i> 3 mRNA	pSP109-6	JVO-5127/CSO-0441	-139	+775	917
cagA-28 th ::gfpmut3 mRNA	pMA5-2	CSO-0278/CSO-0441	-105	+844	949
<i>tlpB</i> ::3xFLAG mRNA	CSS-0464	JVO-5127/JVO-5143	-139	+1768	1907
<i>tlpB</i> ΔG::3xFLAG mRNA	CSS-0471	JVO-5127/JVO-5143	-139	+1768	1895
tlpB 10G::3xFLAG mRNA	CSS-0476	JVO-5127/JVO-5143	-139	+1768	1905
tlpB 11G::3xFLAG mRNA	CSS-0477	JVO-5127/JVO-5143	-139	+1768	1906
tlpB 13G::3xFLAG mRNA	CSS-0478	JVO-5127/JVO-5143	-139	+1768	1908
tlpB 14G::3xFLAG mRNA	CSS-0479	JVO-5127/JVO-5143	-139	+1768	1909

Table S8: Sequences of T7 transcripts. The C/U-rich *tlpB* binding site of RepG and the G-repeat in the 5' UTR of *tlpB* mRNA are underlined. Mutations in the sRNA/mRNA interaction sites are indicated in different colors. The RBS and start codon (ATG) of *tlpB* mRNA are marked in light green and the ORF is shown in gray letters. The *gfpmut3* sequence is highlighted in green.

Name	Sequence 5' \rightarrow 3'
RepG WT	AUCCAACCAUUCCUUAUGGUUGGUUGGCACCGCUAAGAUUGAAGGGU <u>CACCUCCCCUCC</u>
RepG SL 2	ACCGCUAAGAUUGAAGGGU <u>CACCUCCCCUCC</u> UUUCCCUUUGUCUUGGCGGUUGUUUU
RepG ΔCU	AUCCAACCAUUCCUUAUGGUUUGGUUGGCACCGCUAAGAUUGAAGGGUACGCCCUUUGUCUUGGCGGUUGUU UU
RepG 3xG	AUCCAACCAUUCCUUAUGGUUUGGUUGGCACCGCUAAGAUUGAAGGGU <u>CACGUCCGCCUGC</u> UUUCCCUUUGU CUUGGCGGUUGUUUU
RepG 1xG*	AUCCAACCAUUCCUUAUGGUUGGUUGGCACCGCUAAGAUUGAAGGGU <u>CACCUCCG</u> CCUCCUUUCCCUUUGU CUUGGCGGUUGUUUU
<i>tlpB</i> WT leader	UGUUUGUUCUUUGUUUCGUUUCAAACAACCGGGUUUUAAUUUUGUUUUGUGCCACUCAUUUUUCGGGGGG GGGGGGUGCAUUUAGAAGCUAAACUCUAAAAUUAGGGUUUGACUUAAAAAUGAUUUAUAGGACAUAAAUGAU GUUUUCUUCAAUGUUUGCUUCGUUGGGGACUCGUAUCAUGCUGGUCGUGUUAGCCGCUCUUUUAGGUUUAGG G
<i>tlpB</i> ∆G leader	UGUUUGUUCUUUGUUUCGUUUCAAACAACCGGGUUUUAAUUUUGUUUUGUGCCACUCAUUUUUCUGCAUU UAGAAGCUAAACUCUAAAAUUAGGGUUUGACUUAAAAAUGAUUUUAUAGGAGAUAAAUGAUGUUUUCUUCAAU GUUUGCUUCGUUGGGGACUCGUAUCAUGCUGGUCGUGUUAGCCGCUCUUUUAGGUUUAGGG
<i>tlpB</i> 6G-16G leader	UGUUUGUUCUUUGUUUCGUUUCAAACAACCGGGUUUUAAUUUUGUUUUGUGCCACUCAUUUUUC-(G) ₆ - 16-UGCAUUUAGAAGCUAAACUCUAAAAUUAGGGUUUGACUUAAAAAUGAUUUAUAGGAGAUA AAUGAUGUUUUCUUCAAUGUUUGCUUCGUUGGGGACUCGUAUCAUGCUGGUCGUGUUAGCCGCUCUUUUAGG UUUAGGG
<i>tlpB</i> 3xC leader	UGUUUGUUCUUUUGUUUCGUUUUCAAACAACCGGGUUUUAAUUUUGUUUUGUGCCACUCAUUUUUCG <mark>GCGGG CGGGCGUGCAUUUAGAAGCUAAACUCUAAAAUUAGGGUUUGACUUAAAAAUGAUUUAUAGGAGAUAAAUGAU GUUUUCUUCAAUGUUUGCUUCGUUGGGGACUCGUAUCAUGCUGGUCGUGUUAGCCGCUCUUUUAGGUUUAGG G</mark>
<i>tlpB</i> 1xC* leader	UGUUUGUUCUUUUGUUUCGUUUCAAACAACCGGGUUUUAAUUUUGUUUUGUGCCACUCAUUUUUCGGGGGGG CGGGGGUGCAUUUAGAAGCUAAACUCUAAAAUUAGGGUUUGACUUAAAAAUGAUUUAUAGGAGAUAAAUGAU GUUUUCUUCAAUGUUUGCUUCGUUGGGGACUCGUAUCAUGCUGGUCGUGUUAGCCGCUCUUUUAGGUUUAGG G
tlpB-5 th ::	U GUUUGUUUUGUUUCGUUUUCAAACAACCGGGUUUUAAUUUUGUUUUGUGCCACUCAUUUUUC <u>GGGGGGG</u>
afpmut3	GGGGGGUGCAUUUAGAAGCUAAACUCUAAAAUUAGGGUUUGACUUAAAAAUGAUUUAUAGGACAUAAAUGAU
mRNA	GUUUUCUCAGCUGGCAGUAAAGGAGAAGACUUUUCACUUUGGGUGGAGUUGUCCCAAUUCUUGUUGAAUUAGAUGG UGAUGUUAAUGGGCACAAAUUUUCUGUCAGUGGAGAGGUGAAGGUGAUGCACAUACGGAAAACUUACCUU UAAAUUUAUUUGCACUACUGGAAAACUACCUGUUCCAUGGCCAACACUUGUCACUACUUUCGGUUAUGGUGU UCAAUGCUUUGCGAGAUACCCAGAUCAUAUGAAACAGCAUGACUUUUUAAGAGGUGCAAGGCCAGGCAAGGUUA UGUACAGGAAAGAACUAUAUUUUUCAAAGAUGACGGGAACUACAAGACCAGGUGCAGGUCAAGUUUGAAGG UGAUACCCUUGUUAAUAGAAUCGAGUUAAAAGGAUUGAUU
	CGAAAAGAGAGACCACAUGGUCCUUCUUGAGUUUGUAACAGCUGCUGGGAUUACACAUGGCAUGGAUGAACU AUACAAAUAAAUGUCCAGACCUGCAGUUAACUCCCGCGGCCGCAAAAAAC
cagA-28 th ::	GTTCAAAGACATGAATTGATTACTCAAGTGTGTAGCAGTTTTTAGCAGTCTTTGATACCAACAAGATACCGA
gfpmut3	TAGGTATGAAACTAGGTATAGTAAGGAGAAACAATGACTAACGAAACCATTAACCAACAACCACAAACTGAA
mRNA	
	GGUGAAGGUGAUGCAACAUACGGAAAACUUACCUUAAAUUUAUUU

Supplementary References

- 1. Skouloubris S, Thiberge JM, Labigne A, & De Reuse H (1998) The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. *Infect Immun* 66(9):4517-4521.
- 2. Boneca IG, *et al.* (2008) Development of inducible systems to engineer conditional mutants of essential genes of Helicobacter pylori. *Appl Environ Microbiol* 74(7):2095-2102.
- 3. Dailidiene D, Dailide G, Kersulyte D, & Berg DE (2006) Contraselectable streptomycin susceptibility determinant for genetic manipulation and analysis of Helicobacter pylori. *Appl Environ Microbiol* 72(9):5908-5914.
- 4. Bury-Mone S, Skouloubris S, Labigne A, & De Reuse H (2001) The Helicobacter pylori Urel protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. *Mol Microbiol* 42(4):1021-1034.
- 5. Goodwin A, *et al.* (1998) Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. *Mol Microbiol* 28(2):383-393.
- 6. Sharma CM, *et al.* (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. *Nature* 464(7286):250-255.
- 7. Sharma CM, Darfeuille F, Plantinga TH, & Vogel J (2007) A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. *Genes Dev* 21(21):2804-2817.
- 8. Stingl K, *et al.* (2007) Channel-mediated potassium uptake in Helicobacter pylori is essential for gastric colonization. *EMBO J* 26(1):232-241.
- 9. Rieder R, Reinhardt R, Sharma CM, & Vogel J (2012) Experimental tools to identify RNA-protein interactions in *Helicobacter pylori. RNA Biology* 9(4).
- 10. Carpenter BM, *et al.* (2007) Expanding the Helicobacter pylori genetic toolbox: modification of an endogenous plasmid for use as a transcriptional reporter and complementation vector. *Appl Environ Microbiol* 73(23):7506-7514.
- 11. Sittka A, Pfeiffer V, Tedin K, & Vogel J (2007) The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. *Mol Microbiol* 63(1):193-217.
- 12. Papenfort K, *et al.* (2006) SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. *Mol Microbiol* 62(6):1674-1688.
- 13. Regulski EE & Breaker RR (2008) In-line probing analysis of riboswitches. *Methods Mol Biol* 419:53-67.
- 14. Papenfort K, Podkaminski D, Hinton JC, & Vogel J (2012) The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. *Proc Natl Acad Sci U S A* 109(13):E757-764.
- 15. Kennemann L, *et al.* (2011) Helicobacter pylori genome evolution during human infection. *Proc Natl Acad Sci U S A* 108(12):5033-5038.
- 16. Mathews DH (2006) RNA secondary structure analysis using RNAstructure. *Curr Protoc Bioinformatics* Chapter 12:Unit 12 16.
- 17. Devi SH, et al. (2010) Genome of Helicobacter pylori strain 908. J Bacteriol 192(24):6488-6489.
- 18. Avasthi TS, *et al.* (2011) Genomes of two chronological isolates (Helicobacter pylori 2017 and 2018) of the West African Helicobacter pylori strain 908 obtained from a single patient. *J Bacteriol* 193(13):3385-3386.
- 19. Salaun L, Ayraud S, & Saunders NJ (2005) Phase variation mediated niche adaptation during prolonged experimental murine infection with Helicobacter pylori. *Microbiology* 151(Pt 3):917-923.
- 20. Behrens W, *et al.* (2013) Role of energy sensor TlpD of Helicobacter pylori in gerbil colonization and genome analyses after adaptation in the gerbil. *Infect Immun*.
- 21. Fouts DE, *et al.* (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species. *PLoS Biol* 3(1):e15.
- 22. Saunders NJ, Peden JF, Hood DW, & Moxon ER (1998) Simple sequence repeats in the Helicobacter pylori genome. *Mol Microbiol* 27(6):1091-1098.
- 23. Alm RA, *et al.* (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. *Nature* 397(6715):176-180.
- 24. Tomb JF, *et al.* (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. *Nature* 388(6642):539-547.

- 25. Parkhill J, *et al.* (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. *Nature* 403(6770):665-668.
- 26. Salaun L, Linz B, Suerbaum S, & Saunders NJ (2004) The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. *Microbiology* 150(Pt 4):817-830.
- 27. Dugar G, *et al.* (2013) High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates. *PLoS Genet* 9(5):e1003495.
- 28. Baltrus DA, *et al.* (2009) The complete genome sequence of Helicobacter pylori strain G27. *J Bacteriol* 191(1):447-448.
- 29. Fischer W, *et al.* (2010) Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. *Nucleic Acids Res* 38(18):6089-6101.
- 30. Kersulyte D, *et al.* (2010) Helicobacter pylori from Peruvian amerindians: traces of human migrations in strains from remote Amazon, and genome sequence of an Amerind strain. *PLoS One* 5(11):e15076.
- 31. Farnbacher M, *et al.* (2010) Sequencing, annotation, and comparative genome analysis of the gerbil-adapted Helicobacter pylori strain B8. *BMC Genomics* 11:335.
- 32. Eppinger M, *et al.* (2006) Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. *PLoS Genet* 2(7):e120.
- 33. Urban JH & Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. *Nucleic Acids Res* 35(3):1018-1037.