

FIG S1: Schematic representation of the construction of the suicide plasmids. For details, see text.

FIG S2: BN-PAGE gel of purified recombinant *cbb*₃-isoforms. Cbb₃-1 (lane 1) and Cbb₃-2 (lane 2) were solubilized and purified with DDM as described in Materials and Methods, and analyzed on a blue native PAGE gel (4-16% Bis-Tris gel). The molecular weights (kDa) of the marker proteins (lane M) are indicated on the left.

Α N Subunit 1st isoform of *cbb*₃-C*c*O (Cbb₃-1) MNTATS-TAY SYKVVRQFAI MTVVWGIVGM GLGVFIAAQL AWPFLNFDLP WTSFGRLRPL HTNAVIFAFG GCALFATSYY 1 81 SVQRTCQTTL FAPKLAAFTF WGWQLVILLA AISLPLGFTS SKEYAELEWP IDILITIVWV AYAVVFFGTL AKRKVKHIYV 161 GNWFFGAFIL TVAILHVVNN LEIPVTAMKS YSLYAGATDA MVQWWYGHNA VGFFLTAGFL GIMYYFVPKQ AERPVYSYRL 241 SIVHFWALIT VYIWAGPHHL HYTALPDWAQ SLGMVMSLIL LAPSWGGMIN GMMTLSGAWH KLRSDPILRF LVVSLAFYGM 321 STFEGPMMAI KTVNALSHYT DWTIGHVHAG ALGWVAMVSI GALYHLVPKV FGREOMHSIG LINTHFWLAT IGTVLYIASM 401 WVNGIAOGLM WRAINDDGTL TYSFVESLEA SHPGFVVRMI GGAIFFAGML VMAYNTWRTV QAAKPAEYDA AAOIASAWSH 481 **POFEK** 2^{nd} isoform of cbb_3-CcO (Cbb₃-2) MSTAISETAY NYKVVROFAI MTVVWGIIGM GLGVFIAAOL VWPSLNLDLP WTSFGRLRPL HTNAVIFAFG GCALFATSYY 1 VVORTCOARL fSDGLAAFTF WGWOAVIVLA VITLPMGYTS SKEYAELEWP IDILITLVWV SYIAVFFGTI MKRKAKHIYV 81 161 GNWFFGAFIL VTAMLHIVNN LEIPVSLFKS YSIYAGATDA MVOWWYGHNA VGFFLTTGFL GMMYYFVPKO AERPVYSYRL 241 SIVHFWALIT LYIWAGPHHL HYTALPDWAO SLGMVMSIIL LAPSWGGMIN GMMTLSGAWH KLRTDPILRF LVVSLAFYGM 321 STFEGPMMAI KTVNALSHYT DWTIGHVHAG ALGWVAMITI GSMYHLIPKV FGREQMHSVG LINAHFWLAT IGTVLYIASM 401 WUNGITOGLM WRAINEDGTL TYSFVEALEA SHPGFIVRAV GGAFFLAGML LMAYNTWRTV RAAKSAQYDT AAOIASAWSH 481 **POFEK**

В

O Subunit

 1^{st} isoform of cbb_3-CcO (Cbb₃-1)

MKŠHEKLEKN VGLLTLFMIL AVSIGGLTQI VPLFFQDŠVN EPVEGMKPYT ALQLEGRDLY IREGCVGCHS QMIRPFRAET
 ERYGHYSVAG ESVYDHPFLW GSKRTGPDLA RVGGRYSDDW HRAHLYNPRN VVPESKMPSY PWLVENTLDG KDTAKKMSAL
 161 RMLGVPYTEE DIAGARDŠVN GKTEMDAMVA YLQVLGTALT NKR

SI RMLGVPYTEE DIAGARDOVN GKTEMDAMVA YLQVLGTALT

 2^{nd} isoform of cbb_3-CcO (Cbb₃-2)

MKNHEILEKN IGLLTLFMIL AVSIGGLTQI VPLFFQDÅVN EPVEGMKPYT ALQLEGRDLY IREGCVGCHS QMIRPFRAET
 ERYGHYSVAG ESVYDHPFLW GSKRTGPDLA RVGGRYSDDW HRAHLYNPRN VVPESKMPSY PWLVENTLDG KDTAKKMSAL
 161 RMLGVPYTEE DIAGARDÅVR GKTEMDAMVA YLQVLGTALT NKR

С

P Subunit

 1^{st} isoform of cbb_3-CcO (Cbb₃-1)

1 MSTFWSGYIA LLTLGTIVAL FWLIFATRKG ESAGTTDOTM GHAFDGIEEY DNPLPRWWFL LFIGTLVFGI LYLVLYPGLG 81 NWKGVLPGYE GGWTQEKQWE REVAQADEKY GPIFAKYAAM SVEEVAQDPQ AVKMGARLFA NYCSICHGSD AKGSLGFPNL 161 ADQDWRWGGD AASIKTSILN GRIAAMPAWG QAIGEEGVKN VAAFVRKDLA GLPLPEGTDA DLSAGKNVYA QTCAVCHGQG 241 GEGMAALGAP KLNSAAGWIY GSSLGOLQOT IRHGRNGQMP AQQQYLGDDK VHLLAAYVYS LSQKPEQLAN Q

^{2nd} isoform of *cbb*₃-*CcO* (*cbb*₃-2)
MTSFwsWyVT llSlgtiAal VwlLLatrkg QRPDStEEtV ghSYdgieey dnplprwwFM lfVgtVIFAL Gylvlypglg
Nwkgilpgye ggwtqVkEwQ reMDKaNeQy gpLYakyaam PveevaKdppq aLkmgGrlfa SNcsVchgsd akgAYGFpnl
161 TdDdwLwggE PETiktTilH grQaVmpGwK DVigeegIRn vaGYvr-SlS gRDTpegISV dIEQgQKIFA ANcVvchgPE
241 AKGVTaMgap NLTDNV-wLy gssFAqIqqt LrYgrngRmp aqEAIlgNdk vhllaayvys lsqQpeq

D

Q Subunit

 2^{nd} isoform of cbb_3-CcO (Cbb₃-2)

1 MMEIGTLRGL GTILVVVAFI GVVLWAYSSK RKQSFDEAAN LPFADDETDA KKREEEASRS KK

FIG S3: Peptide mass fingerprinting of the two *cbb*₃-isoforms (Cbb₃-1 and Cbb₃-2). Amino acid sequences of the four subunits CcoN, CcoO, CcoP and CcoQ, are shown in A-D, respectively. The first amino acid on each line is numbered at the left. The unique residues associated with both *cbb*₃-isoforms are shown as enlarged characters. The sequence coverage obtained using simultaneous nLC-ESI- and nLC-MALDI-MS/MS is indicated in red (ESI only), blue (MALDI only) and purple (detected in both ESI and MALDI-MS). The eight amino acids of the Strep-tag II are indicated by black underlining. The CcoQ subunit was detected only in Cbb₃-2.

FIG S4: Sequence coverage obtained for the assembly protein CcoH in both isolated cbb_3 isoforms. The first amino acid on each line is numbered on the left. Peptides detected by ESIMS peptide mass fingerprinting are shown in red.

FIG S5: UV-Vis spectra of both recombinant *cbb*₃-isoforms. The absorption spectra of 2 μ M recombinant Cbb₃-1 (black line) and Cbb₃-2 (red line) were recorded from 380 to 640 nm at 25°C. The insert shows an enlarged view of the α and β bands from 480 to 590 nm. (A) The *cbb*₃-C*c*Os are fully oxidized by adding potassium hexacyanoferrate (III). (B) The *cbb*₃-C*c*Os are fully reduced by adding sodium dithionite. (C) The reduced minus oxidized difference spectra of *cbb*₃-C*c*Os.

FIG S6: Measurements of oxygen reductase activity of cbb_3 -CcO. The addition of 3 mM ascorbate, 1 mM TMPD, 8.3 nM cbb_3 -CcO and 1 mM KCN is indicated by arrows. (A) No oxygen consumption was observed in the absence of TMPD. (B) The reaction was initiated by adding cbb_3 -CcO to a reaction mixture containing ascorbate and TMPD. (C) Inhibition of the cbb_3 -CcO by KCN during the turnover. After addition of KCN, the concentration of oxygen was slowly increased because of the back diffusion of oxygen in the reaction mixture. (D) No oxygen consumption was present when KCN was added before the reaction initiation.

	Oligonucleotide	Sequence (5'-3') ^a	Description of amplicon		
Primers for	1_Fw pBBR	CCGCCCTATACCTTGTCTGC	Kan ^r and EGFP from pBBR1MCS-2-EGFP		
generation of	1_Rev pBBR	GGAAGTCCAGCGCCAGAAAC			
рХН-В	1_Fw 184 H2	TGGCGCTGGACTTCCGTGATGCTGCCAACTTACTG	p15A origin from pACYC184		
	1_Rev 184 H1	CAAGGTATAGGGCGG GACGATGAGCGCATTGTTAG			
Primers for	3181 CCW	TGCCACCTGGGATGAATGTC	linearized pXH-B, 5' insertion		
generation of	3228 CW	TGTTTCTGGCGCTGGACTTC	site		
$pXH-\Delta l$ and $pXH-\Delta 2$	1969 CCW	TCTCATGCTGGAGTTCTTCG	linearized pXH-B, 3' insertion		
рАП-42	2016 CW	CGAAGCCCAACCTTTCATAG	site		
	3228 CW/cbb3I-F	CCAGCGCCAGAAACACTTGCAGATGGGCCACTCG	H1-flanking arm, 5'		
	3181 CCW/Cbb3I-R	TCATCCCAGGTGGCATGTATGGGCTTCCATCCAC	homologous regions		
	3228 CW/cbb3II-F	CCAGCGCCAGAAACACTCGCCGCCTATGTTTACAG	H2-flanking arm, 5'		
	3181 CCW/cbb3II-R	TCATCCCAGGTGGCACAGGCCCATCCCAATGATTC	homologous regions		
	2016 CW/cbb3II-F	AAAGGTTGGGCTTCGCTCGCCGCCTATGTTTACAG	H2-flanking arm, 3'		
	1969 CCW/cbb3II-R	AACTCCAGCATGAGACAGGCCCATCCCAATGATTC	homologous regions		
	2016 CW/cbb3III-F	AAAGGTTGGGCTTCGTGATGCCTGGCTGGAAAGAC	H3-flanking arm, 3'		
	1969 CCW/cbb3III-R	AACTCCAGCATGAGAGATACGTGCCAACCAGGATC	homologous regions		
Primers for	7_Fw (M6263)	CTTGCAGATGGGCCACTCGAGGCTTGTC	Amplification of ccoNOP-1		
generation of pXH22	6_Rev (M6263)	AAACGGCGGCAAGTATGGAGAAAGCAG	from genomic DNA		
	1.C Strep Fw	Strep-tag II at C-terminus of			
	1.C Strep Rev	CCTAGGCTCCTCATTTTTCGAACTGCGGGTGGCTCC	ccoN-1		
	ccoN-1-N BamHI	AGTGGATCCCAAGGCGCTCAGCCATTTCG	Clone of $ccoNOP$ 1 + Strep tag		
	ccoP-1-C HindIII	CGTAAGCTTTCGCAGAGTAGCGGAAGTTG	II into pBBR1MCS		
Primers for	5 Fw (PCR101)	CGGCCTGGGGCCAAGCCATCGGCGAAG	Amplification of ccoNOOP-2		
generation of pXH26	4 Rev (PCR101)	AGTCATCGAGTGCGTACCACGGCGGAAG	from genomic DNA		
	2.C Strep Fw	CCGCGCAGATCGCTAGCGCTTGGAGCCACCCGCAG	Strep-tag II at C-terminus of ccoN-2		
	2.C Strep Rev	CTATCCGTACGCATCCTATTTTCCGAACTGCGGGGGGGCTCC			
	IF ccoN-2-N				
	IF ccoP-2-C	CGGTATCGATAAGCTGTCCAGCTGCGAATGGTACG	ад п шо рввктись		
Primers for generation of pXH39_promoter	pXH22-Pro-N		Promoter region from <i>ccoNOP</i> -		
	pXH22-Pro-C		I (pXH22)		
exchange	IF-Pro-N		Structural genes from		
0 1	IF-Pro-C		(convogr-2 (pxH20)		
Sequencing	lacZa_C				
primers for	1.5eq				
ccoNOP-1	2.Seq				
	J.Seq A Fau				
Conoral	4.1 W	GCGGGCCTCTTCGCTATTAC			
General sequencing primers for		TTCTTCGCACCATCATGAAGC			
	J.Seq				
ccoNOQP-2	10.1 W	GGTAACGCATGATGGAAATCCG			
	lacZa N1				
		noonneeunenuunaaue			

^a Homologous regions used for the ligation independent cloning are shown in red. The nucleotide sequence encoding the Strep-tag II (with a two amino acid linker) is shown in blue. Restriction enzymes sites are underlined.

Purification step	Volume (ml)	Total protein concentration (mg/ml) ^a	Total protein (mg)	Total activity (U) ^b	Specific activity (U/mg)	Yield (%)	Purification fold
Crude cell extract	250.0	13.66	3415.0	4052	1.2	-	-
Crude membrane	107.5	10.09	1084.7	3484	3.2	100	1.0
Solubilization	380.0	2.33	885.4	2913	3.3	82	1.0
Strep-Tactin	50.0	0.17	8.5	412	48.5	0.78	15.2
Q Sepharose	23.0	0.33	7.6	433	57.1	0.70	17.8
Superdex 200	9.6	0.78	7.5	544	72.6	0.69	22.7

TABLE S2: Purification of Strep-tagged recombinant Cbb₃-1

^a Protein concentration determined by BCA assay using BSA as protein standard.

^b Enzyme activity was measured using an oxygen electrode. One U is defined as the amount of Cbb_3 -1 required to reduce 1 µmol of O_2 in 1 min.