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∗ E-mail: gary.brouhard@mcgill.ca

Supplemental Information

150
100
80
60
50
40

30
25

20

15

kDa Pe
lle

t
C

la
ri�

ed
 L

ys
at

e
N

ic
ke

l E
lu

tio
ns

St
re

p 
Fl

ow
 T

hr
u

St
re

p 
W

as
h

St
re

p 
El

ut
io

ns

Aurora-B-GFP
INCENP491-873

Figure S1. Purification of CCA-GFP. An SDS-PAGE gel from a purification of the CCA-GFP. The two
proteins in the complex are initially visible in the elutions from the Ni-NTA column (Nickel Elutions, labeled). The
complex is further purified using the Strep-tactin column (Strep Elutions, labeled).

CCA Auto-activation Model

Following the formulation of Wang and Wu [1], an intermolecular autophosphorylation reaction scheme can be
shown as:
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where E, E∗, A, and P are unphosphorylated kinase, phosphorylated kinase, ATP and ADP, respectively. Equilib-
rium dissociation constants are defined as:

K ′A =
[E∗][A]

[E∗A]
=
k−1
k1

K ′E =
[E∗][E]

[E∗E]
=
k′−1
k′1
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[E∗EA]
=
k−2
k2

KE =
[E∗A][E]

[E∗EA]
=
k′−2
k′2

It should be noted that KAK
′
E = K ′AKE . The Michaelis-Menten constant, KM and turnover rate, kcat, are:

KM = KE
(K ′A + [A])

(KA + [A])
(1)

and

kcat =
kc[A]

KA + [A]
(2)

Certain assumptions simplify Equations 1 and 2. First, we assume that E∗ and E∗A bind to E with the same
affinity, which is to say that ATP does not change the affinity. Then KE = K ′E , which means that KA = K ′A and
therefore Equation 1 reduces to KM = KE . Second, we assume that [A] is sufficiently high relative to all other
species (at least 100 µM used in experiments) so that Equation 2 reduces to kcat = kc.

To solve the scheme, let the total concentration of kinase be [T ]0 = [E]0 + [E∗]0 = [E] + [E∗] + [E∗A] +
2[E∗E] + 2[E∗EA], where [E]0 and [E∗]0 are the initial concentrations of unphosphorylated and phosphorylated
kinase, respectively. The above simplifications let us write the impicit integrated rate equation found in [1] as:

t =
−1

kc

(
ln

x

x0
+
KE + [T ]0

[T ]0
ln

(x−KE − 2[T ]0)(x0 −KE)

(x0 −KE − 2[T ]0)(x−KE)

)
(3)

where
x = 2[E∗]T − [T ]0 +

√
([T ]0 +KE)2 − 4([T ]0 − [E∗]T )[E∗]T (4)

and
x0 = 2[E∗]0 − [T ]0 +

√
([T ]0 +KE)2 − 4[E∗]0[E]0 (5)

The tunable parameters KM and kcat are now KE and kc, the dissociation constant for unphosphorylated-
phosphorylated CCA complex formation, and the first-order rate constant for the catalytic phosphorylation reaction,
respectively. In our model, microtubules increase the rate of formation of [E∗]T by increasing CCA collision rates
(increasing k′1 and/or k′2, which means decreasing KE and/or K ′E) through a reduction in dimensionality. An
example plot of [E∗]T as a function of t using Equation 3 is shown below. Here, [E∗]0 = 0.1 µM, [E0] = 0.9 µM,
kc = 1 min−1 and KE is varied.

2



Reduction in Dimensionality

From Berg and Purcell [2, 3], let W (r) be the time it takes for a particle to encounter an absorbing sphere of radius
a. A reflecting boundary exists at r = b > a. In general, W is described by:

∇2W +
1

Dn
= 0 (6)

where Dn is the diffusion coefficient in n-dimensions. In 3-dimensions, the solution for W (r) with the above
boundary conditions (W (r = a) = 0 and ∇W (r = b) = 0) is given by:

W (r) =
2b3

a −
2b3

r + a2 − r2

6D3
(7)

Here, D3 is the diffusion coefficient in 3-dimensions. We want the mean of this so-called “first passage time”, or
τMFPT. This is the average of W (r) when the particle is placed at random inside the volume many times and is
defined as:

τMFPT =
1

π(b2 − a2)

∫ b

a

W (r)dr =
b6

3D3a(b3 − a3)

(
1− 9a

5b
+
a3

b3
− a6

5b6

)

and when b� a, τMFPT ≈
b3

3aD3
(8)

Let the particle be a phosphorylated CCA molecule and the absorbing sphere an unphosphorylated CCA. If we
assume a ≈ 2 nm (radius of a typical globular protein) and the viscosity η ≈ 1 cP, then from the Einstein-Stokes
relation we can estimate D3 = kBT

6πηr ≈ 10 µm2 s−1 at 25◦C. Both the particle and the absorbing sphere undergo
diffusion, however, which means that the relative diffusion coefficient is D3 = Dparticle +Dabsorbing sphere. Assuming
that phosphorylation does not affect diffusion coefficients, Dparticle = Dabsorbing sphere, and D3 ≈ 20 µm2 s−1.

In the 1-dimensional case, Equation 6 becomes:

d2W (x)

dx2
+

1

D1
= 0 (9)

where D1 is the 1-dimensional diffusion coefficient (which we have measured for CCA using single-molecule TIRF).
We imagine that a CCA molecule diffuses along the x-axis at 0 < x ≤ b. x = 0 is an absorbing point, and x = b is a
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reflecting boundary, as in the 3-dimensional case. The boundary conditions to solve Equation 9 are W (x = 0) = 0,

and dW (x=b)
dx = 0. The solution is:

W (x) =
1

2D1
(2bx− x2)

The mean first passage time for the 1D case is 1
b−a

∫ b
a
W (x)dx = τMFPT =

b2

3D1
.

We are interested in knowing if 1D diffusion produces smaller mean first passage times than in 3D. The equations
for τMFPT, however, both depend on b, the separation distance between the absorbing and reflective boundaries.
We can solve for a value of b for which τMFPT in 1D < τMFPT in 3D:

b > a
D3

D1
(10)

which, using the above values for the diffusion coefficients and a ≈ 2 nm, gives b > 0.4 µm. The dependency on the
value of b is clearly shown in Figure 3D of the main paper.
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