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Supplementary Material 

 

Table S1: Signature proteins identified in genome sequences of members of the PVC superphylum 
and in metagenomic data. The SP was identified in the genome sequences of all PVC members; only 
one representative SP is shown if sequences were identical among the same species.  
See file “Table S1.xlsx”. 
 

Table S2: Detection of the PVC signature protein in transcriptomic and proteomic studies. Due to 
the missing gene prediction in the genome of Rhodopirellula baltica SH1 the respective SP was never 
detected. 
 

Organism Method Detection Reference 
Chlamydia trachomatis microarray – Belland, 2003a (1) 
Chlamydia trachomatis microarray + Belland, 2003b (2) 
Chlamydia trachomatis RNA-Seq + Albrecht, 2010 (3) 
Chlamydia trachomatis proteomics – Shaw, 2002 (4) 
Chlamydia trachomatis proteomics + Skipp, 2005 (5) 
Chlamydia pneumoniae proteomics – Vandahl, 2001(6) 
Chlamydia pneumoniae proteomics – Molestina, 2002 (7) 
Chlamydia pneumoniae proteomics – Wehr, 2004 (8) 
Chlamydia pneumoniae proteomics – Mukhopadhyay, 2006 (9) 
Chlamydia pneumoniae microarray + Maurer, 2007 (10) 
Chlamydia pneumoniae RNA-Seq + Albrecht, 2011 (11) 
Chlamydia pneumoniae proteomics – Saka, 2011 (12) 
Protochlamydia amoebophila proteomics – Heinz, 2010 (13) 
Protochlamydia amoebophila proteomics – Sixt, 2011 (14) 
Protochlamydia amoebophila microarray + Haider, unpublished 
Rhodopirellula baltica  proteomics – Gade, 2005a (15) 
Rhodopirellula baltica  proteomics – Gade, 2005b (16) 
Rhodopirellula baltica  proteomics – Hieu, 2008 (17) 
Rhodopirellula baltica  RNA-Seq – Wecker, 2009 (18) 
Rhodopirellula baltica  RNA-Seq – Wecker, 2010 (19) 



 

 

 

Figure S1: The SP of Rhodopirellula baltica (Rb) and Verrucomicrobium spinosum (Vs) is 
transcribed. Reverse transcriptase PCR using RNA isolated during logarithmic (3 days) and stationary 
growth (6 days). The GAPDH gene of Verrucomicrobium spinosum was used as positive control (left 
panel). A PCR using the same RNA samples demonstrates the absence of DNA in the RNA preparations 
(right panel). Note that the amount of RNA obtained from V. spinosum in the stationary phase was too 
low for successful detection of SP and the control. All RT-PCR products were cloned and verified by 
sequencing. 

 
  



 

 

 

 

 
Figure S2: DNA mobility retardation by GST tagged and untagged SP of R. baltica. 1,6, molecular 
marker; 2, DNA (PCR product) only; 3-4 DNA with different doses of GST tagged SP of R. baltica; 5, 
DNA with the same amount of protein as in 4 but thrombin digested. The DNA incubated with the 
digested mixture of GST and Rb SP didn’t enter the gel (arrow).  The complete digestion of the GST tag 
was verified by SDS-PAGE. 

  



 

 

Figure S3: Effect of heterologous overexpression of signature proteins in E. coli BL21. A, GST-
tagged SP of P. amoebophila; B, GST-tagged SP of R. baltica; C, GST only; D, non-induced E.coli 
cells. E. coli were induced for 2 hours using 1mM IPTG. Expression of the SP was verified by SDS-
PAGE. No nucleation was observed after staining with SYBR Green.  

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Evolutionary relationships of PVC superphylum signature proteins from published 
genome sequences. All SP sequences were aligned using MUSCLE (20) in MEGA5 (21) and their 
evolutionary history was inferred using (A) UPGMA or (B) FastTree (22). The evolutionary distances 
were computed using the JTT(23) for UPGMA and WAG model (23) for FastTree, while a gamma 
value of 20 was used for both. Nodes with less than 70% bootstrap support are collapsed in the 
maximum likelihood tree.  
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