1 Supplementary material

2 Nicolaes et al.

3

4 **Plasmid constructions** – The YeiM expression vectors were constructed as follows: the region 5 encoding YciM was amplified from the chromosome of MC1000 strain using primers *yciM NcoI* 6 and *vciM HindIII pBAD* and cloned into a pBAD-HisB plasmid (Invitrogen), yielding pVN2. A 7 C-terminal His-tagged version of YciM was constructed by amplifying the *yciM* gene from the 8 chromosome of MC1000 strain using primers *yciM* NcoI and *yciM* BglII pQE60 and cloned into 9 a pQE60 plasmid (Qiagen), yielding pCB25. The sequence coding for *yciM* fused to that coding 10 for the C-terminal His-tag was then cut with Ncol and HindIII from pCB25 and inserted into a 11 pBAD-HisB vector, yielding plasmid pHE43. The sequence encoding a truncated form of YciM (YciM^{*}) lacking the first 22 amino acids was amplified and cloned into 2 different vectors: 12 pBAD-HisB and pASK-IBA63a-plus. Two different versions of YciM^{*} were produced by each 13 vector: YciM* with a C-terminal tag or YciM* without any tag. In order to introduce the 14 sequence encoding the C-terminal His-tagged version of YciM^{*} into the pBAD-HisB vector, the 15 coding sequence for the truncated form of YciM (YciM^{*}) was amplified with primers 16 17 *vciM*^{*}_*NcoI* and *vciM* BglII pBAD using pHE43 as a template, cut with *NcoI* and BglII and then inserted into pHE43, generating plasmid pHE72. The sequence encoding the untagged 18 YciM^{*} version was cloned into the pBAD-HisB vector by amplifying *vciM*^{*} with primers 19 *vciM^{*}_NcoI* and *vciM HindIII pBAD* using pVN2 as a template. The PCR product was then cut 20 21 with NcoI and HindIII and inserted into pVN2, generating plasmid pVN182. In order to clone $vciM^*$ into the pASK-IBA63a-plus vector, $vciM^*$ was amplified using pHE72 as a template with 22 two different primers pairs: yciM^{*} NcoI and yciM XhoI pASK or yciM^{*} NcoI and 23

yciM_XhoI_STOP. The PCR products were then cut with *NcoI* and *XhoI* and inserted into a
 pASK-IBA63a-plus plasmid to generate pVN55 (coding for YciM^{*} with a C-terminal Strep-tag)
 and pVN74 (coding for untagged YciM^{*}), respectively.

Three mutant alleles expressing proteins $\text{YciM}^*_{\text{SS/CCCC-Strep}}$, $\text{YciM}^*_{\text{SS/CCCC-His}}$ and 27 28 YciM_{CC/SSSS} were constructed by site-directed mutagenesis using the QuickChange Site-Directed 29 Mutagenesis protocol (Stratagene) and plasmids pVN55, pHE72 and pVN2 as template, respectively. The expression plasmids for YciM^{*}_{SS/CCCC-Stren} and YciM^{*}_{SS/CCCC-His} were generated 30 by sequentially replacing the codons for cysteines 184 and 256 by serine codons using the 31 32 following mutagenic primers: yciM CISI Fw and yciM CISI Rv for cysteine C184, 33 yciM C2S2 Fw and yciM C2S2 Rv for cysteine C256 (yielding plasmid pVN67 and pVN147, 34 respectively). To produce the YciM_{CC/SSSS} mutant protein, the codons for cysteines 357, 360, 371 35 and 374 were replaced by serine codons using primers yciM S1XXS2 Fw and yciM S1XXS2 Rv 36 for C357 and C360 and yciM S3XXS4 Fw and yciM S3XXS4 Rv for C371 and C374 (yielding 37 plasmid pVN181).

The gene encoding mCherry was PCR-amplified with primers *mCherry_Fw* and *mCherry_Rv* from the plasmid pRSET-B*mCherry* and ligated in frame at the 3' end of the *yciM* gene, replacing the sequence coding for the His-tag of the pHE43 or pHE72 plasmids. The resulting plasmids, designated as pHE64 and pVN68, encode the fusion proteins $YciM_{mCherry}$ and $YciM_{mCherry}^*$, respectively.

43 All plasmids were verified by sequencing.

Strains or plasmids	Relevant genotype or features	Source or Ref.
<u>Strains</u>		
MC1000	$F^{-} \lambda^{-}$ araD139 Δ(ara-leu)7697 Δ(lacIY)74 galU galK rpsL	(1)
BL21	F^{-} dcm ompT hsdS(r _B .m _B .) gal λ (DE3)	(2)
XL1-Blue	recA1 endA1 gyrA96 thi 1 hsdR17 supE44	Stratagene
	relA1 lac [F proAB lacI qZ Δ M15 Tn10 (Tetr)]	6
BW25113	rrnB3 $\Delta lacZ4787$ hsdR514 $\Delta (araBAD)567$	(3)
	Δ (rhaBAD)568 rph-1	
CB23	MC1000 $\Delta vciM::kan$	This study
JW1272	BW25113 $\Delta vciM::kan$	(4)
JW2479	BW25113 $\Delta v fgC::kan$	(4)
JW3119	BW25113 $\Delta vraP$::kan	(4)
JW5105	BW25113 $\Delta v biX$::kan	(4)
NR1681	MC1000 $\Delta yciS::kan$	This study
NR1647	MC1000 $\Delta yciM$	This study
HE43	BL21 carrying pHE43	This study
HE64	CB23 carrying pHE64	This study
HE89	CB23 carrying pHE89	This study
VN15	MC1000 ara ^R	This study
VN20	VN15 carrying empty pBAD-HisB	This study
VN26	MC1000 $\Delta pyrF$::kan	This study
VN50	VN15 $\Delta yciM$::kan	This study
VN57	BL21 carrying pVN55	This study
VN63	BL21 carrying pHE72	This study
VN64	NR1647∆ <i>rfaI∷kan</i>	This study
VN69	BL21 carrying pVN67	This study
VN75	BL21 carrying pVN74	This study
VN90	$NR1647\Delta r faQ::kan$	This study
VN94	NR1647 $\Delta asmA::kan$	This study
VN110	NR1647∆ <i>rfaP∷kan</i>	This study
VN148	BL21 carrying PVN147	This study
VN179	VN50 carrying empty pBAD-HisB	This study
VN187	VN50 carrying pVN2	This study
VN196	VN50 carrying pVN182	This study
VN198	BL21 carrying pVN182	This study
VN213	VN50 carrying pVN173	This study
VN237	CB23 carrying pVN68	This study
VN241	BL21 carrying pVN2	This study
VN250	MC1000 $\Delta envC$::kan	This study
VN255	NR1647 <i>∆prc∷kan</i>	This study

45 Table S1. Strains and plasmids used in this study

VN262	NR1647 $\Delta mrcA$::kan	This study
VN264	NR1647 $\Delta ponB$::kan	This study
VN266	NR1647 $\Delta pbpc::kan$	This study
VN268	NR1647 $\Delta nlpD$::kan	This study
VN343	BL21 carrying pVN173	This study
NR2793	MC1000 zib563::Tn10	This study
NR2794	MC1000 <i>zib563</i> ::Tn10 ΔenvC::kan	This study
NR2795	NR1647 <i>zib563</i> ::Tn10	This study
NR2796	NR1647 <i>zib563</i> ::Tn10 ∆envC::kan	This study
<u>Plasmids</u>		
pBAD-HisB	L-arabinose inducible expression vector, N- terminal Hisc-tag	Invitrogen
pASK-IBA63a-	P_{Tet} dependent expression vector, C-terminal	IBA
plus	Strep-tag	
pRSET-B-	P_{T7} dependent expression vector, C-terminal	Received from Xavier De
mCherry	mCherry protein	Bolle, University of Namur
pQE60	P_{T5} dependent expression vector, C-terminal His ₆ tag	Qiagen
pCB25	pQE60 with YciM _{His} , C-terminal His ₆ -tag	This study
pHE43	pBAD-HisB with YciM _{His} , C-terminal His ₆ - tag	This study
pHE72	pBAD-HisB with YciM [*] _{His} , truncated protein, C-terminal His ₆ -tag	This study
pHE64	pBAD-HisB with YciM _{mCherry} , C-terminal	This study
pHE89	pFPV25 with <i>fruB</i> -GFP, constitutively active GFP in the cytoplasm	Received from A . Aersten, Katholieke Universiteit Leuven
pVN2	pBAD-HisB with YciM, full-length protein	This study
pVN55	pASK-IBA63a-plus with YciM [*] _{steen} truncated	This study
	protein C-terminal Strep-tag	2
pVN67	pASK-IBA63a-plus with YciM [*] _{SS/CCCC-Strep} ,	This study
	truncated protein, C_{184} and C_{256} mutated, C-terminal Strep-tag	
pVN68	pBAD-HisB with $YciM_{mCherry}^{*}$, truncated	This study
	protein, C-terminal mCherry	
pVN74	pASK-IBA63a-plus with YciM [*] , truncated protein	This study
pVN147	pBAD-HisB with YciM [*] _{SS/CCCC-His} , truncated	
nVN173	protein, C_{184} and C_{256} mutated, C-terminal His ₆ -tag	This study
h 1 1 1 / 2	pbAD-filsd with $\text{relivi}_{CC/SSSS}$, C ₃₅₇ , C ₃₆₀ , C ₃₇₁ and C ₃₇₄ mutated	1 1115 Sludy

pVN182

47 Table S2. Primers used in this study

	Primer	Sequence (5'-3')
	yciM_NcoI	TTACCATGGTGGAGTTGTTGTTGTTTCTGCTTTTGCC
	yciM_BglII_pQE60	TTAAGATCTACAGGCCATCAAGACCGCGAATCGG
	yciM_HindIII_pBAD	TTAAAGCTTACAGGCCATCAAGACCGCGAATCGG
	yciM [*] _NcoI	TTACCATGGCGCAACAAAACAAGCAAGATGAAGC
	yciM_BglII_pBAD	TTAAGATCTCAGGCCATCAAGACCGCG
	yciM_XhoI_pASK	AATTACTCGAGCAGGCCATCAAGACCGCGAATCGGTTTAAT
	yciM_XhoI_STOP	TTACTCGAGTTACAGGCCATCAAGACCGCG
	yciM_C1S1_Fw	CGCGTCGAAATTGCCCATTTCTAC <u>AGT</u> GAGTTAGCCCTGCAG
	yciM_C1S1_Rv	CTGCAGGGCTAACTCACTGTAGAAATGGGCAATTTCGACGCG
	yciM_C2S2_Fw	ACGCTGGAAATGTTGCAAACC <u>AGC</u> TATCAGCAGTTGGGTAAAACTGCC
	yciM_C2S2_Rv	GGCAGTTTTACCCAACTGCTGATAGCTGGTTTGCAACATTTCCAGCGT
	yciM_S1XXS2_Fw	CTCGTTATCGT <u>AGC</u> CAGAAA <u>AGT</u> GGTTTTA
	yciM_S1XXS2_Rv	CGGTAAAACCACTTTTCTGGCTACGATAACGAG
	yciM_S3XXS4_Fw	CTACTGGCAT <u>AGT</u> CCGTCT <u>AGT</u> CGGGGCCTGG
	yciM_S3XXS4_Rv	CCAGGCCCGACTAGACGGACTATGCCAGTAG
	mCherry_Fw	CACAGATCTGTGAGCAAGGGCGAG
	mCherry_Rv	GTTAAGCTTACTTGTACAGCTCGTCC
48 49	The underlined nucleo	ondes correspond to serine codons replacing the cysteine codons
50		
51		
51		
32		
53		
54		
55		
56		
57		
58		
59		

Gene	SDS-EDTA	Rifampin	Gene	SDS-EDTA	Rifampin
bamB			rfaP		
bamE			rimM		
cmk			rplI		
dedD			rpsF		
dnaK			rseA		
fabH			surA		
fur			tatB		
galU			tatC		
gmhB			tdK		
ipp			thyA		
lipA			tolB		
lpcA			tolC		
pal			tolQ		
rbfA			tolR		
rfaC			ubiE		
rfaD			ubiF		
rfaE			ubiH		
rfaF			ybiX		
rfaG			yciM		
rfaH			yfgC		
rfaI			yraP		

60 Table S3. Mutants from the Keio collection sensitive to both rifampin and SDS-EDTA

<sup>The sensitivity to hydrophobic antibiotics and detergent of the mutants from the Keio collection
was determined. The mutants were streaked on LB plates containing either rifampin (25 μg) or
SDS-EDTA (0.05 %, 1.25 mM). Only the mutants that are sensitive to both conditions are listed
in this table. Black: no growth, Grey: poor growth</sup>

Table S4. Sensitivity of *yciM*, *yraP*, *ybiX* and *yfgC* strains to various hydrophobic antibiotics
 74
 75

	Inhibition zone (mm)		
	Rifampin	Bacitracin	Erythromycin
	(25 µg)	(10 µg)	(15 µg)
WT	$12 \pm 0,5$	<6	<6
yciM	21 ± 1	11 ± 2.9	13 ± 3.8
yraP	17.3 ± 0.5	13.7 ± 0.5	10.3 ± 1.3
ybiX	14.6 ± 0.5	<6	10.3 ± 1.9
yfgC	19 ± 1.4	<6	10.6 ± 0.9

The sensitivity of JW1272 ($\Delta yciM::kan$), JW3119 ($\Delta yraP::kan$), JW5104 ($\Delta ybiX::kan$) and JW2479 ($\Delta yfgC::kan$) strains to four hydrophobic antibiotics was determined by measuring the diameter of the inhibition zone using BBL Sensi-Discs Antimicrobial Susceptibility Test Discs containing rifampin (25 µg), bacitracin (10 µg) or erythromycin (15 µg). Discs have a diameter of 6 mm. Strains JW1272, JW3119, JW5104 and JW2479 are from the Keio collection (4).

zib563::*Tn*10 ∆*envC*::*kan*

Figure S2. YciM^{*} co-purifies with DnaK. The truncated version of YciM was purified by three steps of purification (affinity chromatography, anion exchange chromatography and gel filtration). The fractions that eluted from a Superdex S200 gel filtration column (EF) were loaded onto a SDS-PAGE and stained using the PageBlue Protein Saining Solution (Fermentas).

-

Figure S3. YciM binds zinc via 4 cysteine residues. The purified YciM^{*}_{His} protein was incubated with PAR and A₅₀₀ was monitored to follow the formation of the Zn(PAR)₂ complex. Stepwise additions of stoichiometric amount of PMPS induced zinc release. The [PMPS]/[YciM] ratio corresponds to the number of cysteine residues that have to be titrated to allow zinc release. The concentration of the Zn(PAR)₂ complex ([Zn(PAR)₂]) corresponds to the concentration of zinc released from YciM.

Figure S4. Aerobically-purified YciM^{*}_{Strep} displays a pink color. YciM^{*}_{Strep} was purified by affinity chromatography using a Strep-Tactin column, followed by an anion exchange chromatography and a gel filtration. The fractions that eluted from the gel filtration column were pooled and concentrated. The purified protein displays a bright pink color owing to its ability to bind iron.

149	REFERENCES
112	

151	1.	Casadaban MJ, Cohen SN. 1980. Analysis of gene control signals by DNA fusion and
152		cloning in Escherichia coli. Journal of molecular biology 138:179-207.
153	2.	Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct
154		selective high-level expression of cloned genes. Journal of molecular biology 189:113-
155		130.
156	3.	Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in
157		Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-6645.
158	4.	Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita
159		M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-
160		gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008.
161		
162		