

FIG S2 Mimicking lysine acetylation in cluster three reduces Ume6p binding to URS1^{SPO13} in vitro. (A) Biacore analysis was performed (see Materials and Methods) with the Ume6p peptides indicated injected over a bound mutant URS1 probe (URS1^{Δ GC}) sequences lacking the consensus Ume6p binding site. Under identical conditions, Ume6p-URS1^{SPO13} interactions generated an RU value of >250 (see Fig. 2B). The sensorgrams with URS1^{Δ GC} exhibited an interaction value of ~5 RU indicating that stable protein/DNA complexes did not form. (B) The root mean square differences between the computer generated optimal two-($k_d 1$, $k_d 2$) or single- ($k_a S$) dissociation curves and the raw data acquired in Fig. 2B. For the separate dissociation constants, $k_d 1$ included the first 100s of buffer wash, while $k_d 2$ calculated dissociation for the next 180s. Note the increase in

residual values observed in the single k_d S model for Ume6p and Ume6p^{K3R} relative to those observed when the dissociation is separated suggesting the twocomponent curve better fits the data. The elevated differences for Ume6p^{K3Q} compared to wild type reflect the overall instability of this complex.